首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the difficulties encountered with the treatment of human B cell malignancies with anti-Id antibodies is the emergence of Id variants. The current study was designed to investigate this phenomenon further by using the murine B cell lymphoma model 38C13. Tumors were harvested that developed despite treatment with the anti-Id antibody S1C5 in mice inoculated with 38C13 cells and evaluated by immunofluorescence. Various phenotypes were found among escaping tumor cells. Some cells continued to react with S1C5 whereas others lost S1C5 reactivity. Among these latter cells, some continued to express surface IgM kappa, whereas others no longer expressed surface mu or kappa. After Id variant cell lines were established, immunofluorescence and ELISA of cell lysates from the surface IgM kappa- lines revealed persistent intracellular mu H chain but no detectable kappa. Surface IgM kappa+ lines were fused with myeloma cells and the Ig proteins secreted by the resultant hybridomas analyzed. The apparent m.w. of the mu-chains of these rescued Ig was the same as wild-type 38C13, whereas the kappa-chains were either the same or different in m.w. from the wild type. The IgM kappa of the variant line, T3C, weakly reacted with S1C5 and did not react with other anti-Id antibodies. The IgM kappa of the other variants were nonreactive with all the antibodies. Immunofluorescence of these surface Ig+ variants confirmed this finding. Some of the surface Ig+ and Ig- variant lines grew identically to wild-type tumor in vivo, but only the weakly S1C5-reactive variant T3C was inhibited in its growth by S1C5. Moreover, T3C was the only one of these lines capable of being lysed in vitro with S1C5 by antibody-dependent cellular cytotoxicity. Further studies revealed that surface Ig+ and Ig- variants emerge in escaping tumors with similar frequency and that these variants represent a major mode of tumor escape from anti-Id treatment in this model.  相似文献   

2.
The Ig Id of a B cell lymphoma serves as a distinct marker of the malignant clone and thus as a tumor-specific target for antibody therapy. Somatic variation of the Ig genes expressed by B cell tumors can lead to loss of reactivity with anti-Id antibodies and escape of tumors from the therapeutic effects of such antibodies. In our study, we have used anti-Id antibodies to screen for variants within a cell line derived from a patient with a large cell lymphoma of the B cell type. Cells were simultaneously stained on their surface for idiotypic and for isotypic Ig determinants using reagents labeled with different fluorochromes. Tumor cells expressing intact Ig molecules with alteration of their idiotypic determinants were isolated with the fluorescence activated cell sorter. Idiotypic variation was an ongoing process in vitro with Id- variants being generated at a rate of 2.7 x 10(-4)/cell per generation and Ig- cells being produced at a rate of 1.31 x 10(-5)/cell per generation. Subcloned variants expressed subtle differences in reactivity with a panel of three non-cross-blocking anti-Id antibodies. Analysis of Ig gene rearrangements by the Southern blotting technique using a JH probe established that the variants and the original tumor cells were all clonally related. Immunoprecipitation of surface labeled Ig molecules from the variant subclones disclosed major alterations of the lambda-L chains with no gross alterations of the mu-H chains. Related studies have established that the tumor cells undergo rearrangement and expression of new lambda-L chain genes.  相似文献   

3.
The emergence of Id variants is a major escape mechanism from anti-Id therapy of human B cell malignancies and of the murine B cell lymphoma 38C13. To determine what impact the epitope specificity of anti-Id antibodies has on the prevention of emergence of such Id variants in the 38C13 lymphoma, anti-Id mAb of varying epitope specificity for the Id of 38C13 tumor cells were produced and studied. Some antibodies, produced by immunizing mice with both the wild-type 38C13 IgM and variant IgM, cross-reacted with wild-type 38C13 IgM and with all four members of a panel of variant IgM. These anti-Id did not react with separated 38C13 IgM H or L chains by Western blot, but did react with the cytoplasmic H chain of the surface Ig- variant cell line T2D that expresses the same H chain as wild-type 38C13 in its cytoplasm but does not express any associated L chain. In contrast, anti-Id of narrower specificity did not react with this H chain. This indicated that the broadly cross-reactive antibodies recognized a stable epitope on 38C13 H chain. When a broadly cross-reactive antibody MS11G6 was compared to S1C5, an antibody of narrower specificity, MS11G6, was superior at preventing tumor growth in mice inoculated with 38C13 cells. Moreover, no surface Ig+ variants emerged in escaping tumors in the MS11G6-treated group, whereas such variants were common in the S1C5 treated group. Both anti-Id were of equal efficacy in eliminating wild-type 38C13 cells by using 38C13 cells in tumor inoculums that had just been cloned in vitro, but MS11G6 was also capable of preventing the growth of several surface Ig+ variant cell lines in vivo. We conclude that anti-Id recognizing more stable Id determinants can limit the emergence of Id variants and therefore be more effective therapeutic agents. This finding is of additional importance as additional in vivo and immunophenotypic studies demonstrated that the generation of Id variants was an ongoing process both in cloned parental 38C13 cells and its variants.  相似文献   

4.
It has recently become clear that recombination of Ig genes is not restricted to B cell precursors but that secondary rearrangements can also occur under certain conditions in phenotypically immature bone marrow and peripheral B cells. However, the nature of these cells and the regulation of secondary V(D)J recombination in response to B cell receptor (BCR) stimulation remain controversial. In the present study, we have analyzed secondary light chain gene rearrangements and recombination activating gene (RAG) expression in the surface IgM+, IgD- murine B cell line, 38C-13, which has previously been found to undergo kappa light chain replacement. We find that 38C-13 cells undergo spontaneous secondary Vkappa-Jkappa and RS rearrangements in culture, with recombination occurring on both productive and nonproductive alleles. Both 38C-13 cells and the Id-negative variants express the RAG genes, indicating that the presence of RAG does not depend on activation via the 38C-13 BCR. Moreover, BCR cross-linking in 38C-13 cells leads to a rapid and reversible down-regulation of RAG2 mRNA. Therefore, 38C-13 cells resemble peripheral IgM+, IgD- B cells undergoing light chain gene rearrangement and provide a possible in vitro model for studying peripheral V(D)J recombination.  相似文献   

5.
Immunoglobulin (Ig) was obtained from the tumor cells of patients with B cell malignancies by somatic cell hybridization to mouse-human heteromyeloma cells. The human Ig secreted by one of these hybridomas was used as an immunogen for the production of rat monoclonal antibodies (mAb). A panel of mAb specific for the idiotype (Id) was produced and characterized. Competitive binding studies that made use of [Se]-labeled anti-Id mAb (MAID) demonstrated several distinct yet topographically related Id on the Id-bearing Ig. These antibodies were shown to have avidities ranging from 0.38 to 45.3 X 10(8) l/mol. Additional studies demonstrated varying degrees of antigenic modulation of surface Id in vitro by MAID. The degree of modulation correlates with antibody avidity.  相似文献   

6.
Secretory heterohybrid clones from seven pristine human B cell lymphomas of diverse histologic types were established to investigate the question of tumor clonal diversity. We found that in six tumors, heterohybrid-derived Ig showed similar band patterns in IEF; families of anti-Id prepared from tumor Ig reacted uniformly with individual heterohybrids and original tumor; and the V gene loci displayed little variation on Southern analysis. In one patient who was followed with serial multiple site biopsies over a 14-mo period, clonal Id was preserved until the final stage of his disease, in spite of cytotoxic treatment. In a single follicular tumor (J.M.), each of the anti-Id reacted uniformly with the parent tumor and the individual heterohybrids, except that three of six clones failed to react with a single anti-Id family member. A Southern analysis of the VH gene locus revealed an identical gene rearrangement that was shared by the parent tumor and each heterohybrid. However, there was considerable heterogeneity of J.M. heterohybrid Ig in IEF gels, and we demonstrated the production of variant lambda L chains by the heterohybrid clones. One type of lambda L chain had a normal mobility in SDS-PAGE gels but larger lambda variants were produced by four of six heterohybrids. A Southern analysis of the VL gene displayed considerable variation in the type of lambda rearrangement present in the various heterohybrids, suggesting extensive diversity at the VL gene locus. In a second tumor (S.C.) that exhibited uniform anti-Id tumor reactivity we were also able to demonstrate the presence of a second minor tumor cell population (a biclonal tumor). Our data suggest that intraclonal VH variation may vary considerably with lymphoma subtype and mutagenic exposure and that an additional mechanism for generating spontaneous intraclonal heterogeneity is genetic variation at the VL locus.  相似文献   

7.
Immunoglobulins (Ig) secreted from a plasma cell contain either kappa or lambda light chains, but not both. This phenomenon is termed isotypic kappa-lambda exclusion. While kappa-producing cells have their lambda chain genes in germline configuration, in most lambda-producing cells the kappa chain genes are either non-productively rearranged or deleted. To investigate the molecular mechanism for isotypic kappa-lambda exclusion, in particular the role of the Ig kappa intron enhancer, we replaced this enhancer by a neomycin resistance (neoR) gene in embryonic stem (ES) cells. B cells heterozygous for the mutation undergo V kappa-J kappa recombination exclusively in the intact Ig kappa locus but not in the mutated Ig kappa locus. Homozygous mutant mice exhibited no rearrangements in their Ig kappa loci. However, splenic B cell numbers were only slightly reduced as compared with the wild-type, and all B cells expressed lambda chain bearing surface Ig. These findings demonstrate that rearrangement in the Ig kappa locus is not essential for lambda gene rearrangement. We also generated homozygous mutant mice in which the neoR gene was inserted at the 3' end of the Ig kappa intron enhancer. Unexpectedly, mere insertion of the neoR gene showed some suppressive effect on V kappa-J kappa recombination. However, the much more pronounced inhibition of V kappa-J kappa recombination by the replacement of the Ig kappa intron enhancer suggests that this enhancer is essential for V kappa-J kappa recombination.  相似文献   

8.
mAb directed toward the idiotype of the 38C13 murine B cell lymphoma can be used to treat and cure a high percentage of mice challenged previously with an otherwise lethal dose of tumor cells. Tumors developing in animals despite antibody therapy were examined by immunofluorescence and found to demonstrate either loss of surface Ig, or expression of an altered idiotype that no longer bound the antibody used for treatment. Further immunofluorescence analysis of the variant tumors revealed individual patterns of cross-reactivity with anti-38C13 idiotype mAb other than that used for therapy. The variant tumor cells were fused to myeloma cells and hybrids were isolated which secreted large quantities of the altered idiotype proteins. Polyclonal antibodies and mAb prepared against the mutant proteins demonstrated cross-reactivity with the original 38C13 protein and its other variants. But the variants and wild type cells could be distinguished from each other by their patterns of reactivity with the panels of anti-idiotype antibodies. Differences in apparent m.w. were demonstrated in the L chains of each of the mutant proteins. Southern blot analysis of the H chain locus of these mutants established that they were all clonally related; however, the L chain loci were grossly different. Thus, rare cells with alteration in their Ig L chain genes and expressed proteins can give rise to idiotype variants in this B cell tumor.  相似文献   

9.
We previously reported that idiotype (Id)-loss, stable somatic variants of a B cell hybrid, 2C3E1, are generated both in vitro and in vivo, after interaction of the Id-positive tumor cells with autologous Id-specific effector T cells. The present investigation was undertaken to elucidate further the nature and functional characteristics of the effector T cells. We report here that the idiotype-specific cells mediating the generation of Id- tumor variants are Thy1+ L3T4+ Lyt-2- cells, which respond to specific idiotypic stimulation by secreting IL-2 in vitro. No IL-2 is secreted in response to unrelated Ig or an Id/Ig-2C3E1 tumor variant. Furthermore, the Id-specific T cells exert strong suppressive effects on the expression of 2C3E1 Ig and the effects can be reversed by blocking the L3T4+ T cells with monoclonal anti-L3T4 antibody in vitro during the initial 3 days of co-culture. After 4 days, the T cell-mediated suppression of the 2C3E1-Id is irreversible. In addition to the in vitro studies we have determined that the administration of anti-L3T4 mAb to mice just before priming with idiotype-bearing tumor cells also abrogates the suppressive effects of the idiotype primed spleen cells on Ig expression of 2C3E1. To study the Id-specific effector T cells in more detail we have generated functional Id-specific L3T4+ T cell lines. These T cell lines have been shown to recapitulate the generation of Id- tumor variants that we observed with Id-primed spleen cells. It is concluded that L3T4+, Id-specific Ts cells are responsible for the generation of somatic variants of the B cell hybrid 2C3E1 and that the induction or selection of these variants progresses from a reversible phase to an irreversible phase.  相似文献   

10.
11.
Retargeting of T cells by bispecific IgG which binds to both CD3 and a tumor-associated Ag can induce T cell lysis of target cells irrespective of TCR specificity. The current studies were designed to further explore the efficacy and specificity of bispecific IgG-directed therapy in an immunocompetent animal model, and to evaluate the mechanisms responsible for bispecific IgG-directed inhibition of tumor cell growth by using the 38C13 murine lymphoma system. In vitro, proliferation of activated T cells in the presence of bispecific IgG was increased when the relevant, but not the irrelevant target cells were present. Bispecific IgG specifically induced activated T cell mediated lysis of cells expressing the target Ag, but not of cells expressing an irrelevant Ag, even when the irrelevant cells were in the same cell mixture, indicating contact between target cells and T cells plays a major role in bispecific IgG-mediated lysis. Bispecific IgG was less effective than anti-Id at inducing target cell lysis when peritoneal macrophages were used as effectors, suggesting bispecific IgG Fc is not responsible for cytotoxicity in this system. In vivo, bispecific IgG was significantly superior to anti-Id, anti-CD3, or a combination of anti-Id and anti-CD3 in preventing tumor growth in immunocompetent mice inoculated with syngeneic lymphoma. Phenotypic evaluation of tumors that emerged despite therapy indicated bispecific IgG selects for the emergence of Id variant lymphoma cells. In separate studies, 38C13 tumor inocula containing cells recognized by the therapeutic antibody were supplemented with a small number of 38C13 cells which expressed a distinct Id not recognized by the therapeutic antibody. Untreated mice inoculated with this mixture developed tumors containing cells of both phenotypes, whereas tumors emerging from mice treated with bispecific IgG contained only cells expressing the nonreactive Id. These studies demonstrate bispecific IgG-directed lysis is therapeutically superior to monospecific anti-Id therapy in the 38C13 tumor model, and that tumor lysis is mediated largely by cell-cell contact. As with other forms of anti-Id based therapy, Id variants can emerge as resistant cell populations after bispecific IgG therapy.  相似文献   

12.
We have analyzed the structure of Ig kappa chain genes in B cell lines derived from a human individual who cannot synthesize any kappa chains, and whose Igs all contain lambda chains (1). We have characterized secondary DNA recombination events at two kappa alleles which have undergone misaligned V-J recombinations. One such secondary recombination has joined the flanking sequences of a V kappa and a J kappa 2 gene segment as if it were the reciprocal product of a V-J kappa 2 recombination, and resulted in the displacement of the recombined VJ kappa 1 gene segments from the C kappa locus. The non-rearranged form of the V kappa fragment which had recombined with the J kappa 2 flank was cloned. Nucleotide sequencing of this fragment identified a V kappa gene that differed by at least 38% from all previously sequenced human V kappa genes. The other V-J kappa segment analyzed has undergone a secondary recombination at a different site from that described above, at a site within the intervening sequence between the J kappa and C kappa gene segments, similar to the location of secondary recombinations which have occurred in lambda + B cell lines from mice and humans (2,3). These results prove that multiple recombinations can occur at one J kappa-C kappa locus.  相似文献   

13.
DNA sequences 3' of the Ig H chain cluster rearrange in mouse B cell lines   总被引:2,自引:0,他引:2  
A mouse myeloma cell line MPC11 (IgG2b, kappa) and variants derived from it have been used to study DNA rearrangements that occur at the Ig H chain locus. One variant, F5.5, has acquired both VH gene and C epsilon gene rearrangements. Through genomic Southern blot analysis initially directed to mapping the C epsilon gene rearrangement, we observed that the VH region rearrangement was linked, through an inversion event, to sequences that originate 3' of the CH cluster, i.e., 3' of the C alpha gene. Subsequent studies have shown that DNA rearrangements within the region 3' of the C alpha gene are detected in several other mouse myeloma and hybridoma cell lines and are not associated with the expression of specific isotypes.  相似文献   

14.
Y R Zou  S Takeda    K Rajewsky 《The EMBO journal》1993,12(3):811-820
The production of lambda chain-expressing B cells was studied in mice in which either the gene encoding the constant region of the kappa chain (C kappa) or the intron enhancer in the Ig kappa locus was inactivated by insertion of a neomycin resistance gene. The two mutants have similar phenotypes: in heterozygous mutant mice the fraction of lambda chain-bearing B cells is twice that in the wildtype. Homozygous mutants produce approximately 7 times more lambda-expressing B cells (and about 2.3 times fewer total B cells) in the bone marrow than their normal counterparts, suggesting that B cell progenitors can differentiate into either kappa- or lambda-producing cells and do the latter in the mutants. Whereas gene rearrangements in the Ig kappa locus are blocked in the case of enhancer inactivation, they still occur in that of the C kappa mutant, although in this mutant RS rearrangement is lower than in the wildtype. This indicates that gene rearrangements in the Ig lambda locus can occur in the absence of a putative positive signal resulting from gene rearrangements in Ig kappa, including RS recombination. Complementing these results, we also present data indicating that in normal B cell development kappa chain rearrangement can be preceded by lambda chain rearrangement and that the frequency of kappa/lambda double producers is small and insufficient to explain the massive production of lambda chain-expressing B cells in the mutants.  相似文献   

15.
Novel recombinations of the IG kappa-locus that result in allelic exclusion   总被引:3,自引:0,他引:3  
Allelic exclusion of Ig H and L chain gene loci serves to ensure that a B cell expresses a single specificity antibody. The analysis of Abelson murine leukemia virus transformed cells that rearrange the kappa-locus during growth in cell culture has provided the opportunity to characterize intermediate steps in Ig gene rearrangement. By sequential cloning of an Abelson murine leukemia virus transformed cell line we have observed a novel two-step pathway that results in a rearrangement of a V kappa gene segment into the J-C kappa intron. This type of rearrangement effectively excludes functional kappa expression from that allele. A truncated mRNA product resulting from the V kappa signal exon splicing to the C kappa exon is diagnostic of these unique rearrangements. In addition to demonstrating a novel mechanism for allelic exclusion, the two-step pathway described serves to explain how V-intron recombination products were generated in previously described cell lines.  相似文献   

16.
17.
M Reth  E Petrac  P Wiese  L Lobel    F W Alt 《The EMBO journal》1987,6(11):3299-3305
During B cell development V kappa gene rearrangement seems to occur only in mu-positive pre-B cells. To study the role of the mu chain in the activation of the Ig kappa locus, we introduced expression vectors carrying different forms of the mu gene into null pre-B cells. The activation of the Ig kappa locus followed the expression of the membrane form (micron) of the mu chain. The expression of the secreted form (microS) did not result in the activation of the Ig kappa locus. We further show that both forms of the mu chain differ in their intracellular transport in pre-B cells.  相似文献   

18.
19.
We have examined the mechanisms that account for short Ig H chain production in two variants of the mouse myeloma cell line MPC11 (IgG2b, kappa) by mRNA sequencing and restriction enzyme mapping. One variant, F5.5, has a thymidine residue inserted into the (CH3) domain, of the Ig H chain, resulting in premature termination and translation of a gamma 2b H chain of 50,000 m.w. A second variant, E5.7A12, contains gamma 2a-derived sequences that extend from near the 3' end of the CH2 domain to the intervening sequence between the CH2 and CH3 domains, consistent with a microrecombination event (defined as either a double cross-over or gene conversion event). In this variant, the 5' end of the CH3 domain has been deleted, but the remainder of the gamma 2b(CH3) domain is present, resulting in the translation of a gamma 2b-gamma 2a-gamma 2b H chain of 52,000 m.w. Additional rearrangements affecting sequences in or adjacent to the variable region accompany H chain constant region alterations in these cell lines and subclones of these cell lines. In F5.5, novel sequences have recombined within one of two duplicated copies of the VH gene. In a sister clone of E5.7A12 that has ceased H chain production (E5.7A14), new sequences have recombined within 300 bp 5' of the enhancer element. Both F5.5 and E5.7A12, like their immediate unstable precursor cells, fail to assemble H-H dimers, halting the Ig assembly process at the heavy-light stage, and do not secrete H chains. We speculate that defects in H chain assembly and secretion, as exemplified by the parents of these variants (i.e., intermediates of these secondary variants), reactivate the Ig gene rearrangement machinery and result in the formation of these putatively equally unstable secondary variants.  相似文献   

20.
The demonstration that Abs to adhesion molecules can block tumor metastasis suggested their use for therapy. However, such Abs affect nonmalignant cells as well. To circumvent this adverse effect, we proposed the use of bispecific Abs that bind simultaneously to an adhesion receptor and to a tumor-specific Ag. Such bifunctional Abs bind more avidly to tumor cells that coexpress both target Ags than to normal cells. The Id of the surface Ig of malignant B lymphocytes is a tumor-specific Ag. Therefore, we produced bispecific Abs with specificity to the adhesion molecule, CD44, and to an idiotypic determinant of the murine B cell lymphoma, 38C-13. These anti-Id x anti-CD44 bispecific Abs blocked 38C-13 cell adhesion to hyaluronic acid, while not affecting adhesion of Id-negative cells. In vivo studies demonstrated that the bispecific Abs inhibited lymphoma cell dissemination to the lymph nodes, bone marrow, and spleen, and prolonged survival of tumor-bearing mice. Migration of 38C-13 cells to the lymphoid organs was inhibited by the bispecific Abs. Thus, the bispecific Ab-mediated reduction in metastasis resulted, at least in part, from reduced homing to these organs. In contrast to anti-CD44 monospecific Abs, the anti-Id x anti-CD44 bispecific Abs did not affect immune responses such as delayed-type hypersensitivity. Hence, bispecific Abs against adhesion molecules and tumor-specific Ags may selectively block tumor metastasis in a way which may leave at least part of the immune system intact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号