首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cation complexation equilibria between ionophore A23187 and several alkaline earth and first transition series divalent cations have been investigated. Absorption and fluorescence spectroscopy were used to monitor the reactions which were studied in solutions of 80% methanol/water, at 25 degrees C, and under conditions of controlled ionic strength and pH. Titration of the ionophore with divalent cations results first in formation of the dimeric species MA2 and subsequently in the formation of MA+ by disproportionation of the first product. With Zn2+, Ni2+, and Co2+ (above pH approximately 6), a third species is detected which is postulated to be MA.OH. The existence of this species with Mn2+ and alkaline earth cations is uncertain. For formation of MA2, the second stepwise stability constant is similar to or exceeds the first value with all cations studied. However, it is possible to isolate the first reaction and determine accurate stability constants by working at an ionophore concentration of 3 X 10(-8) M or less and by employing pH values which preclude interference by the mixed ionophore/hydroxide species. Under these conditions, the relationship between log KMA' and pH is linear and displays a slope of 1.0. pH-independent stability constants were calculated by using pH-dependent stability constants and the known value of the ionophore's protonation constant in this solvent. The logarithms of the values obtained ranged from 7.54 +/- 0.06 for Ni2+ to 3.60 +/- 0.06 for Ba2+. The selectivity sequence and relative affinities (in parentheses) for the species MA+ are as follows: Ni2+ (977) greater than Co2+ (331) greater than Zn2+ (174) greater than Mn2+ (34) greater than Mg2+ (1.00) approximately equal to Ca2+ (0.89) greater than Sr2+ (0.20) greater than Ba2+ (0.11). Data are discussed in comparison to other studies on the complexation properties of A23187 and in terms of their significance to interpreting the transport properties of this ionophore.  相似文献   

2.
K-stimulated (voltage-dependent) influx of 45Ca was measured in synaptosomes (isolated presynaptic nerve terminals) from rat brain. Influx was terminated at 1 s with a rapid-filtration technique, so that most of the Ca uptake was mediated by inactivating ("fast") Ca channels (Nachshen, D. A., and Blaustein, M. P., 1980, J. Gen. Physiol., 76:709- 728). This influx was blocked by multivalent cations with half- inhibition constants (K1) that clustered in three distinct groups: (a) K1 greater than 1 mM (Mg2+, Sr2+, and Ba2+); (b) K1 = 30-100 microM (Mn2+, Co2+, Ni2+, Cu2+, Zn2+, and Hg2+); (c) K1 less than 1 micro M (Cd2+, Y3+, La3+ and the trivalent lanthanides, and Pb2+). Most of these ions had very little effect on synaptosome steady state membrane potential, which was monitored with a voltage-sensitive fluorescent dye, or on the voltage dependence of Ca influx, which was assessed by measuring voltage-dependent Ca uptake at two levels of depolarization. The blockers inhibited Ca influx by competing with Ca for the channel site that is involved in the transport of divalent cations. Onset of fast channel inhibition by Mg, Co, Ni, Cu, Zn, Cd, La, Hg, and Pb was rapid, occurring within 1 s; inhibition was similar after 1 s or 30 min of exposure to these ions. The inhibition produced by Co, Cu, Zn, Cd, La, and Pb could be substantially reversed within 1 s by removing the inhibitory cation. The relative efficacies of the lanthanides as fast channel blockers were compared; there was a decrease in inhibitory potency with decreasing ionic radius. A model of the Ca channel binding site is considered, in which inhibitory polyvalent cation selectivity is determined primarily by coulombic interactions between the binding site and the different cations. The site is envisaged as consisting of two anions (radius 1 A) with a separation of 2 A between them. Small cations are unable to bind effectively to both anions. The selectivity sequences predicted for the alkaline earth cations, lanthanides, and transition metals are in substantial agreement with the selectivity sequences observed for inhibition of the fast Ca channel.  相似文献   

3.
A cyclohexanemonocarboxylic acid-capped 15-crown-5 ether was synthesized and found to be effective as an ionophore for Pb2+ and Cd2+, transporting them across a phospholipid bilayer membrane. Transport studies were carried out using 1-palmitoyl-2-oleoyl-sn-glycerophosphatidylcholine (POPC) vesicles containing the chelating indicator 2-([2-bis(carboxymethyl)amino-5-methylphenoxy]methyl)-6-methoxy-8-bis(carboxymethyl)aminoquinoline (Quin-2). Data obtained at pH 7.0 using this system, show that the synthetic ionophore transports divalent cations with the selectivity sequence Pb2+ > Cd2+ > Zn2+ > Mn2+ > Co2+ > Ni2+ > Ca2+ > Sr2+. Selectivity factors, based on the ratio of individual initial cation transport rates, are 280 (Pb2+/Ca2+), 62 (Pb2+/Zn2+), 68 (Cd2+/Ca2+), and 16 (Cd2+/Zn2+). Plots of log initial rate versus logM(n+) or log ionophore concentration suggest that Pb2+ and Cd2+ are transported primarily as a 1:1 cation-ionophore complex, but that complexes with other stoichiometries may also be present. The ionophore transports Pb2+ and Cd2+ by a predominantly electrogenic mechanism, based upon an enhanced rate of transport that is produced by agents which dissipate transmembrane potentials. The rate of Pb2+ transport shows a biphasic pH dependence with the maximum occurring at pH approximately 6.5. The high selectivity for Pb2+ and Cd2+ displayed by the cyclohexanecarboxylic acid-capped 15-crown-5 ether suggests potential applications of this ionophore for the treatment of Pb and Cd intoxication, and removal of these heavy metals from wastewater.  相似文献   

4.
Thermodynamic parameters and stoichiometry for the formation of complexes of ATP with Mg2+, Ca2+, and Sr2+ were determined by titration calorimetry. In each case, 1:1 stoichiometry was observed and complex formation was entropy driven. Binding constants for formation of complexes decreased in the order of Mg2+ greater than Ca2+ greater than Sr2+, as expected from charge density considerations. Monovalent cations hindered complex formation with Mg2+, apparently by competing with the divalent cation for complexation with ATP. Analysis of this competitive effect provided estimates of the binding constants for complexes of ATP with monovalent cations, which decreased in the order expected from charge density considerations (Li+ greater than Na+ greater than K+).  相似文献   

5.
The two-phase extraction technique has been used to study the equilibrium between A23187, metal cations, and H+. Under these conditions the ionophore forms charge neutral isostoichiometric complexes with divalent cations in which both carboxylate groups of the 2:1 A23187:M2+ complexes are deprotonated. In ethanol, however, the methyl ester of A23187 also binds divalent cations indicating that protonated complexes between A23187 and cations should also exist. With monovalent cations, A23187 forms two charge-neutral complexes of stoichiometries and relative stabilities: A2HM greater than AM. Examination of energy utilization K+ and H+ movements, and light scattering capacity of mitochondria in the presence of divalent cation chelators, A23187, and valinomycin demonstrates that A23187 can act as a nigericin type K+ ionophore under appropriate conditions. Formation constants for the A2HM complexes with monovalent cations indicate that with appropriate conditions transport of Li+ and Na+ mediated by A23187 would also be expected. The binding constant data and associated free energies of complex formation are compared as a function of ionic radius and of cation charge. The data indicate that lack of conformational mobility in A23187 is responsible for the high cation size selectivity of this compound. To explain the transport selectivity of A23187 for divalent cations, it is proposed that this ionophore forms a family of five complexes, isostoichiometric between cations of different valence but of which only charge-neutral species are permeant to membranes. The charge of a given complex is in turn determined by that of the cation. The concept is consistent with the divalent cation transport specificity of A23187, explains the observed monovalent cation transport, and is useful in rationalizing the differences in charge selectivity between A23187 and X-537A.  相似文献   

6.
Studies utilizing phospholipid vesicle loaded with chelator/indicators for polyvalent cations show that ionomycin transports divalent cations with the selectivity sequence Pb(2+) > Cd(2+) > Zn(2+) > Mn(2+) > Ca(2+) > Cu(2+) > Co(2+) > Ni(2+) > Sr(2+). The selectivity of this ionophore for Pb(2+) is in contrast to that observed for A23178 and 4-BrA23187, which transport Pb(2+) at efficiencies that are intermediate between those of other cations. When the selectivity difference of ionomycin for Pb(2+) versus Ca(2+) was calculated from relative rates of transport, with either cation present individually and all other conditions held constant, a value of approximately 450 was obtained. This rose to approximately 3200 when both cations were present and transported simultaneously. 1 microM Pb(2+) inhibited the transport of 1 mM Ca(2+) by approximately 50%, whereas the rate of Pb(2+) transport approached a maximum at a concentration of 10 microM Pb(2+) when 1 mM Ca(2+) was also present. Plots of log rate versus log ionomycin or log Pb(2+) concentration indicated that the transporting species is of 1:1 stoichiometry, ionophore to Pb(2+), but that complexes containing an additional Pb(2+) may occur. The species transporting Pb(2+) may include H.IPb.OH, wherein ionomycin is ionized once and the presence of OH(-) maintains charge neutrality. Ionomycin retained a high efficiency for Pb(2+) transport in A20 B lymphoma cells loaded with Indo-1. Both Pb(2+) entry and efflux were observed. Ionomycin should be considered primarily as an ionophore for Pb(2+), rather than Ca(2+), of possible value for the investigation and treatment of Pb(2+) intoxication.  相似文献   

7.
CD studies carried out on A23187 indicate a solvent-dependent conformation for the free acid. Alkali metal ions were found to bind to the ionophore weakly. Divalent metal ions such as Mg2+, Ca2+, Sr2+, Ba2+ and Co2+ and trivalent lanthanide metal ions like La3+ were found to form predominantly 2:1 (ionophore-metal ion) complexes at low concentrations of metal ions, but both 2:1 and 1:1 complexes were formed with increasing salt concentration. Mg2+ and Co2+ exhibit similar CD behaviour that differs from that observed for the other divalent and lanthanide metal ions. The structure of 2:1 complexes involves two ligand molecules coordinated to the metal ion through the carboxylate oxygen, benzoxazole nitrogen and keto-pyrrole oxygen from each ligand molecule along with one or more solvent molecules. Values of the binding constant were determined for 2:1 complexes of the ionophore with divalent and lanthanide metal ions.  相似文献   

8.
The structure of both the mono- and the divalent metal nucleotide complexes active in the myosin subfragment 1 ATPase has been determined using the phosphorothioate analogs of ATP in the presence of various cations. Both the Sp and the Rp diastereomers of adenosine 5'-O-(1-thiotriphosphate) (ATP alpha S) were substrates in the presence of Mg2+, Ca2+, Mn2+, Co2+, Zn2+, and Cd2+ as well as with NH4+ and T1+. The Sp/Rp activity ratios obtained were largely independent of the cation. The simplest explanation of these results is that both mono- and divalent cations do not coordinate to the alpha-phosphate group. With adenosine 5'-O-(2-thiotriphosphate) (ATP beta S), essentially only the Sp diastereomer was active with Mg2+ with Sp/Rp ratio of greater 3000. As the divalent metal ion was varied in the series given above, this ratio was progressively lowered to the value of 0.2 found with Cd2+. Similar changes in stereoselectivity were seen with monovalent cations. Thus, with NH4+, an Sp/Rp ratio of 8 was observed, whereas with T1+, this figure was reduced to 0.04. These data indicate that both mono- and divalent cations coordinate to the beta-phosphate group of the nucleoside triphosphate substrate. These results obtained with ATP alpha S and ATP beta S suggest that myosin uses the mono- or divalent cation delta, beta, gamma-bidentate nucleotide chelate as substrate.  相似文献   

9.
We investigated membrane currents activated by intracellular divalent cations in two types of molluscan pacemaker neurons. A fast and quantitative pressure injection technique was used to apply Ca2+ and other divalent cations. Ca2+ was most effective in activating a nonspecific cation current and two types of K+ currents found in these cells. One type of outward current was quickly activated following injections with increasing effectiveness for divalent cations of ionic radii that were closer to the radius of Ca2+ (Ca2+ greater than Cd2+ greater than Hg2+ greater than Mn2+ greater than Zn2+ greater than Co2+ greater than Ni2+ greater than Pb2+ greater than Sr2+ greater than Mg2+ greater than Ba2+). The other type of outward current was activated with a delay by Ca2+ greater than Sr2+ greater than Hg2+ greater than Pb2+. Mg2+, Ba2+, Zn2+, Cd2+, Mn2+, Co2+, and Ni2+ were ineffective in concentrations up to 5 mM. Comparison with properties of Ca2(+)-sensitive proteins related to the binding of divalent cations suggests that a Ca2(+)-binding protein of the calmodulin/troponin C type is involved in Ca2(+)-dependent activation of the fast-activated type of K+ current. Th sequence obtained for the slowly activated type is compatible with the effectiveness of different divalent cations in activating protein kinase C. The nonspecific cation current was activated by Ca2+ greater than Hg2+ greater than Ba2+ greater than Pb2+ greater than Sr2+, a sequence unlike sequences for known Ca2(+)-binding proteins.  相似文献   

10.
The mechanism for transport of divalent cations across phospholipid bilayers by the ionophore A23187 was investigated. The intrinsic fluorescence of the ionophore was used in equilibrium and rapid-mixing experiments as an indicator of ionophore environment and complexation with divalent cations. The neutral (protonated) form of the ionophore binds strongly to the membrane, with a high quantum yield relative to that in the aqueous phase. The negatively charged form of the ionophore binds somewhat less strongly, with a lower quantum yield, and does not move across the membrane. Complexation of the negatively charged form with divalent cations was measured by the decrease in fluorescence. An apparent rate constant (kapp) for transport of the ionophore across the membrane was determined from the rate of fluorescence changes observed in stopped-flow rapid kinetic experiments. The variation of kapp was studied as a function of pH, temperature, ionophore concentration, membrane lipid composition, and divalent cation concentration and type. Analysis and comparison with equilibrium constants for protonation and complexation show that A23187 and its metal:ionophore complexes bind near the membrane-water interface in the lipid polar-head region. The interfacial reactions occur rapidly, compared with the transmembrane reactions, and are thus in equilibrium during transport. The transport cycle can be described as follows: a 1:1 complex is formed between the membrane bound A23187-(Am-) and the aqueous divalent cation with dissociation constant K1 approximately 4.6 x 10(-4) M. This is in equilibrium with a 1:2 (metal:ionophore) complex (K2 approximately 3.0 x 10(-4) [ionophore/lipid]) that is responsible for transporting the divalent cations across the membrane. The rate constant for translocation of the 1:2 complex is 0.1-0.3 s-1. Dissociation of the complex of the trans side and protonation occur rapidly. The rate constant for translocation of H+ . A23187- is 28 s-1. A theory is presented that is capable of reproducing the kinetic data at any calcium concentration. The cation specificity for ionophore complex transport (kapp), determined at low ionophore concentration for a series of divalent cations, was found to be proportional to the equilibrium constant for 1:1 complexation. The order of ion specificity for these processes was found to be Ca2+ greater than Mg2+ greater Sr2+ greater than Ba2+. Interactions with Na+ were not observed. Maximal values of kapp were observed for vesicles prepared from pure dimyristoyl phosphatidylcholine. Inclusion of phosphatidyl ethanolamine, phosphatidic acid, or dipalmatoyl phosphatidylcholine resulted in lower values of kapp. Calcium transport by A23187 is compared with that of X537A, and it is shown that the former is 67-fold faster. The difference in rates is due to differences in the ability of each ionophore to form a 1:2 complex from a 1:1 complex.  相似文献   

11.
It has been found that Sr2+, La3+ Mn2+ (10-50 microM) inhibit Ca2+ transport into mitochondria in a competitive manner. Cd2+ ions show the mixed type inhibition of this transport. The inhibitory constants (Ki, microM) of the metals cations effect on Ca2+ transport increases in such a sequence: La3+ (2,11), Cd2+ (10,36), Mn2+ (49,29), Sr2+ (66,43). The metals cations inhibitory effect has an insignificant dependence on their ionic radii. But it is good correlated with the series of metals cations, based on the stability constants of their complexes with acetate (r = -0.96), aspartic (r = -0.91) and glutaminic acids and their hydratation enthalpy (r = -0.78). These data reveal that hydratation of metals cations and their interaction with carboxyles of Ca(2+)-uniporter plays an important role in the process of Ca2+ transport into mitochondrial matrix space and its inhibition by the metals cations. The mixed type inhibition of mitochondrial Ca2+ uptake by Cd2+ seems to be caused by the partial de-energization of mitochondria owing to Cd2+ interaction with SH-containing respiratory chain components and pore-forming ligands of mitochondrial membrane.  相似文献   

12.
A flow-dialysis apparatus suitable for the study of high-affinity metal-binding proteins has been utilized to study calmodulin-metal exchange as a measure of relative calmodulin-metal association constants. Calmodulin labelled with radioactive 153Gd was dialysed against buffer containing various competing metal ions. The rate of label exchange was monitored by a gamma-ray scintillation detector. Competing metals used were Ca2+ and Cd2+, and the lanthanides Gd3+, Eu3+, La3+ and Lu3+. All exchange processes were first-order, and two categories of metal were found: Ca2+ and Cd2+ in one, the lanthanides comprising the other. In addition calmodulin-metal complexes with radioactive 109Cd and 45Ca released the bound label without any competing metal being added to the buffer. The kinetics of this metal loss can be described by two consecutive first-order processes, and the fraction of label associated with each rate can be determined. Studies of phosphodiesterase activation by calmodulin show Cd2+ and calmodulin to cause 80% of the maximum activation found when Ca2+ and calmodulin are used.  相似文献   

13.
The effects of monovalent (Li+, Cs+) divalent (Cu2+, Ca2+, Sr2+, Ba2+, Zn2+, Cd2+, Hg2+, Pb2+, Mn2+, Fe2+, Co2+, Ni2+) and trivalent (Cr3+, Fe3+, Al3+) metals ions on hexokinase activity in rat brain cytosol were compared at 500 microM. The rank order of their potency as inhibitors of brain hexokinase was: Cr3+ (IC50 = 1.3 microM) greater than Hg2+ = Al3+ greater than Cu2+ greater than Pb2+ (IC50 = 80 microM) greater than Fe3+ (IC50 = 250 microM) greater than Cd2+ (IC50 = 540 microM) greater than Zn2+ (IC50 = 560 microM). However, at 500 microM Co2+ slightly stimulated brain hexokinase whereas the other metal ions were without effect. That inhibition of brain glucose metabolism may be an important mechanism in the neurotoxicity of metals is suggested.  相似文献   

14.
The K(+) ionophore nigericin is shown to be highly effective as an ionophore for Pb(2+) but not other divalent cations, including Cu(2+), Zn(2+), Cd(2+), Mn(2+), Co(2+), Ca(2+), Ni(2+), and Sr(2+). Among this group a minor activity for Cu(2+) transport is seen, while for the others activity is near or below the limit of detection. The selectivity of nigericin for Pb(2+) exceeds that of ionomycin or monensin and arises, at least in part, from a high stability of nigericin-Pb(2+) complexes. Plots of log rate vs log Pb(2+) or log ionophore concentration, together with the pH dependency, indicate that nigericin transports Pb(2+) via the species NigPbOH and by a mechanism that is predominately electroneutral. As with monensin and ionomycin, a minor fraction of activity may be electrogenic, based upon a stimulation of rate that is produced by agents which prevent the formation of transmembrane electrical potentials. Nigericin-catalyzed Pb(2+) transport is not inhibited by physiological concentrations of Ca(2+) or Mg(2+) and is only modestly affected by K(+) and Na(+) concentrations in the range of 0-100 mM. These characteristics, together with higher selectivity and efficiency, suggest that nigericin may be more useful than monensin in the treatment of Pb intoxication.  相似文献   

15.
The R-form lipopolysaccharide from Klebsiella pneumoniae strain LEN-111 (O3-:K1-), from which cationic material had been removed by electrodialysis, was previously shown to form a hexagonal lattice structure with the lattice constant of 14 to 15 nm when suspended in 50 mM tris(hydroxymethyl)aminomethane buffer at pH 8.5 containing 10 mM Mg2+. Under this experimental condition, effects of other divalent metal cations on the hexagonal assembly of the electrodialyzed LPS were compared with that of Mg2+. The Zn2+, Hg2+, Cu2+, and Ni2+ could produce essentially the same hexagonal lattice structure with the lattice constant of 14.5 to 15.0 nm as that formed with Mg2+. The Cd2+, Co2+, and Fe2+ produced the hexagonal lattice structure with the lattice constant of 15.5 to 16.0 nm, and Ba2+, Sr2+, and Ca2+ produced that with the lattice constant of 18 to 19 nm. In addition, the hexagonal lattice structures formed with the latter three cations were less orderly than those formed with the other cations. When the higher concentrations of Ba2+, Sr2+, and Ca2+ were used, the lattice constants were not shortened. The length of lattice constants of the hexagonal lattice structures formed with the divalent cations did not relate to the quantity of the cations bound to the LPS. Among the divalent cations tested, Hg2+ was bound to the LPS in the smallest amount (its atomic ratio to P, 0.07), and Zn2+ and Fe2+ were bound in very large amounts (their atomic ratios to P, 2.94 and 8.28, respectively).  相似文献   

16.
Complexation of the hexapeptide Hys-Cys-Lys-Phe-Trp-Trp, inhibitor of the human immunodeficiency virus integrase protein, with the heavy metal ions Cd2+, Pb2+, and Zn2+ has been investigated using differential pulse polarography. In the case of Pb2+, no significant complexation is detected, whereas in the cases of Cd2+ and Zn2+, strong and electrochemically inert ML2 complexes predominate. In contrast, ML complexes are present in a low proportion or are absent. When possible, the corresponding conditional stability constants have been determined at both pH 7.0 and pH 7.5, showing that Zn2+ complexes are slightly more stable than Cd2+ complexes.  相似文献   

17.
We have studied the interaction of divalent and trivalent with a potent phospholipase A(2) neurotoxin, crotoxin, from Crotalus durissus terrificus venom. The pharmacological action of crotoxin requires dissociation of its catalytic subunit (component B) and of its non-enzymatic chaperone subunit (component A), then the binding of the phospholipase subunit to target sites on cellular membranes and finally phospholipid hydrolysis. In this report, we show that the phospholipase A(2) activity of crotoxin and of component B required Ca2+ and that other divalent cations (Sr2+, Cd2+ and Ba2+) and trivalent lanthanide ions are inhibitors. The lowest phospholipase A(2) activity was observed in the presence of Ba2+, which proved to be a competitive inhibitor of Ca2+. The binding of divalent cations and trivalent lanthanide ions to crotoxin and to its subunits has been examined by equilibrium dialysis and by spectrofluorimetric methods. We found that crotoxin binds two divalent cations per mole with different affinities; the site presenting the highest affinity (K(d) in the mM range) in involved in the activation (or inhibition) of the phospholipase A(2) activity and must therefore be located on component B, the other site (K(d) higher than 10 mM) is probably localized on component A and does not play any role in the catalytic activity of crotoxin. We also observed that crotoxin component B binds to vesicular and micellar phospholipids, even in the absence of divalent cations. The affinity of this interaction either does not change or else increases by an order of magnitude in the presence of divalent cations.  相似文献   

18.
The effect of divalent cations on bovine sperm adenylate cyclase activity was studied. Mn2+, Co2+, Cd2+, Zn2+, Mg2+ and Ca2+ were found to satisfy the divalent cation requirement for catalysis of the bovine sperm adenylate cyclase. These divalent cations in excess of the amount necessary for the formation of the metal-ATP substrate complex were found to stimulate the enzyme activity to various degrees. The magnitude of stimulation at saturating concentrations of the divalent cations was strikingly greater with M2+ than with either Ca2+, Mg2+, Zn2+, Cd2+ or Co2+. The apparent Km was lowest for Zm2+ (0.1 - 0.2 mM) than for any of the other divalent cations tested (1.2 - 2.3 mM). The enzyme stimulation by Mn2+ was decreased by the simultaneous addition of Co2+, Cd2+, Ni2+ and particularly Zn2+ and Cu2+. The antagonism between Mn2+ and Cu2+ or Zn2+ appeared to have both competitive and non-competitive features. The inhibitory effect of Cu2+ on Mn2+-stimulated adenylate cyclase activity was prevented by 2,3-dimercaptopropanol, but not by dithiothreitol, L-ergothioneine, EDTA, EGTA or D-penicillamine. Ca2+ at concentrations of 1-5 mM was found to act synergistically with Mg2+, Zn2+, Co2+ and Mn2+ in stimulating sperm adenylate cyclase activity. The Ca2+ augmentation of the stimulatory effect of Zn2+, Co2+, Mg2+ and Mn2+ appeared to be specific.  相似文献   

19.
Several divalent cations were studied as agonists of a Ca2+-activated K+ channel obtained from rat muscle membranes and incorporated into planar lipid bilayers. The effect of these agonists on single-channel currents was tested in the absence and in the presence of Ca2+. Among the divalent cations that activate the channel, Ca2+ is the most effective, followed by Cd2+, Sr2+, Mn2+, Fe2+, and Co2+. Mg2+, Ni2+, Ba2+, Cu2+, Zn2+, Hg2+, and Sn2+ are ineffective. The voltage dependence of channel activation is the same for all the divalent cations. The time-averaged probability of the open state is a sigmoidal function of the divalent cation concentration. The sigmoidal curves are described by a dissociation constant K and a Hill coefficient N. The values of these parameters, measured at 80 mV are: N = 2.1, K = 4 X 10(-7) mMN for Ca2+; N = 3.0, K = 0.02 mMN for Cd2+; N = 1.45, K = 0.63 mMN for Sr2+; N = 1.7, K = 0.94 mMN for Mn2+; N = 1.1, K = 3.0 mMN for Fe2+; and N = 1.1 K = 4.35 mMN for Co2+. In the presence of Ca2+, the divalent cations Cd2+, Co2+, Mn2+, Ni2+, and Mg2+ are able to increase the apparent affinity of the channel for Ca2+ and they increase the Hill coefficient in a concentration-dependent fashion. These divalent cations are only effective when added to the cytoplasmic side of the channel. We suggest that these divalent cations can bind to the channel, unmasking new Ca2+ sites.  相似文献   

20.
In earlier studies of genetic competence in Escherichia coli induced with calcium-containing buffers, a strong correlation was found between transformation efficiency and the formation of poly-beta-hydroxybutyrate/calcium polyphosphate (PHB/Ca2+/PPi) complexes in the plasma membranes. In this study, we replaced Ca2+ with one of a number of other cations--monovalent, divalent, and trivalent--and found significant numbers of transformants (transformation efficiency, > 10(5)/micrograms of pBR322 DNA) only when the cells had high levels of PHB/Ca2+/PPi and the medium contained at least one of the divalent cations Ca2+, Mn2+, Sr2+, or Mg2+. Cells with high levels of the complexes were not competent when the medium did not contain these cations, but the cations were also ineffectual when the cells had few complexes. Surprisingly, Mn, Sr, and Mg were not incorporated into the complexes in place of Ca. These results indicate that PHB/Ca2+/PPi complexes and the above-mentioned divalent cations each have essential but disparate roles in genetic competence. Moreover, the strong selectivity of PHB/PPi for Ca2+ suggests the binding sites in the complexes are ionophoretic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号