首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of laminin, type IV collagen, heparan sulfate proteoglycan, and fibronectin was investigated in the rat testicular lamina propria by electron microscopic immunocytochemistry. Distinct patterns were observed for each antigen within the extracellular matrix (ECM) layers of the lamina propria. Laminin, type IV collagen, and heparan sulfate proteoglycan all localized to the seminiferous tubule basement membrane. Type IV collagen and heparan sulfate proteoglycan, but not laminin, localized to the seminiferous tubule side of the peritubular myoid cells. All four of the antigens were localized between the peritubular and lymphatic endothelial cells. Failure to localize fibronectin in the ECM layer between the Sertoli and peritubular myoid cells tends to support the concept that adult Sertoli cells do not produce this protein in vivo. Intracellular immunostaining was insufficient to allow unambiguous identification of the cellular source of any of the ECM molecules.  相似文献   

2.
 A light and electron microscope immunohistochemical study of the tunica albuginea from both young and elderly men was carried out to determine the distribution of the cells that contain actin, vimentin and/or desmin, and to evaluate the possible variations with ageing by means of quantitative studies. Testicular volume and testicular parenchyma volume decreased significantly with age whereas the tunica albuginea volume remained unchanged. These results agree with the scanty quantitative changes observed in the testicular connective tissue with age, and the notion that age-related changes in testicular volume are principally restricted to the seminiferous tubules. Three connective tissue layers could be distinguished in the tunica albuginea in both young and elderly men. The middle and inner layers increased in width with age while the width of the outer layer decreased. The average width of the tunica albuginea increased significantly with ageing. The tunica albuginea of young men and elderly men presented two types of fusiform cells: (1) fibroblast-like cells, which immunoreacted to actin and vimentin, but not to desmin; and (2) myoid cells, which immunoreacted to actin, vimentin and desmin. In both young men and elderly men, the total number of desmin-positive cells (myoid cells) was significantly lower than that of fibroblasts. However, the total number of desmin-positive cells was significantly increased in ageing men. In young testes, desmin-positive cells were more abundant in the outer layer of the tunica albuginea, whereas in elderly men these cells predominated in the middle layer. The increased desmin immunoexpression in the tunica albuginea of ageing men contrasts with the decrease in desmin immunoreaction in other myoid cells of the testis, the peritubular myoid cells, but only in seminiferous tubules that showed severe germ cell depletion. This suggests that changes in intermediate filament immunoexpression in peritubular cells are focalised, and thus, under local control, whereas changes in the tunica albuginea cells are generalised and possibly related to factors also affecting the connective tissue in other organs Accepted: 15 January 1997  相似文献   

3.
We have studied the distribution of histochemically detectable alkaline phosphatase in cultures of seminiferous tubule fragments and of peritubular cells from prepubertal rats. The same material also was immunohistochemically evaluated for the presence of desmin-containing intermediate filaments. The comparative analysis of alkaline phosphatase and desmin positivity shows that alkaline phosphatase histochemistry selectively detects desmin-containing contractile cells in tubular and peritubular cell cultures. We propose alkaline phosphatase as a novel marker for myoid cells that can be of help in screening, defining, and eventually standardizing the exact composition of peritubular cell cultures, a model that is of increasing interest in the study of cellular interactions in the testis.  相似文献   

4.
The potent smooth muscle agonist endothelin-1 (ET-1) is involved in the local control of seminiferous tubule contractility, which results in the forward propulsion of tubular fluid and spermatozoa, through its action on peritubular myoid cells. ET-1, known to be produced in the seminiferous epithelium by Sertoli cells, is derived from the inactive intermediate big endothelin-1 (big ET-1) through a specific cleavage operated by the endothelin-converting enzyme (ECE), a membrane-bound metalloprotease with ectoenzymatic activity. The data presented suggest that the timing of seminiferous tubule contractility is controlled locally by the cyclic interplay between different cell types. We have studied the expression of ECE by Sertoli cells and used myoid cell cultures and seminiferous tubule explants to monitor the biological activity of the enzymatic reaction product. Northern blot analysis showed that ECE-1 (and not ECE-2) is specifically expressed in Sertoli cells; competitive enzyme immunoassay of ET production showed that Sertoli cell monolayers are capable of cleaving big ET-1, an activity inhibited by the ECE inhibitor phosphoramidon. Microfluorimetric analysis of intracellular calcium mobilization in single cells showed that myoid cells do not respond to big endothelin, nor to Sertoli cell plain medium, but to the medium conditioned by Sertoli cells in the presence of big ET-1, resulting in cell contraction and desensitization to further ET-1 stimulation; in situ hybridization analysis shows regional differences in ECE expression, suggesting that pulsatile production of endothelin by Sertoli cells (at specific "stages" of the seminiferous epithelium) may regulate the cyclicity of tubular contraction; when viewed in a scanning electron microscope, segments of seminiferous tubules containing the specific stages characterized by high expression of ECE were observed to contract in response to big ET-1, whereas stages with low ECE expression remained virtually unaffected. These data indicate that endothelin-mediated spatiotemporal control of rhythmic tubular contractility might be operated by Sertoli cells through the cyclic expression of ECE-1, which is, in turn, dependent upon the timing of spermatogenesis.  相似文献   

5.
Postnatal differentiation of the peritubular myoid cells in mouse testis is hormone dependent. In order to analyse the differentiation of the peritubular tissue, an attempt was made to develop an experimental model system utilizing an in vitro method. Fragments obtained from adult, 7- or 10-day-old mice, were cultured in McCoy's modified 5a medium for 9–19 days. The fragments and monolayers that grew from them were examined with the electron microscope at the end of the culture period. Monolayers originating from either mature or immature testicular expiants were comparable in appearance. They were composed of spindle-shaped cells that contained abundant profiles of granular endoplasmic reticulum and free ribosomes, as well as arrays of 40–60 Å thick filaments and associated dense bodies. In these respects they resembled smooth muscle cells in culture, in developmental, and in pathological conditions. Examination of the peritubular tissue in the testicular explants indicated that the monolayer of myoid cells originated from the fibroblasts rather than the peritubular myoid cells. Peritubular cells in explants from mature rats retained their myoid features at the end of the culture period but myoid cell differentiation failed to progress in expiants obtained from immature animals. Additional work is necessary in order to establish the suitability of these preliminary culture attempts to support normal development before conclusions may be drawn concerning the role of hormones in myoid cell differentiation. The role of microfilaments as a contractile organelle of cells is discussed.  相似文献   

6.
Peritubular cells, prepared from seminiferous tubules from testes of 20-day-old-rats, were seeded onto different substrata and cultured under varying conditions. When plated onto polystyrene or glass surfaces, peritubular cells assumed a typical fibroblast-like cell shape and cell association pattern, together with a fibroblast-like migration behavior. They maintained high rates of proliferation even after achieving confluency. In contrast, when peritubular cells were plated onto a seminiferous tubule biomatrix (ST-biomatrix) surface, they spread to form a continuous cell layer having a myoepithelioid histotype similar to that of peritubular myoid cells in the intact seminiferous tubule. The characteristics of the myoepithelioid histotype described include a squamous, polyhedral cell shape; a cobblestone-like cell association pattern, with closely apposing or slightly overlapping cell borders, and a very low mitotic index. When peritubular cells were plated onto laminin, collagen, fibronectin, heparin, or a liver biomatrix, a fibroblast-like pattern resulted, indicating that ECM components listed and liver biomatrix are unable to substitute for ST-biomatrix in maintaining normal myoepithelioid characteristics in vitro. In cocultures of Sertoli cells plated on top of peritubular cells, the peritubular cells directly in contact with Sertoli cell aggregates developed a myoepithelioid histotype, whereas peritubular cells in regions not in direct contact had a fibroblast-like histotype. The data are discussed in relation to the possible role of cell-cell interactions, and cell-substratum interactions, in the acquisition and stabilization of the histotype of peritubular cells in the seminiferous tubule during development.  相似文献   

7.
We have previously reported metabolic cooperation between Sertoli and peritubular myoid cells in terms of synthesis of one of the main testicular extracellular matrix (ECM) constituents, glycosaminoglycans (GAG). This study concerns Sertoli cell ECM-peritubular myoid cell interactions in terms of GAG synthesis. We have examined the responses of hormones and other regulatory agents such as a combination of follicle-stimulating hormone (FSH), insulin, retinol, and testosterone (FIRT) on peritubular myoid cells, and tested if Sertoli cell ECM or serum factor substitute for the stimulation by FIRT. Testicular peritubular myoid cells cultured on Sertoli cell ECM showed significant increases in the levels of cell- and ECM-associated GAG over that when cultured on uncoated plastic. This indicates a specific cell-substratum interaction between Sertoli cell ECM and peritubular myoid cells in the testis in terms of GAG synthesis. Moreover, in terms of cell-associated GAG synthesis, peritubular myoid cells cultured on Sertoli cell ECM or on plastic in the presence of serum substituted for the stimulatory response of FIRT on peritubular myoid cells cultured on uncoated plastic. The data are discussed in relation to the possible role of cell-substratum interaction in maintaining peritubular myoid cell functions. © 1993 Wiley-Liss, Inc.  相似文献   

8.
9.
Summary The boundary tissue of bovine testicular seminiferous tubules exhibits remarkable regional differences at the level of the seminiferous tubule proper, as compared with its terminal segment. The basal lamina of the seminiferous tubule proper is multilayered and possesses knob-like protrusions. At the level of the terminal segment the basal lamina is highly specialized; in the region of the terminal plug candelabrum-like projections of the tubular basal lamina invade the bases of the modified supporting cells up to a depth of 3.5 m. The adjoining surface of these supporting cells is densely studded with hemidesmosomes. The elongated peritubular cells are arranged in 3–5 concentric layers around the tubulus seminiferus proper but form a loose association at the level of the terminal segment. Where the terminal segment joins the testicular straight tubule, peritubular cells may assemble to constitute a contractile spiral. Elastic tissue is situated mainly subjacent to the tubular basal lamina and to a lesser degree between the peritubular cell layers. A peritubular space lined by endothelium-like cells may surround the seminiferous tubule proper and also the transitional zone of the terminal segment.Supported by a grant from the Deutsche Forschungsgemeinschaft  相似文献   

10.
The arrangement and fine structure of peritubular myoid cells was studied in the testes of three species of reptiles (Lacerta dugesi, Testudo graeca and Natrix natrix) during two short periods of the seasonal cycle (European spring and autumn) and correlated with some ultrastructural properties of Leydig cells. The lamina propria consists of myoid cells, fibroblasts and non-cellular components comprising collageneous and non-striated microfibrils. Both components are arranged in alternating layers surrounding seminiferous tubules. In spring the lamina propria of lacertilian testis shows 1-5 layers of myoid cells which are rich in 50-70 A filaments and exhibit plasmalemmal and intracellular dense patches, smooth vesicles along the cell membrane and a concentration of organelles in a juxtanuclear position. Leydig cells are rich in smooth ER profiles and have few lipid droplets. In atumumn most myoid cells are replaced by fibroblast-like elements. Leydig cells display large numbers of lipid droplets and dense bodies, but only small amounts of agranular ER. Similar changes are noted in Leydig cells of Testudo and Natrix. However, in these species the boundary tissue of seminiferous tubules fails to show significant alterations comparing spring and autumn animals. In both species the lamina propria exhibits a few fibroblast-like cells interspersed among myoid cells.  相似文献   

11.
Testicular peritubular myoid cells secrete a paracrine factor that is a potent modulator of Sertoli cell functions involved in the maintenance of spermatogenesis. These cells also play an integral role in maintaining the structural integrity of the seminiferous tubule. To better understand this important testicular cell type, studies were initiated to characterize cultured peritubular cells using biochemical and histochemical techniques. The electrophoretic pattern of radiolabeled secreted proteins was similar for primary and subcultured peritubular cells and was unique from that of Sertoli cells. Morphologic differences between Sertoli cells and peritubular cells were noted and extended with histochemical staining techniques. Desmin cytoskeletal filaments were demonstrated immunocytochemically in peritubular cells, both in culture and in tissue sections, but were not detected in Sertoli cells. Desmin is proposed to be a marker for peritubular cell differentiation as well as a marker for peritubular cell contamination in Sertoli cell cultures. Peritubular cells and Sertoli cells were also stained histochemically for the presence of alkaline phosphatase. Staining for the alkaline phosphatase enzyme was associated with peritubular cells but not with Sertoli cells. Alkaline phosphatase is therefore an additional histochemical marker for peritubular cells. Biochemical characterization of peritubular cells relied on cell-specific enzymatic activities. Creatine phosphokinase activity, a marker for contractile cells, was found to be associated with peritubular cells, while negligible activity was associated with Sertoli cells. Alkaline phosphatase activity assayed spectrophotometrically was found to be a useful biochemical marker for peritubular cell function and was utilized to determine the responsiveness of primary and subcultured cells to regulatory agents. Testosterone stimulated alkaline phosphatase activity associated with primary cultures of peritubular cells, thus supporting the observation that peritubular cells provide a site of androgen action in the testis. Retinol increased alkaline phosphatase activity in subcultured peritubular cells. Alkaline phosphatase activity increased in response to dibutyryl cyclic adenosine monophosphate (AMP) in both primary and subcultured peritubular cell cultures. Observations indicate that the ability of androgens and retinoids to regulate testicular function may be mediated, in part, through their effects on peritubular cells. This provides additional support for the proposal that the mesenchymal-epithelial cell interactions between peritubular cells and Sertoli cells are important for the maintenance and control of testicular function. Results imply that the endocrine regulation of tissue function may be mediated in part through alterations in mesenchymal-epithelial cell interactions.  相似文献   

12.
Kinetics of Na(+) transport in necturus proximal tubule   总被引:4,自引:4,他引:0       下载免费PDF全文
The dependence of proximal tubular sodium and fluid readsorption on the Na(+) concentration of the luminal and peritubular fluid was studied in the perfused necturus kidney. Fluid droplets, separated by oil from the tubular contents and identical in composition to the vascular perfusate, were introduced into proximal tubules, reaspirated, and analyzed for Na(+) and [(14)C]mannitol. In addition, fluid transport was measured in short-circuited fluid samples by observing the rate of change in length of the split droplets in the tubular lumen. Both reabsorptive fluid and calculated Na fluxes were simple, storable functions of the perfusate Na(+) concentration (K(m) = 35-39 mM/liter, V(max) = 1.37 control value). Intracellular Na(+), determined by tissue analysis, and open-circuit transepithelial electrical potential differences were also saturable functions of extracellular Na(+). In contrast, net reabsorptive fluid and Na(+) fluxes were linearly dependent on intracellular Na(+) and showed no saturation, even at sharply elevated cellular sodium concentrations. These concentrations were achieved by addition of amphotericin B to the luminal perfusate, a maneuver which increased the rate of Na(+) entry into the tubule cells and caused a proportionate rise in net Na(+) flux. It is concluded that active peritubular sodium transport in proximal tubule cells of necturus is normally unsaturated and remains so even after amphotericin-induced enhancement of luminal Na(+) entry. Transepithelial movement of NaCl may be described by a model with a saturable luminal entry step of Na(+) or NaCl into the cell and a second, unsaturated active transport step of Na(+) across the peritubular cell boundary.  相似文献   

13.
The testicular capsule and peritubular boundary tissue of the emu and ostrich, as typical representatives of ratite birds, were studied in sexually mature and active birds. The testicular capsule was much thicker (578.1±73.4 μm for the free surface of the ostrich testis, and 176.2±57.5 μm for the emu) than those of members of the Galloanserae. The cellular composition of both testicular capsule and peritubular tissue was similar generally to that of members of the previously studied Galloanserae and of mammals. The tunica albuginea of the testicular capsule mainly comprised smooth-muscle-like or myoid cells mostly running in one direction and occurring in one main mass. Unlike the Galloanserae, the tunica albuginea contained more collagen fibres than smooth muscle cells, especially in the ostrich. Peritubular tissue was similarly composed of smooth-muscle-like cells distributed in several layers. Actin microfilaments and desmin and vimentin intermediate filaments were variably immunoexpressed in these two tissue types in both birds, with a clear dichotomy in the peritubular tissue. Thus, taken together with studies of some members of the Galloanserae, avian testes clearly contain a morphological mechanism that is represented partly by the smooth muscle cells of the testicular capsule and peritubular tissue for transporting the testicular fluid, which is usually copious in birds, and its cellular content from the testis into the excurrent duct system; this mechanism is similar to that found in mammals. The authors are grateful for a University of Pretoria research grant, which aided this work. Dr Peter Ozegbe of the Department of Veterinary Anatomy, University of Ibadan is a recipient of the University of Pretoria Foreign Post-Doctoral Fellowship.  相似文献   

14.
Localization and synthesis of entactin in seminiferous tubules of mouse testis was studied by immunocytochemistry. Frozen sections from adult mice testes were subjected to anti-entactin and anti-laminin immunofluorescence. Both entactin and laminin were localized within the seminiferous tubule basement membrane and intertubular region of the testis. The addition of excess amount of entactin (but not fibronectin), premixed with anti-entactin antiserum, abolished the immunostain. Western blotting showed that a protein extract from a seminiferous tubule basement membrane preparation was recognized by anti-entactin anti-serum and comigrated with recombinant entactin. Enriched fractions of isolated primary Sertoli cells and peritubular myoid cells cultured for 6 days on a glass coverslip were able to synthesize and secrete entactin as detected by immunofluorescence microscopy. Entactin was also produced by TM3 (Leydig-like) and TM4 (Sertoli-like) cell lines as detected by both immunofluorescence and Western blotting. The distribution of entactin vs. laminin within both the cultured primary cells and the TM3 and TM4 cell lines differed. Entactin appeared mainly localized extracellularly. In contrast, laminin was mainly localized intracellularly. The above findings suggested that 1) entactin existed in the seminiferous tubule basement membrane and intertubular region of adult mice testis, co-localized with laminin; 2) entactin was synthesized by the cultured primary Sertoli cells and peritubular myoid cells and the TM3 and TM4 cell lines; 3) entactin was exocytosed with little intracellular accumulation, in contrast to an intracellular accumulation of laminin.  相似文献   

15.
Cimetidine has caused dysfunction in the male reproductive system. In the rat testis, intratubular alterations and loss of peritubular tissue due to peritubular myoid cell death by apoptosis have been recently shown. Thus, the aim of this study is to evaluate which cells of the seminiferous epithelium have been affected and/or died by apoptosis after the treatment with cimetidine. For this purpose, an experimental group containing five male albino Wistar rats received intraperitoneal injections of cimetidine (50 mg/kg body weight) during 52 days. The testes were fixed with 4% buffered formaldehyde and were embedded in paraffin. For detection of DNA breaks (apoptosis) in the cells of the seminiferous epithelium, the testicular sections were treated by the TUNEL method (Apop-Tag Plus Peroxidase Kit). In the tubules affected by cimetidine, altered peritubular tissue, including the presence of TUNEL labeling in the myoid peritubular cells, were usually found. In these tubules, the seminiferous epithelium exhibited low density of germ cells and TUNEL-positive labeling in the germ cells of the basal compartment. The concomitant staining in both germ cells of the basal compartment and late spermatids suggest a sensitivity of these cells in the damaged tubules. Besides germ cells, TUNEL-positive Sertoli cells were also found in the injured seminiferous tubules. Thus, a relationship between dying germ cells and Sertoli cell damage and/or death must be considered in tubules where peritubular tissue has been affected by toxicants.  相似文献   

16.
Mouse-to-mouse transplants were studied at 10 min, 9 h, 24 h, 1 week, 1 month, 2 months, and 3 months post-transplantation. Data from a previous light microscope study were confirmed and extended using morphometric and ultrastructural techniques. As soon as 10 min after introduction of the germ cells from one mouse into the tubule lumen of a recipient mouse they developed relationships with small Sertoli cell processes. The extent of this surface-to-surface relationship increased in animals sacrificed up to 1 week post-transplantation. Most transplanted germ cells retained the characteristics of the donor germ cells after they had been isolated and pelleted. Nearly all transplanted cells eventually underwent phagocytosis by the recipient Sertoli cells. The presence of small apparent clones of germ cells after 1 week of transplantation indicated that some germ cells may divide and survive for short periods within the epithelium. No discernible qualitative subcellular changes in the host Sertoli cell accompanying the development of transplant spermatogenesis were noted. Macrophages were present in the region of the boundary tissue between myoid cells and appeared to increase in number in the peritubular tissue of transplanted testes. Images suggest that they migrated into the tubule to gain entrance to the lumen and there take on the form of activated macrophages. Some macrophages phagocytose sperm at 2 months and 3 months post-transplantation. A testis weight increase previously demonstrate to occur at 24 h post-introduction of germ cells was found to be due to an increase in the volume of the tubular lumen. The increase of lumen size at 24 h was not related to the volume of the injected material. It is suggested that the presence of injected cells, likely germ cells, in the tubule lumen stimulated increased secretion by the Sertoli cell.  相似文献   

17.
The incorporation of 3H-proline into protein was regarded as a measure of total protein synthesis and the incorporation into hydroxyproline as indicative of collagen synthesis. Relative collagen synthesis (expressed as percent of total protein synthesized) by Sertoli and peritubular myoid cells cultured from 20-22 day old rat testis was estimated. In both secreted and cellular pools, relative collagen synthesis by Sertoli cells was significantly greater than by peritubular myoid cells. Coculture of Sertoli and myoid cells resulted in a significant increase in relative collagen synthesis when compared to monocultures of each cell type. Addition of serum to peritubular myoid cells resulted in a stronger stimulation of relative collagen production. Sertoli cell extracellular matrix inhibited relative collagen synthesis by peritubular myoid cells in the presence or absence of serum. Radioactivity into hydroxyproline as corrected per cellular DNA also showed similar results. Immunolocalization studies confirmed that both cell types synthesize type I and type IV collagens. These results indicate that stimulation of collagen synthesis observed in Sertoli-myoid cell cocultures is due to humoral interactions, rather than extracellular matrix, and Sertoli cell extracellular matrix regulates serum-induced increase in collagen synthesis by peritubular myoid cells.  相似文献   

18.
The potential role of transforming growth factor beta (TGF beta) as a mediator of cell-cell interactions within the seminiferous tubule was investigated through an examination of the local production and action of TGF beta. Sertoli cells and peritubular (myoid) cells were isolated and cultured under serum-free conditions. Secreted proteins from Sertoli cells and peritubular cells were found to contain a component that bound to TGF beta receptors in RRA. Reverse-phase chromatography of Sertoli cell and peritubular cell secreted proteins fractionated a protein with similar biochemical properties as TGF beta 1. This fractionated protein also contained TGF beta bioactivity in its ability to inhibit growth of an epidermal growth factor-dependent cell line. Both peritubular cells and Sertoli cells contained a 2.4 kilobase mRNA species that hybridized in a Northern blot analysis with a TGF beta 1 cDNA probe. TGF beta 1 gene expression was not detected in freshly isolated germ cells. TGF beta 1 alone was not found to influence Sertoli cell nor peritubular cell proliferation with cells isolated from a midpubertal stage of development. The effects of hormones and TGF beta on Sertoli cell differentiation and function were assessed through an examination of transferrin production by Sertoli cells. TGF beta 1 had no effect on transferrin production nor the ability of hormones to influence transferrin production. The presence of peritubular cells in a coculture with Sertoli cells also did not affect the inability of TGF beta 1 to act on Sertoli cells. Although Sertoli cell function did not appear to be influenced by TGF beta 1, peritubular cells responded to TGF beta 1 through an increase in the production of a number of radiolabeled secreted proteins. TGF beta 1 also had relatively rapid effects on peritubular cell migration and the promotion of colony formation in culture. Cocultures of Sertoli cells and peritubular cells responded to TGF beta 1 by the formation of large cell clusters with ball-like structures. Data indicate that TGF beta may have an important role in influencing the differentiation and migration of peritubular cells. Observations demonstrate the local production of TGF beta within the seminiferous tubule by Sertoli cells and peritubular cells and suggest that TGF beta may have a role as a paracrine-autocrine factor involved in the maintenance of testicular function.  相似文献   

19.
Summary Seminiferous tubules from human testes were mechanically isolated, the cut edges were sealed, and the tubules were cultured in medium free of fetal calf serum (FCS). Degeneration of germ cells occurred during the culture period and was paralleled by a disruption of the seminiferous epithelium, a disturbance in morphology and function of Sertoli cells, and a thickening of the lamina propria. However, when tubules were cultured for 5 days in the presence of FCS, degeneration of the spermatogenic tissue was reduced. FCS increased the mitotic activity of germ cells, but did not maintain normal morphology and function of Sertoli cells and cellular elements of the lamina propria. The thickening of the tubular wall concurred with a change in phenotype of lamina-propria cells from myoid to fibroblastic. Addition of nerve growth factor (NGF) to the culture medium (i) maintained the myoid phenotype of lamina-propria cells, (ii) prevented thickening of the tubular wall, and (iii) stabilized Sertoli cell morphology and function. The effects of NGF appeared to depend on the trophic effects of FCS, since NGF alone had no influence on the maintenance of a regular morphology of the spermatogenic epithelium. The present results indicate a decisive role for NGF in stabilizing specific functions of seminiferous tubules.  相似文献   

20.
Testes from adult and prepubertal mice lacking the Desert hedgehog (DHH:) gene were examined in order to describe further the role of Dhh in spermatogenesis because, in a previous report, DHH:-null male mice were shown to be sterile. Dhh is a signaling molecule expressed by Sertoli cells. Its receptor, patched (Ptc), has been previously localized to Leydig cells and is herein described as being localized also to peritubular cells. Two phenotypes of the mice were observed: masculinized (7.5% of DHH:-null males) and feminized (92.5%), both of which displayed abnormal peritubular tissue and severely restricted spermatogenesis. Testes from adult feminized animals lacked adult-type Leydig cells and displayed numerous undifferentiated fibroblastic cells in the interstitium that produced abundant collagen. The basal lamina, normally present between the myoid cells and Sertoli cells, was focally absent. We speculate that the abnormal basal lamina contributed to other characteristics, such as extracordal gonocytes, apolar Sertoli cells, and anastomotic seminiferous tubules. The two DHH:-null phenotypes described have common peritubular cell defects that may be indicative of the essential role of peritubular cells in development of tubular morphology, the differentiation of Leydig cells, and the ultimate support of spermatogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号