首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously reported that systemic epidermal growth factor (EGF) treatment in rats reduces the amount of adipose tissue despite an unaltered food intake. The mitochondrial uncoupling proteins (UCP2 and UCP3) are thought to uncouple the respiratory chain and thus to increase energy expenditure. In order to find out whether the UCP system was involved in the EGF-induced weight loss, the effects of EGF on UCP2 and UCP3 in adipose tissue and skeletal muscle were investigated in the present study. Eight rats were treated with placebo or EGF (150 microg/kg/day) for seven days via mini-osmotic pumps. The EGF-treated rats gained significantly less body weight during the study period than the placebo-treated animals and had significantly less adipose tissue despite a similar food intake. The placebo group and the EGF group had similar UCP2 mRNA expression (in both adipose tissue and skeletal muscle), whereas the EGF-treated group compared to the placebo group had significantly higher UCP3 mRNA expression in both skeletal muscle (3.76 +/- 0.90 vs 8.41 +/- 0.87, P < 0.05) and in adipose tissue (6.38 +/- 0.71 vs 12.48 +/- 1.79, P < 0.05). In vitro studies with adipose tissue fragments indicated that the EGF effect probably is mediated indirectly as incubations with EGF (10 microM) were unable to affect adipose tissue UCP expression, whereas incubations with bromopalmitate stimulated both UCP2 and UCP3 mRNA expression twofold. Thus, EGF treatment in vivo was found to enhance UCP3 mRNA expression in both adipose tissue and skeletal muscle, which may indicate that the EGF effect on body composition might involve up-regulation of UCP3 in skeletal muscle and adipose tissue.  相似文献   

2.
Brown adipose tissue and skeletal muscle are known to be important sites for nonshivering thermogenesis. In this context, it is accepted that uncoupling proteins (UCPs) are involved in such process, but little is known about the physiological regulation of these proteins as affected by the intake of a high-energy (cafeteria) diet inducing fat deposition. In this study, the UCP messenger RNA (mRNA) expression in interscapular brown adipose tissue (iBAT) and skeletal muscle was assessed to evaluate the influence of a dietary manipulation on energy homeostasis regulation. We report a statistically significant increase in mRNA levels of iBAT UCP1 and UCP3 and a statistical marginal rise in skeletal muscle UCP3 mRNA expression after feeding a high-energy diet, whereas no changes in UCP2 expression were found in either tissue. Furthermore, significant positive associations between iBAT UCP1 and UCP3 mRNA levels with serum leptin were found. Although the expression of the beta(3) adrenoceptor (beta(3)AR) was about 50% in the lean controls compared with the obese group in iBAT, no statistically significant changes were observed concerning peroxisome proliferator-activated receptor gamma2 (PPARgamma2) mRNA levels in muscle or iBAT. We conclude that feeding a diet inducing weight and fat gain produces different outcomes on iBAT and skeletal muscle UCP mRNA expression, revealing a tissue-dependent response for the three UCPs. Results suggest that the regulation of UCP expression in both tissues under these specific dietary conditions may be related to leptin circulating levels.  相似文献   

3.
Mitochondrial uncoupling protein 3 (UCP3) is expressed in skeletal muscles. We have hypothesized that increased glucose flux in skeletal muscles may lead to increased UCP3 expression. Male transgenic mice harboring insulin-responsive glucose transporter (GLUT4) minigenes with differing lengths of 5'-flanking sequence (-3237, -2000, -1000 and -442 bp) express different levels of GLUT4 protein in various skeletal muscles. Expression of the GLUT4 transgenes caused an increase in UCP3 mRNA that paralleled the increase of GLUT4 protein in gastrocnemius muscle. The effects of increased intracellular GLUT4 level on the expression of UCP1, UCP2 and UCP3 were compared in several tissues of male 4 month-old mice harboring the -1000 GLUT4 minigene transgene. In the -1000 GLUT4 transgenic mice, expression of GLUT4 mRNA and protein in skeletal muscles, brown adipose tissue (BAT), and white adipose tissue (WAT) was increased by 1.4 to 4.0-fold. Compared with non-transgenic littermates, the -1000 GLUT4 mice exhibited about 4- and 1.8-fold increases of UCP3 mRNA in skeletal muscle and WAT, respectively, and a 38% decrease of UCP1 mRNA in BAT. The transgenic mice had a 16% increase in oxygen consumption and a 14% decrease in blood glucose and a 68% increase in blood lactate, but no change in FFA or beta-OHB levels. T3 and leptin concentrations were decreased in transgenic mice. Expression of UCP1 in BAT of the -442 GLUT4 mice, which did not overexpress GLUT4 in this tissue, was not altered. These findings indicate that overexpression of GLUT4 up-regulates UCP3 expression in skeletal muscle and down-regulates UCP1 expression in BAT, possibly by increasing the rate of glucose uptake into these tissues.  相似文献   

4.
To study the regulation of the mitochondrial uncoupling protein 2 and 3 (UCP2 and UCP3), we studied the effect of insulin and muscle contraction on UCP mRNA expression in rat skeletal muscle in vitro. Insulin dose-dependently increased skeletal muscle UCP2 and UCP3 mRNA expression in m. extensor digitorum longus (EDL) with maximal stimulation obtained at around 0.6-6 nM. The concentration of insulin giving half-maximal stimulation was 60 pM for the UCP2 and 48 pM for the UCP3 mRNA expression. The effect of insulin was maximal after 2 h and the effect was sustained during the whole study period (6 h). The insulin-induced increase in UCP mRNA was independent of the glucose uptake (as UCP mRNA was stimulated even in incubations without glucose). In addition, electrically induced contractions (in vitro) increased UCP2 and UCP3 mRNA expression 60-120 min after a single bout of contraction (for 10 min). Both the increment of UCP2 and UCP3 mRNA were sustained throughout the study period (4 h) (153 +/- 62 and 216 +/- 71% above basal, P < 0.05 respectively). Finally, 5-aminoimidazole-4-carboxamid-ribosid (AICAR), an activator of the AMP-activated protein kinase (AMPK), that is activated during exercise, was able to mimic the increase in UCP2 and UCP3 mRNA expression. In conclusion, UCP2 and UCP3 mRNA expression in skeletal muscle are stimulated rapidly by insulin and contraction in vitro, thus the stimulation is direct and not caused by changes in other hormones or metabolites. Even a brief bout of contraction induces an increase in UCP2 and UCP3 expression, an effect that could be mimicked by activation of the AMP-activated protein kinase by AICAR.  相似文献   

5.
Thompson MP  Kim D 《FEBS letters》2004,568(1-3):4-9
Physiological and pathological states that are associated with elevated plasma fatty acids (FAs) increase uncoupling protein 2 (UCP2) mRNA in white adipose tissue and UCP3 mRNA in skeletal muscle and heart. A direct effect of unsaturated fatty acids from all classes has been shown in various cultured cells. There is evidence that FAs could induce expression of UCPs by acting as ligands for peroxisome proliferator-activated receptors, influencing the function of sterol responsive element binding protein or activating 5'-AMP-activated protein kinase. Oleic acid has been shown to stimulate the activity of the promoter regions of UCP2 and UCP3 genes and the FA responsive regions are beginning to be characterised.  相似文献   

6.
7.
Previously we found that the organic components in scallop shell promote lipolysis in differentiated 3T3-L1 and C3H10T1/2 adipocyte cells, and that incorporating scallop shell powder into the diet of rats reduced the amount of white adipose tissue. In this study, we used RT-PCR to investigate the effect of ingesting scallop shell powder on the gene expression profile of uncoupling proteins (UCPs) regulating energy metabolism in rats.Feeding of scallop shell powder increased mRNA levels of UCP1 and UCP2 in white adipose tissue. By contrast, scallop shell powder had no effect on the expression of UCP1 in brown adipose tissue, although the expression level of UCP2 mRNA decreased significantly. These results suggest that feeding scallop shell powder increases gene expression of UCP1 that may regulate energy metabolism in white adipose tissue, resulting in the observed reduction in weight of white adipose tissue.  相似文献   

8.
Toyomizu M  Ueda M  Sato S  Seki Y  Sato K  Akiba Y 《FEBS letters》2002,529(2-3):313-318
Although bird species studied thus far have no distinct brown adipose tissue (BAT) or a related thermogenic tissue, there is now strong evidence that non-shivering mechanisms in birds may play an important role during cold exposure. Recently, increased expression of the duckling homolog of the avian uncoupling protein (avUCP) was demonstrated in cold-acclimated ducklings [Raimbault et al., Biochem. J. 353 (2001) 441-444]. Among the mitochondrial anion carriers, roles for the ATP/ADP antiporter (ANT) as well as UCP variants in thermogenesis are proposed. The present experiments were conducted (i) to examine the effects of cold acclimation on the fatty acid-induced uncoupling of oxidative phosphorylation in skeletal muscle mitochondria and (ii) to clone the cDNA of UCP and ANT homologs from chicken skeletal muscle and study differences compared to controls in expression levels of their mRNAs in the skeletal muscle of cold-acclimated chickens. The results obtained here show that suppression of palmitate-induced uncoupling by carboxyatractylate was greater in the subsarcolemmal skeletal muscle mitochondria from cold-acclimated chickens than that for control birds. An increase in mRNA levels of avANT and, to lesser degree, of avUCP in the skeletal muscle of cold-acclimated chickens was also found. Taken together, the present studies on cold-acclimated chickens suggest that the simultaneous increments in levels of avANT and avUCP mRNA expression may be involved in the regulation of thermogenesis in skeletal muscle.  相似文献   

9.
VIDAL-PUIG, ANTONIO, MICHAEL ROSENBAUM, ROBERT C. CONSIDINE, RUDOLPH L. LEIBEL, G. LYNIS DOHM, AND BRADFORD B. LOWELL. Effects of obesity and stable weight reduction on UCP2 and UCP3 gene expression in humans. Obes Res. Objectives: The molecular determinants of energy expenditure are presently unknown. Recently, two uncoupling protein homologues, UCP2 and UCP3, have been identified. UCP2 is expressed widely, and UCP3 is expressed abundantly in skeletal muscle. Both could be important regulators of energy balance. In this paper, we investigated whether altered UCP2 and UCP3 mRNA levels are associated with obesity or weight reduction. Research Methods and Procedures: UCP2, UCP3 long and short mRNA levels were examined in skeletal muscle and in white adipose tissue of lean, obese, and weight-reduced individuals by RNase protection assay. Results: Expression of UCP2, UCP3S, and UCP3L mRNA in skeletal muscle was similar in lean individuals and in individuals with obesity at stable weight. In contrast, UCP3L and UCP3S mRNAs were decreased by 38% (p < 0.0059) and 48% (p<0.0047), respectively, in 20% weight-reduced patients with obesity at stable weight. In contrast, UCP2 mRNA levels were increased by 30% in skeletal muscle of 20% weight-reduced subjects with obesity. In a different set of patients, mostly lean, UCP3L mRNA in skeletal muscle was decreased by 28% (p = 0.0425) after 10% weight reduction at stable weight. Expression of UCP2 mRNA in subcutaneous adipose tissue was similar in lean individuals and in individuals with obesity, and was increased by 58% during active weight loss. Discussion: Stabilization at reduced body weight in humans is associated with a decrease in UCP3 mRNA in muscle. It is possible that reduced UCP3 expression could contribute to decreased energy expenditure in weight-stable, weight-reduced individuals.  相似文献   

10.
The uncoupling protein-3 (UCP3) is a mitochondrial protein expressed mainly in skeletal muscle. Among several hypotheses for its physiological function, UCP3 has been proposed to prevent excessive production of reactive oxygen species. In the present study, we evaluated the effect of an oxidative stress induced by hyperoxia on UCP3 expression in mouse skeletal muscle and C2C12 myotubes. We found that the hyperoxia-mediated oxidative stress was associated with a 5-fold and 3-fold increase of UCP3 mRNA and protein levels, respectively, in mouse muscle. Hyperoxia also enhanced reactive oxygen species production and UCP3 mRNA expression in C2C12 myotubes. Our findings support the view that both in vivo and in vitro UCP3 may modulate reactive oxygen species production in response to an oxidative stress.  相似文献   

11.
12.
Mitochondrial uncoupling proteins 2 and 3 (UCP2 and UCP3) are postulated to contribute to antioxidant defense, nutrient partitioning, and energy efficiency in the heart. To distinguish isotype function in response to metabolic stress we measured cardiac mitochondrial function and cardiac UCP gene expression following chronic hypobaric hypoxia. Isolated mitochondrial O(2) consumption and ATP synthesis rate were reduced but respiratory coupling was unchanged compared to normoxic groups. Concurrently, left ventricular UCP3 mRNA levels were significantly decreased with hypoxia (p<0.05) while UCP2 levels remained unchanged versus controls. Diminished UCP3 expression was associated with coordinate regulation of counter-regulatory metabolic genes. From these data, we propose a role for UCP3 in the regulation of fatty acid oxidation in the heart as opposed to uncoupling of mitochondria. Moreover, the divergent hypoxia-induced regulation of UCP2 and UCP3 supports distinct mitochondrial regulatory functions of these inner mitochondrial membrane proteins in the heart in response to metabolic stress.  相似文献   

13.
The uncoupling protein 1 (UCP1), a mitochondrial transmembrane protein, is responsible for adaptive thermogenesis in brown adipose tissue (BAT). Two UCP1 homologues, UCP2 and UCP3, were recently discovered, but it is controversial whether they also play a role in energy homeostasis. Djungarian hamster UCPs were found to exhibit high similarity with homologues known in other species. UCP1 mRNA was restricted to BAT, UCP2 mRNA was expressed in multiple tissues, and UCP3 mRNA was detected mainly in BAT and skeletal muscles. We examined the cold-induced regulation of hamster UCP mRNA levels and tested their correlation with serum free fatty acid (FFA) concentrations. In BAT UCP1, UCP2, and UCP3 expression was upregulated in the cold, but the increase and time course of increase differed. In skeletal muscle, UCP2 and UCP3 mRNA levels were not altered. Cold-induced changes of serum FFA levels correlated with the stimulation of UCP1 mRNA in BAT but not with UCP2 and UCP3.  相似文献   

14.
Up-regulation of uterine UCP2 and UCP3 in pregnant rats.   总被引:2,自引:0,他引:2  
Pregnancy produces profound changes in hormone dynamics, thermoregulation and energy metabolism. Uncoupling proteins (UCPs) have been identified in a variety of tissues and UCP1 is known to play important roles in energy homeostasis, while the regulation of UCP2 and UCP3 is still unclear. The present study aimed to investigate the effects of the changes during pregnancy on UCP gene expression in the uterus, as well as in brown adipose tissue (BAT), white adipose tissue (WAT), soleus muscle (Muscle), and liver, throughout the estrus and metestrus periods, at early, middle and late stages in pregnancy, and during post-gestational stages. The expression of uterine UCP2 and UCP3 were up-regulated by 3.2- and 1. 5-fold, respectively, during the late stage of pregnancy with an increase of WAT leptin mRNA expression and exogenous administration of leptin resulted in induction of the uterine UCP2 and UCP3 levels. Contrary to uterine UCPs, UCP1 mRNA expression in BAT was down-regulated by 0.5-fold and there were no remarkable changes in WAT or liver UCP2, or Muscle UCP3 expression throughout the periods. These results indicate that UCP gene expressions during pregnancy are regulated tissue-dependently, and up-regulation of uterine UCP2 and UCP3 mRNA may be due to increased leptin levels.  相似文献   

15.
The effects of ovariectomy (OVX) and estrogen substitution on body weight, body composition, food intake, weight gain, and expression of uncoupling proteins (UCPs) in brown adipose tissue (BAT), white adipose tissue (WAT), and skeletal muscle were studied in four groups of rats: (1) Sham-operated rats (N = 8), (2) ovariectomized rats (OVX - E) (N = 8), (3) estrogen-treated OVX rats (OVX + E) (N = 8), and (4) OVX rats on energy restriction (OVX - E + D) (N = 8). OVX was associated with an increase in food intake and body weight gain during a 5-week study period compared to sham-operated rats. The estrogen-substituted rats had a significantly lower food intake and weight gain during the 5 weeks compared to the sham-operated group. However, we also included a nontreated OVX group that was allowed to eat only enough chow to match the weight gain of the sham-operated group. To match the weight gain in the two groups, the OVX group had to consume 16% less chow than the sham-operated group. In BAT, the UCP1 expression was significantly lower in estrogen-deficient rats compared to either intact rats or estrogen-substituted rats, whereas UCP2 and UCP3 mRNA expression was similar in BAT from all four groups. In WAT, both estrogen-deficient groups had significantly lower UCP2 mRNA expression compared to the control rats and estrogen-treated rats; In contrast, the UCP3 mRNA expression in WAT was similar in all four groups. Finally, in skeletal muscle the OVX group on mild energy restriction had reduced UCP3 mRNA expression compared to control, OVX, and estrogen-treated rats. In contrast, the UCP2 mRNA expression in skeletal muscle was similar in all four groups. Thus, the findings that estrogen deficiency is followed by reduced UCP1 expression in BAT and reduced UCP2 expression in WAT in association with weight gain probably caused by a decrease in energy expenditure might indicate that UCPs play a role for the estrogen-mediated changes in body weight and energy expenditure.  相似文献   

16.
Uncoupling protein-3 (UCP3), a mitochondrial carrier protein predominantly expressed in muscle, has been suggested to release stored energy as heat. The insulin-sensitizing thiazolidinediones enhance glucose disposal in skeletal muscle and have been reported to increase the expression of uncoupling proteins in various experimental systems. We therefore studied the effect of troglitazone treatment on UCP3 gene expression in muscles from lean and obese Zucker rats. In comparison with obese littermates, basal UCP3 mRNA levels in lean Zucker rats tended to be higher in white and red gastrocnemius muscles, but were lower in soleus (P<0.001) muscle and heart (P<0.01). In lean rats, troglitazone significantly increased UCP3 gene expression in white and red gastrocnemius and heart muscles (all P<0.01). In contrast, the drug reduced UCP3 mRNA expression in red gastrocnemius and soleus muscles of obese littermates (all P<0.001). The troglitazone-dependent decrease in UCP3 gene expression was accompanied by an increased weight gain in obese rats, while no such effect was observed in lean rats. In obese rats, improvement of insulin resistance by troglitazone was associated with increased rates of basal and insulin-stimulated CO(2) production from glucose measured in soleus muscle. These studies demonstrate that effects of troglitazone on UCP3 gene expression depend on the phenotype of Zucker rats and that troglitazone-induced metabolic improvements are not related to increased uncoupling resulting from upregulation of UCP3 mRNA expression in muscle.  相似文献   

17.
18.
We sought a correlation between rat skeletal muscle triiodothyronine (T3)-mediated regulation of uncoupling protein-3 (UCP3) expression and mitochondrial activity. UCP3 mRNA expression increased strongly during the hypothyroid-hyperthyroid transition. The rank order of mitochondrial State 3 and State 4 respiration rates was hypothyroid < euthyroid < hyperthyroid. The State 4 increase may have been due to the increased UCP3 expression, as the proton leak kinetic was stimulated in the hypothyroid-hyperthyroid transition and a good correlation exists between the State 4 and UCP3 mRNA level. As a significant proportion of an organism's resting oxygen consumption is dedicated to opposing the proton leak, skeletal muscle mitochondrial UCP3 may mediate part of T3's effect on energy metabolism.  相似文献   

19.
 为探讨禁食和胰岛素对解偶联蛋白 - 1、2、3基因 (UCP1 ,2 ,3)表达的影响 ,应用 RT- PCR方法观察了在不同禁食时间和应用胰岛素条件下大鼠白色脂肪组织、棕色脂肪组织和骨骼肌中 UCP1 ,2 ,3m RNA水平的变化 .UCP1基因只在大鼠棕色脂肪组织中表达 .UCP2 ,3基因在三种组织中均有表达 ,在白色脂肪组织中以 UCP2表达为主 ;在骨骼肌中以 UCP3表达为主 .过夜禁食使棕色脂肪组织 UCP1 ,3m RNA水平明显下降 (P<0 .0 1 ) ;UCP2 m RNA水平在三种组织中均呈上升反应 ,以白色脂肪组织中表现最为明显 (P<0 .0 5) ;而对白色脂肪组织和骨骼肌中 UCP3基因表达无明显影响 .禁食时间延长至 48h,除棕色脂肪组织中 UCP2 ,3基因有明显下降外 ,各组织中UCPs基因表达基本调节至正常或高于对照组水平 .胰岛素对 UCPs基因表达水平有一定的上调作用 ,这一作用对棕色脂肪组织 UCPs各基因及骨骼肌中 UCP3基因表现得尤为明显 (P<0 .0 5) .大鼠 UCPs基因表达有一定的组织特异性 ;禁食时间对三种组织中 UCPs各成员基因表达的影响有时相上的区别 ;胰岛素可以调 UCPs各成员基因的表达 .结果反映了 UCPs各成员在能量代谢调节上的不同作用 ,这为理解膳食 -产热与体重调节的关系 ,及其能量代谢平衡与疾病关系提供了实验依据  相似文献   

20.
Fibrates are hypolipidemic drugs that are also able to improve glucose tolerance in animals and diabetic patients through an unknown mechanism. Since uncoupling proteins (UCP) seem to play an important role in the pathogenesis of non-insulin-dependent diabetes mellitus (NIDDM), we examined whether treatment of rats with bezafibrate for 3, 7, or 15 days modified UCP mRNA levels. Using RT-PCR, we observed a weak ectopic expression of UCP-1 and a 2-fold increase in UCP-3 mRNA levels in white adipose tissue after 7 and 15 days of treatment. Moreover, bezafibrate administration caused a 1. 7-fold induction in UCP-3 mRNA levels in skeletal muscle on day 7. Since UCP-3 mRNA levels are reduced in skeletal muscle of diabetic patients, this effect may be involved in the improvement of insulin sensitivity caused by bezafibrate in NIDDM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号