首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Oligopeptidase B (OpdB) of Escherichia coli, previously called protease II, has a trypsin-like specificity, cleaving peptides at lysine and arginine residues and belongs to the prolyl oligopeptidase family of new serine peptidases. In this study, we report the fusion expression of E. coli oligopeptidase B with an N-terminal histidine tag using pET28a as the expression vector. Although most of the recombinant OpdB was produced as inclusion bodies, the solubility of the recombinant protease increased significantly when the expression temperature shifted from 37 to 30 degrees C. Recombinant OpdB (approximately 10 mg) could be purified from the soluble fraction of the crude extract of 1L log-phase E. coli culture containing 1.5 g wet bacterial cells. The purified OpdB has a molecular weight of approximately 80 kDa and a specific activity of 4.8 x 10(4) U/mg. OpdB could also be purified from the inclusion bodies with a lower yield. The recombinant enzyme was very stable under 40 degrees C. By comparison of the substrate specificity of the purified OpdB with that of OpdA, another trypsin-like protease in E. coli, we found that Boc-Glu-Lys-Lys-MCA is a specific substrate for E. coli OpdB. We also found that compared to OpdA, OpdB is much more sensitive to GMCHA-OPh(t)Bu, a synthetic trypsin inhibitor that can retard the growth of E. coli.  相似文献   

2.
High-level production of recombinant glucose isomerase (rGI) is desirable for lactulose synthesis. In this study, the xylA gene encoding glucose isomerase from Actinoplanes missouriensis CICIM B0118(A) was cloned and expressed in E. coli BL21(DE3), and high-level production was performed by optimization of the medium composition. rGI was purified from a recombinant E. coli BL21(DE3) and characterized. The optimum pH value of the purified enzyme was 8.0 and it was relatively stable within the pH range of 7.0-9.0. Its optimum temperature was around 85 degrees C, and it exhibited good thermostability when the temperature was lower than 90 degrees C. The maximum enzyme activity required the presence of both Co2+ and Mg2+, at the concentrations of 200 microM and 8 mM, respectively. With high-level expression and the simple one-step chromatographic purification of the His-tagged recombinant enzyme, this GI could be used in industrial production of lactulose as a potential economic tool.  相似文献   

3.
Chen L  Yang ZJ  Zhou Z  Cai WT  Teng XZ  Zhang GX 《病毒学报》2012,28(3):195-200
本研究利用大肠杆菌表达系统构建肠道病毒71型3C蛋白酶,并进行纯化,对其酶活性进行研究。首先,将3C蛋白酶基因克隆至pET28a载体,在大肠杆菌BL21(DE3)中表达,Ni-NTA柱亲和层析纯化获得3C蛋白酶,经肠激酶酶切去除N端His标签后获得无His标签的3C蛋白酶,再以荧光多肽为底物进行酶活性研究。经过双酶切鉴定和测序证实,重组表达质粒pET28a-3C构建正确,表达的重组3C蛋白酶相对分子质量约22kD;纯化后有无His标签的3C蛋白酶均能催化荧光底物3B-3C,并且两者的酶动力学数据无显著差异,含有His标签的3C蛋白酶Km、Vmax、Kcat分别为22μM、434nM.Min-1、0.0669 Min-1;其最适反应pH为7.0,最佳反应温度为30℃~37℃。本实验成功表达并纯化了重组3C蛋白酶,该酶具有良好的活力,为抗病毒抑制剂、结构蛋白组装、疫苗开发及3C蛋白酶检测方法的研发奠定了基础。  相似文献   

4.
Cold-active beta-galactosidase from Arthrobacter psychrolactophilus strain F2 was overexpressed in Escherichia coli using the Cold expression system and the recombinant enzyme, rBglAp, was characterized. The purified rBglAp exhibited similar enzymatic properties to the native enzyme, e.g., (i) it had high activity at 0 degrees C, (ii) its optimum temperature and pH were 10 degrees C and 8.0, respectively, and (iii) it was possible to rapidly inactivate the rBglAp at 50 degrees C in 5 min. Moreover, rBglAp was able to hydrolyze both ONPG and lactose with K(m) values of 2.7 and 42.1mM, respectively, at 10 degrees C. One U of rBglAp could hydrolyze about 70% of the lactose in 1 ml of milk in 24h, and the enzyme produced trisaccharide from lactose. We conclude that rBglAp is a cold-active enzyme that is extremely heat labile and has significant potential application to the food industry.  相似文献   

5.
AIMS: Isolation and screening of extreme halophilic archaeon producing extracellular haloalkaliphilic protease and optimization of culture conditions for its maximum production. METHODS AND RESULTS: Halogeometricum sp. TSS101 was isolated from salt samples and screened for the secretion of protease on gelatin and casein plates containing 20% NaCl. The archaeon was grown aerobically in a 250 ml flask containing 50 ml of (w/v) NaCl 20%; MgCl(2) 1%; KCl 0.5%; trisodium citrate 0.3%; and peptone 1%; pH 7.2 at 40 degrees C on rotary shaker. The production of enzyme was investigated at various pH, temperatures, NaCl concentrations, metal ions and different carbon and nitrogen sources. The partially purified protease had activity in a broad pH range (7.0-10.0) with optimum activity at pH 10.0 and a temperature (60 degrees C). The enzyme was thermostable and retained 70% initial activity at 80 degrees C. Maximum protease production occurred at 40 degrees C in a medium containing 20% NaCl (w/v) and 1% skim milk powder after 84 h in shaking culture. Enzyme secretion was observed at a broad pH range of 7.0-10.0. Addition of CaCl(2) (200 mmol) to the culture medium enhanced the production of protease. Protein rich flours proved to be cheap and good alternative source for enzyme production. Different osmolytes were tested for the growth and production of haloalkaliphilc protease and found that betaine and glycerol enhanced growth without secretion of the protease. Immobilization studies showed that whole cells immobilized in 2% alginate beads were stable up to 10 batches and able to secrete the protease, which attained maximum production within 60 h under shaking conditions. CONCLUSIONS: Halogeometricum sp. TSS101 secreted an extracellular haloalkaliphilic and thermostable protease. The optimum conditions required for maximum production are 20% NaCl, 1% skim milk powder and temperature at 40 degrees C. Addition of CaCl(2) (200 mmol) enhanced the enzyme production. Immobilization of whole cells in absence of NaCl proved to be useful for continuous production of haloalkaliphilic protease. SIGNIFICANCE AND IMPACT OF THE STudy: The low cost protein rich flours were used as an alternative carbon and nitrogen sources for enzyme production. Immobilization of halophilic cells in alginate beads can be used in continuous production of halophilic enzyme. The halophilic and thermostable protease from Halogeometricum sp. TSS101 is good source for industrial applications and can be a suitable source for preparation of fish sauce.  相似文献   

6.
A native-feather-degrading thermophilic anaerobe was isolated from a geothermal hot stream in Indonesia. Isolate AW-1, identified as a member of the species Fervidobacterium islandicum, was shown to degrade native feathers (0.8%, w/v) completely at 70 degrees C and pH 7 with a maximum specific growth rate (0.14 h(-1)) in Thermotoga- Fervidobacterium(TF) medium. After 24 h of culture, feather degradation led to an increase in free amino acids such as histidine, cysteine and lysine. Moreover, nutritionally essential amino acids such as tryptophan and methionine, which are rare in feather keratin, were also produced as microbial metabolites. A homomultimeric membrane-bound keratinolytic protease (>200 kDa; 97 kDa subunits) was purified from a cell extract of F. islandicum AW-1. The enzyme exhibited activity toward casein and soluble keratin optimally at 100 degrees C and pH 9, and had a half-life of 90 min at 100 degrees C. The enzyme showed higher specific activity for the keratinous substrates than other proteases and catalyzed the cleavage of peptide bonds more rapidly following the reduction of disulfide bridges in feather keratin by 10 mM dithiothreitol. Therefore, the enzyme from F. islandicum AW-1 is a novel, thermostable keratinolytic serine protease.  相似文献   

7.
The gene encoding alkaline phosphatase from the psychrotrophic bacterium Shewanella sp. SIB1 was cloned, sequenced, and overexpressed in Escherichia coli. The recombinant protein was purified and its enzymatic properties were compared with those of E. coli alkaline phosphatase (APase), which shows an amino acid sequence identity of 37%. The optimum temperature of SIB1 APase was 50 degrees C, lower than that of E. coli APase by 30 degrees C. The specific activity of SIB1 APase at 50 degrees C was 3.1 fold higher than that of E. coli APase at 80 degrees C. SIB1 APase lost activity with a half-life of 3.9 min at 70 degrees C, whereas E. coli APase lost activity with a half-life of >6 h even at 80 degrees C. Thus SIB1 APase is well adapted to low temperatures. Comparison of the amino acid sequences of SIB1 and E. coli APases suggests that decreases in electrostatic interactions and number of disulfide bonds are responsible for the cold-adaptation of SIB1 APase.  相似文献   

8.
We report the molecular characterization and the detailed study of the recombinant maltooligosyl trehalose synthase mechanism from the thermoacidophilic archaeon Sulfolobus acidocaldarius. The mts gene encoding a maltooligosyl trehalose synthase was overexpressed in Escherichia coli using the T7-expression system. The purified recombinant enzyme exhibited optimum activity at 75 degrees C and pH 5 with citrate-phosphate buffer and retained 60% of residual activity after 72 h of incubation at 80 degrees C. The recombinant enzyme was active on maltooligosaccharides such as maltotriose, maltotetraose, maltopentaose and maltoheptaose. Investigation of the enzyme action on maltooligosaccharides has brought much insight into the reaction mechanism. Results obtained from thin-layer chromatography suggested a possible mechanism of action for maltooligosyl trehalose synthase: the enzyme, after converting the alpha-1,4-glucosidic linkage to an alpha-1,1-glucosidic linkage at the reducing end of maltooligosaccharide glc(n) is able to release glucose and maltooligosaccharide glc(n-1) residues. And then, the intramolecular transglycosylation and the hydrolytic reaction continue, with the maltooligosaccharide glc(n-1) until the initial maltooligosaccharide is reduced to maltose. An hypothetical mechanism of maltooligosyl trehalose synthase acting on maltooligosaccharide is proposed.  相似文献   

9.
重组大肠杆菌热稳定性过氧化氢酶的纯化及性质研究   总被引:12,自引:0,他引:12  
将产热稳定性过氧化氢酶的重组大肠杆菌培养后菌体破碎得到的粗酶液经热处理、硫酸铵分级沉淀、DEAE\|Sephadex A\|50离子交换层析、HiPrep16/10 Phenyl疏水作用层析、Superdex200 HR 10/30凝胶层析提纯后得到电泳纯的酶,比酶活达到15629U/mg。此酶的最适温度为70℃,最适pH70,在60℃保温60min酶活力基本不变,在pH3~8的范围内比较稳定。此酶的Km和Vmax分别为775mmol/L和278mmol\5min\+\{-1\}·mg-1。1mmol/L的Zn2+、Ba2+、Mn2+可使该酶完全失活,KCN、NaN\-3、Na\-2S\-2O\-4、巯基乙醇对酶活力有抑制作用,50mmol/L的EDTA不影响酶活性。  相似文献   

10.
α-葡萄糖醛酸酶作为木聚糖降解的限速酶之一,在木聚糖类半纤维素的生物转化中起着重要的作用。海栖热袍菌Thermotoga maritima是一个嗜极端高温的厌氧细菌,其产生的极耐热性酶类具有非常可观的工业应用前景。但热袍菌属Thermotoga的基因在大肠杆菌中的表达一般较困难。研究了T. maritima中的极耐热性α葡萄糖醛酸酶基因在大肠杆菌不同菌株中的表达水平及纯化技术。结果表明,稀有密码子AGA、AGG和AUA限制了该基因在大肠杆菌中的表达,在大肠杆菌BL21-CodonPlus(DE3)RIL可得到高效表达,重组蛋白表达量达20%,比酶活比野生菌株提高5倍;重组蛋白经热处理和金属Ni2+的亲和层析提纯后,达到了电泳纯,提纯倍数为5.1倍,收率为55.1%。对重组菌诱导表达条件的研究表明,营养丰富的TB培养基有助于重组菌的生长, 重组菌生长至OD600为0.7~0.8时添加IPTG诱导5h后重组蛋白的表达量最高。  相似文献   

11.
产多聚唾液酸的菌种筛选及产酸条件   总被引:7,自引:1,他引:7  
通过对40株大肠杆菌进行产多聚唾液酸的筛选,得到一株高产多聚唾液酸菌株C-8,对该菌的一系列培养条件进行了研究。最佳培养基为:山梨醇2.5%,硫酸铵0.5%,磷酸氢二钾90mmol/L,胰蛋白陈1.5%,硫酸镁0.04%,pH7.8。在37℃,250r/min摇床培养65h,可使菌体在每毫升培养液中产多聚唾液酸1200μg。  相似文献   

12.
Escherichia coli cells are the most commonly used host cells for large-scale production of recombinant proteins, but some proteins are difficult to express in E. coli. Therefore, we tested the nocardioform actinomycete Rhodococcus erythropolis, which grows at temperatures ranging from 4 to 35 degrees C, as an expression host cell. We constructed inducible expression vectors, where the expression of the target genes could be controlled with the antibiotic thiostrepton. Using these expression vectors, several milligrams of reporter proteins could be isolated from 1 liter of culture of R. erythropolis cells grown at a temperature range from 4 to 35 degrees C. Moreover, we successfully purified serum amyloid A1, NADH dehydorogenase 1 alpha subcomplex 4, cytochrome b5-like protein, apolipoprotein A-V, cathepsin D, pancreatic Rnase, and HMG-1 that are all difficult to express in E. coli. In the case of kallikrein 6, mouse deoxyribonuclease I and Kid1, which are also difficult to express in E. coli, the expression level of each protein increased when proteins were expressed at low temperature (4 degrees C). Based on these results, we conclude that a recombinant protein expression system using R. erythropolis as the host cell is superior to respective E. coli systems.  相似文献   

13.
Protease secreted into the culture medium by alkalophilic Thermoactinomyces sp. HS682 was purified to an electrophoretically homogeneous state through only two chromatographies using Butyl-Toyopearl 650M and SP-Toyopearl 650S columns. The purified enzyme has an apparent relative molecular mass of 25,000 according to gel filtration on a Sephadex G-75 column and SDS-PAGE and an isoelectric point above 11.0. Its proteolytic activity was inhibited by active-site inhibitors of serine protease, DFP and PMSF, and metal ions, Cu2+ and Hg2+. The enzyme was stable toward some detergents, sodium perborate, sodium triphosphate, sodium-n-dodecylbenzenesulfonate, and sodium dodecyl sulfate, at a concentration of 0.1% and pH 11.5 and 37 degrees C for 60 min. The optimum pH was pH 11.5-13.0 at 37 degrees C and the optimum temperature was 70 degrees C at pH 11.5. Calcium divalent cation raised the pH and heat stabilities of the enzyme. In the presence of 5 mM CaCl2, it showed maximum proteolytic activity at 80 degrees C and stability from pH 4-12.5 at 60 degrees C and below 75 degrees C at pH 11.5. The stabilization by Ca2+ was observed in secondary conformation deduced from the circular dichroic spectrum of the enzyme. The protease hydrolyzed the ester bond of benzoyl leucine ester well. The amino acid terminal sequence of the enzyme showed high homology with those of microbial serine protease, although alanine of the NH2-terminal amino acid was deleted.  相似文献   

14.
The expression of Thermoactinomyces sp. E79 protease gene cloned into E. coli was highly host-dependent and the levels of protease expression was most stable in E. coli RR1 and E. coli HB101. Heating the intracellular extract at 70°C for 15 min converted the inactive recombinant E79 protease to its active mature form and also resulted in purification of the enzyme in a single step. Addition of 10 mM CaCl2 to the E79 protease decreased its autolysis and increased its thermal stability. © Rapid Science Ltd. 1998  相似文献   

15.
A gene encoding a subtilisin-like protease, designated islandisin, from the extremely thermophilic bacterium Fervidobacterium islandicum (DSMZ 5733) was cloned and actively expressed in Escherichia coli. The gene was identified by PCR using degenerated primers based on conserved regions around two of the three catalytic residues (Asp, His, and Ser) of subtilisin-like serine protease-encoding genes. Using inverse PCR regions flanking the catalytic residues, the gene could be cloned. Sequencing revealed an open reading frame of 2,106 bp. The deduced amino acid sequence indicated that the enzyme is synthesized as a proenzyme with a putative signal sequence of 33 amino acids (aa) in length. The mature protein contains the three catalytic residues (Asp177, His215, and Ser391) and has a length of 668 aa. Amino acid sequence comparison and phylogenetic analysis indicated that this enzyme could be classified as a subtilisin-like serine protease in the subgroup of thermitase. The whole gene was amplified by PCR, ligated into pET-15b, and successfully expressed in E. coli BL21(DE3)pLysS. The recombinant islandisin was purified by heat denaturation, followed by hydroxyapatite chromatography. The enzyme is active at a broad range of temperatures (60 to 80 degrees C) and pHs (pH 6 to 8.5) and shows optimal proteolytic activity at 80 degrees C and pH 8.0. Islandisin is resistant to a number of detergents and solvents and shows high thermostability over a long period of time (up to 32 h) at 80 degrees C with a half-life of 4 h at 90 degrees C and 1.5 h at 100 degrees C.  相似文献   

16.
Pyrococcus woesei (DSM 3773) alpha-amylase gene was cloned into pET21d(+) and pYTB2 plasmids, and the pET21d(+)alpha-amyl and pYTB2alpha-amyl vectors obtained were used for expression of thermostable alpha-amylase or fusion of alpha-amylase and intein in Escherichia coli BL21(DE3) or BL21(DE3)pLysS cells, respectively. As compared with other expression systems, the synthesis of alpha-amylase in fusion with intein in E. coli BL21(DE3)pLysS strain led to a lower level of inclusion bodies formation-they exhibit only 35% of total cell activity-and high productivity of the soluble enzyme form (195,000 U/L of the growth medium). The thermostable alpha-amylase can be purified free of most of the bacterial protein and released from fusion with intein by heat treatment at about 75 degrees C in the presence of thiol compounds. The recombinant enzyme has maximal activity at pH 5.6 and 95 degrees C. The half-life of this preparation in 0.05 M acetate buffer (pH 5.6) at 90 degrees C and 110 degrees C was 11 h and 3.5 h, respectively, and retained 24% of residual activity following incubation for 2 h at 120 degrees C. Maltose was the main end product of starch hydrolysis catalyzed by this alpha-amylase. However, small amounts of glucose and some residual unconverted oligosaccharides were also detected. Furthermore, this enzyme shows remarkable activity toward glycogen (49.9% of the value determined for starch hydrolysis) but not toward pullulan.  相似文献   

17.
The gdhA gene, encoding the hexameric glutamate dehydrogenase (GDH) from the hyperthermophilic archaeon Pyrococcus furiosus, was expressed in Escherichia coli by using the pET11-d system. The recombinant GDH was soluble and constituted 15% of the E. coli cell extract. The N-terminal amino acid sequence of the recombinant protein was identical to the sequence of the P. furiosus enzyme, except for the presence of an initial methionine which was absent from the enzyme purified from P. furiosus. By molecular exclusion chromatography we showed that the recombinant GDH was composed of equal amounts of monomeric and hexameric forms. Heat treatment of the recombinant protein triggered in vitro assembly of inactive monomers into hexamers, resulting in increased GDH activity. The specific activity of the recombinant enzyme, purified by heat treatment and affinity chromatography, was equivalent to that of the native enzyme from P. furiosus. The recombinant GDH displayed a slightly lower level of thermostability, with a half-life of 8 h at 100 degrees C, compared with 10.5 h for the enzyme purified from P. furiosus.  相似文献   

18.
We have described previously the potential use of an alkaline protease from Bacillus pumilus CBS as an effective additive in laundry detergent formulations [B. Jaouadi, S. Ellouz-Chaabouni, M. Ben Ali, E. Ben Messaoud, B. Naili, A. Dhouib, S. Bejar, A novel alkaline protease from Bacillus pumilus CBS having a high compatibility with laundry detergent and a high feather-degrading activity, Process Biochem, submitted for publication]. Here, we purified this enzyme (named SAPB) and we cloned, sequenced and over-expressed the corresponding gene. The enzyme was purified to homogeneity using salt precipitation and gel filtration HPLC. The pure protease was found to be monomeric protein with a molecular mass of 34598.19Da as determined by MALDI-TOF mass spectrometry. The NH(2)-terminal sequence of first 21 amino acids (aa) of the purified SAPB was AQTVPYGIPQIKAPAVHAQGY and was completely identical to proteases from other Bacillus pumilus species. This protease is strongly inhibited by PMSF and DFP, showing that it belongs to the serine proteases superfamily. Interestingly, the optimum pH is 10.6 while the optimum temperature was determined to be 65 degrees C. The enzyme was completely stable within a wide range of pH (7.0-10.6) and temperature (30-55 degrees C). One of the distinguishing properties is its catalytic efficiency (k(cat)/K(m)) calculated to be 45,265min(-1)mM(-1) and 147,000min(-1)mM(-1) using casein and AAPF as substrates, respectively, which is higher than that of Subtilisin Carlsberg, Subtilisin BPN' and Subtilisin 309 determined under the same conditions. In addition, SAPB showed remarkable stability, for 24h at 40 degrees C, in the presence of 5% Tween-80, 1% SDS, 15% urea and 10% H(2)O(2), which comprise the common bleach-based detergent formulation. The sapB gene encoding SAPB was cloned, sequenced and over-expressed in Escherichia coli. The purified recombinant enzyme (rSAPB) has the same physicochemical and kinetic properties as the native one. SapB gene had an ORF of 1149bp encoding a protein of 383 aa organized into a signal peptide (29 aa), a pro-protein (79 aa) and a mature enzyme (275 aa). The deduced amino acid sequence inspection displays an important homology with other bacterial proteases. The highest homology of 98.1% was found with BPP-A protease from Bacillus pumilus MS-1, with only 8 aa of difference.  相似文献   

19.
The maltose-regulated mlr-2 gene from the hyperthermophilic archaeon Pyrococcus furiosus having homology to bacterial and eukaryal prolyl endopeptidase (PEPase) was cloned and overexpressed in Escherichia coli. Extracts from recombinant cells were capable of hydrolyzing the PEPase substrate benzyloxycarbonyl-Gly-Pro-p-nitroanilide (ZGPpNA) with a temperature optimum between 85 and 90 degrees C. Denaturing gel electrophoresis of purified PEPase showed that enzyme activity was associated with a 70-kDa protein, which is consistent with that predicted from the mlr-2 sequence. However, an apparent molecular mass of 59 kDa was obtained from gel permeation studies. In addition to ZGPpNA (K(Mapp) of 53 microM), PEPase was capable of hydrolyzing azocasein, although at a low rate. No activity was detected when ZGPpNA was replaced by substrates for carboxypeptidase A and B, chymotrypsin, subtilisin, and neutral endopeptidase. N-[N-(L-3-trans-Carboxirane-2-carbonyl)-L-Leu]-agmatine (E-64) and tosyl-L-Lys chloromethyl ketone did not inhibit PEPase activity. Both phenylmethylsulfonyl fluoride and diprotin A inhibited ZGPpNA cleavage, the latter doing so competitively (K(lapp) of 343 microM). At 100 degrees C, the enzyme displayed some tolerance to sodium dodecyl sulfate treatment. Stability of PEPase over time was dependent on protein concentration; at temperatures above 65 degrees C, dilute samples retained most of their activity after 24 h while the activity of concentrated preparations diminished significantly. This decrease was found to be due, in part, to autoproteolysis. Partially purified PEPase from P. furiosus exhibited the same temperature optimum, molecular weight, and kinetic characteristics as the enzyme overexpressed in E. coli. Extracts from P. furiosus cultures grown in the presence of maltose were approximately sevenfold greater in PEPase activity than those grown without maltose. Activity could not be detected in clarified medium obtained from maltose-grown cultures. We conclude that mlr-2, now called prpA, encodes PEPase; the physiological role of this protease is presently unknown.  相似文献   

20.
Ren X  Yu D  Yu L  Gao G  Han S  Feng Y 《Journal of biotechnology》2007,129(4):668-673
Extraction of intracellular protein from Escherichia coli is traditionally achieved by mechanical, chemical or enzymatic disruption technology. In this study, a novel thermolysis method was used to disrupt E. coli cells to release a recombinant thermostable esterase. We found that heat treatment of E. coli was highly effective to destroy the integrity of bacterial cell walls and release the recombinant hyperthermophilic esterase at temperatures above 60 degrees C. The effects of temperature, pH and cell concentration on the efficiency of cell disruption were examined. The most effective temperature for cell disruption was at 80 degrees C. The pH and cell concentration had only minor effect on the release of the hyperthermophilic esterase. In addition, we found that the hyperthermophilic esterase could be purified at the early stage of the thermolysis, which is a major advantage of the thermolysis method. Finally, a comparison between thermolysis and traditional methods for the disruption of cells and the release of the thermostable enzyme was made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号