首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trypanosomes possess a single flagellum that is attached to their cell body via the flagellum attachment zone (FAZ). The FAZ is composed of two structures: a cytoplasmic filament complex and four microtubules situated next to it. There is a complex transmembrane crosslinking of this FAZ to the paraflagellar rod (PFR) and axoneme within the flagellum. We have partially purified the FAZ complex and have produced monoclonal antibodies both against the FAZ and the paraflagellar rod. The two antibodies against the FAZ (L3B2 and L6B3) recognise the cytoplasmic filament in immunofluorescence and in immunoelectron microscopy. On western blot, they detect a doublet of high molecular weight (M(r) 200,000). Two anti-PFR antibodies (L13D6 and L8C4) recognise the paraflagellar rod in immunofluorescence, but show a difference on Western blot: L13D6 recognises both major PFR proteins, whereas L8C4 is specific for only one of them. Using these new antibodies we have shown that although the growth of both cytoplasmic FAZ filament and external PFR are related, their growth initiates at different time points during the cell cycle and the two structures elongate at distinct rates.  相似文献   

2.
A series of isothiazole dioxides was synthesized and evaluated as inhibitors of protein farnesyltransferase from the parasite that causes African sleeping sickness (Trypanosoma brucei). The most potent compound in the series inhibited the parasite enzyme with an IC(50) of 2 microM and blocked the growth of the bloodstream parasite in vitro with an ED(50) of 10 microM. The same compound inhibited rat protein farnesyltransferase and protein geranylgeranyltransferase type I only at much higher concentration.  相似文献   

3.
Growth of the cutaneous lesions of Leishmania mexicana and L. tropica major (P strain) in CFLP mice was markedly inhibited by concurrent Trypanosoma brucei infections. Restoration of normal growth of the lesion occurred within 1 week of the mice being treated with a trypanocidal drug. The presence of the concurrent T. brucei infections did not affect the development of acquired immunity to L. tropica, manifested as ulceration and healing of the lesion, nor did it induce any detectable immunity to L. mexicana. The possible underlying mechanisms are discussed.  相似文献   

4.
The effects of free mercury(II), cadmium(II) and lead(II) ions and their metalloporphyrin-derivatives on Trypanosoma brucei brucei growth in culture were studied. All experiments were conducted in the dark. IC(50) values on growth obtained in 24-h time-course experiments were 1.5 x 10(-7), 2.4 x 10(-6), 4.4 x 10(-6) and 2.6 x 10(-5) M for mercury(II) porphyrin, cadmium(II) porphyrin, lead(II) porphyrin and free base porphyrin, respectively. While the IC50 values for Hg2+, Cd2+ and Pb2+ were 3.6 x 10(-6), 1.5 x 10(-5) and 1.6 x 10(-5) M, respectively. These results clearly indicate that the toxicity of the metalloporphyrin complexes of mercury(II), cadmium(II) and lead(II) to T. b. brucei parasites was much higher compared to their free metal ions and free base porphyrin at low concentrations. It was also observed after 8 h incubation that the metalloporphyrins were effective in inhibiting the division of the parasites at concentrations >1.25 x 10(-7) M for mercury(II) porphyrin, concentrations >1.2 x 10(-6) M for cadmium(II) and lead(II) porphyrins and at concentrations >3.6 x 10(-6) M for Hg2+ ion. These observations were not detected in samples treated with the free metal ions and the free base porphyrin at the same concentrations. Interestingly, trypanosomes treated with metalloporphyrin complexes displayed different morphological features from those cells treated with free base porphyrin or metal ions. The chemotherapeutic potential of the metalloporphyrins of H2TMPyP for treatment of African trypanosomiasis is discussed.  相似文献   

5.
A method is described for obtaining optimal growth and morphological transformation of Trypanosoma brucei 792G in a monophasic blood lysate medium starting from populations of bloodstream trypanosomes containing over 90 per cent intermediate and stumpy forms. Transformation was accompanied by: (1) an increase in length of the trypanosomes from 13·8 (± 3·0) μm to 23·0 (± 2·5) μm; (2) an increase in the kinetoplastic index from 1·0 to greater than 2·0; (3) development of the mitochondrion from a single abflagellar canal to a network of subpellicular canals, with outgrowth of the post-kineto-plastic region of the mitochondrion; (4) replacement of some of the tubular mitochondrial cristae by plate-like cristae; (5) the acquisition of succinoxidase, succinate-cytochrome c reductase, and glycerophosphate-cytochrome c reductase activities; (6) a marked increase in proline oxidase and NADH-cytochrome c reductase activities; (7) loss of the surface coat of the flagellate and concomitant reduction in the smooth-membrane systems lying between the nucleus and flagellar pocket; (8) reduction in infectivity of the trypanosomes to the mammalian host. Although growth in primary culture continued up to 100 h, transformation was completed in 48 h. All the respiratory enzyme activities tested were insensitive to cyanide throughout transformation. Division of trypanosomes appeared to be taking place throughout the transformation process. Cyanide sensitivity developed only after subculture of the trypanosomes into a biphasic medium.  相似文献   

6.
A medicinal chemistry exploration of the human phosphodiesterase 4 (hPDE4) inhibitor cilomilast (1) was undertaken in order to identify inhibitors of phosphodiesterase B1 of Trypanosoma brucei (TbrPDEB1). T. brucei is the parasite which causes African sleeping sickness, a neglected tropical disease that affects thousands each year, and TbrPDEB1 has been shown to be an essential target of therapeutic relevance. Noting that 1 is a weak inhibitor of TbrPDEB1, we report the design and synthesis of analogs of this compound, culminating in 12b, a sub-micromolar inhibitor of TbrPDEB1 that shows modest inhibition of T. brucei proliferation.  相似文献   

7.
Inbred mice were infected with cloned populations of Trypanosoma brucei brucei Lister S42 under carefully controlled conditions. The course of infection was found to depend both on host strain and the antigenic type of the infecting organisms. The two antigenic types used, “NIM2” and “NIM6” had differing virulence for (CBA/H × C57BL/6)F1 mice, and when mice were infected with parasites of one clone, trypanosomes of the other type frequently appeared after the initial population had been eliminated. Different mouse strains had varying susceptibility to clone NIM6. In most cases there was an inverse relation between the survival time and the parasite load during the first peak of parasitemia. The differences in resistance to T. brucei were unrelated to H-2 haplotype: C57BL/6 and (CBA/H × C57BL/6)F1 were most resistant, CBA/H, BALB/c and DBA/2 less so, and C3H/He most susceptible.  相似文献   

8.
We have identified and partially purified two DNA polymerase activities from purified Trypanosoma brucei mitochondrial extracts. The DNA polymerase activity eluted from the single-stranded DNA agarose column at 0.15 M KCI (polymerase MI) was significantly inhibited by salt concentrations greater than 100 mM, utilized Mg2+ in preference to Mn2+ as a cofactor on deoxyribonucleotide templates with deoxyribose primers, and in the presence of Mn2+ favored a ribonucleotide template with a deoxyribose primer. A 44 kDa peptide in this fraction crossreacted with antisera against the Crithidia fasciculata β-like mitochondrial polymerase. In activity gels the catalytic peptide migrated at an apparent molecular weight of 35 kDa. The DNA polymerase activity present in the 0.3 M KCI DNA agarose fraction (polymerase M2) exhibited optimum activity at 120-180 mM KCI, used both Mg2+ and Mn2+ as cofactors, and used deoxyribonucleotide templates primed with either deoxyribose or ribose oligomers. Activity gel assays indicate that the native catalytic peptide(s) is ˜ 80 kDa in size. The two polymerases showed different sensitivities to several inhibitors: polymerase MI shows similarities to the Crithidia fasciculata β-like mitochondrial polymerase while polymerase M2 is a novel, salt-activated enzyme of higher molecular weight.  相似文献   

9.
The DNA replication machinery is spatially and temporally coordinated in all cells to reproduce a single exact copy of the genome per division, but its regulation in the protozoan parasite Trypanosoma brucei is not well characterized. We characterized the effects of altering the levels of proliferating cell nuclear antigen, a key component of the DNA replication machinery, in bloodstream form T. brucei. This study demonstrated that tight regulation of TbPCNA levels was critical for normal proliferation and DNA replication in the parasite. Depleting TbPCNA mRNA reduced proliferation, severely diminished DNA replication, arrested the synthesis of new DNA and caused the parasites to accumulated in G2/M. Attenuating the parasite by downregulating TbPCNA caused it to become hypersensitive to hydroxyurea. Overexpressing TbPCNA in T. brucei arrested proliferation, inhibited DNA replication and prevented the parasite from exiting G2/M. These results indicate that distinct mechanisms of cell cycle arrest are associated with upregulating or downregulating TbPCNA. The findings of this study validate deregulating intra-parasite levels of TbPCNA as a potential strategy for therapeutically exploiting this target in bloodstream form T. brucei.  相似文献   

10.
The protozoan parasite Trypanosoma brucei causes human African sleeping sickness in sub-Saharan Africa. The parasite makes several essential glycoproteins, which has led to the investigation of the sugar nucleotides and glycosyltransferases required to synthesize these structures. Fucose is a common sugar in glycoconjugates from many organisms; however, the sugar nucleotide donor GDP-fucose was only recently detected in T. brucei, and the importance of fucose metabolism in this organism is not known. In this paper, we identified the genes encoding functional GDP-fucose biosynthesis enzymes in T. brucei and created conditional null mutants of TbGMD, the gene encoding the first enzyme in the pathway from GDP-mannose to GDP-fucose, in both bloodstream form and procyclic form parasites. Under nonpermissive conditions, both life cycle forms of the parasite became depleted in GDP-fucose and suffered growth arrest, demonstrating that fucose metabolism is essential to both life cycle stages. In procyclic form parasites, flagellar detachment from the cell body was also observed under nonpermissive conditions, suggesting that fucose plays a significant role in flagellar adhesion. Fluorescence microscopy of epitope-tagged TbGMD revealed that this enzyme is localized in glycosomes, despite the absence of PTS-1 or PTS-2 target sequences.  相似文献   

11.
A new member of the FHIT protein family, designated HIT-45, has been identified in the African trypanosome Trypanosoma brucei. Recombinant HIT-45 proteins were purified from trypanosomal and bacterial protein expression systems and analyzed for substrate specificity using various dinucleoside polyphosphates, including those that contain the 5′-mRNA cap, i.e., m7GMP. This enzyme exhibited typical dinucleoside triphosphatase activity (EC 3.6.1.29), having its highest specificity for diadenosine triphosphate (ApppA). However, the trypanosome enzyme contains a unique amino-terminal extension, and hydrolysis of cap dinucleotides with monomethylated guanosine or dimethylated guanosine always yielded m7GMP (or m2,7GMP) as one of the reaction products. Interestingly, m7Gpppm3N6, N6, 2′OA was preferred among the methylated substrates. This hypermethylated dinucleotide is unique to trypanosomes and may be an intermediate in the decay of cap 4, i.e., m7Gpppm3N6, N6, 2′OApm2′OApm2′OCpm2N3, 2′OU, that occurs in these organisms.  相似文献   

12.
13.
The Trypanosoma brucei subspecies T. brucei gambiense and T. brucei rhodesiense are vector-borne pathogens that cause sleeping sickness also known as Human African Trypanosomiasis (HAT), which is fatal if left untreated. The drugs that treat HAT are ineffective and cause toxic side effects. One strategy for identifying safer and more effective HAT drugs is to therapeutically exploit essential gene targets in T. brucei. Genes that make up a basic mitogen-activated protein kinase (MAPK) network are present in T. brucei. Tb927.10.5140 encodes an essential MAPK that is homologous to the human extracellular-signal regulated kinase 8 (HsERK8) which forms a tight complex with the replication factor proliferating cell nuclear antigen (PCNA) to stabilize intracellular PCNA levels. Here we demonstrate that (TbPCNA) is uniquely phos-phorylated on serine (S) and threonine (T) residues in T. brucei and that TbERK8 phosphorylates TbPCNA at each of these residues. The ability of an ERK8 homolog to phosphorylate a PCNA homolog is a novel biochemical property that is first demonstrated here in T. brucei and may be unique to this pathogen. We demonstrate that the potent HsERK8 inhibitor Ro318220, has an IC50 for TbERK8 that is several hundred times higher than its reported IC50 for HsERK8. This indicated that the active sites of TbERK8 and HsERK8 can be selectively inhibited, which provides a rational basis for discovering inhibitors that specifically target this essential parasite MAPK to kill the parasite.  相似文献   

14.
Plasma were collected from mice which had been immunosuppressed with 650 R from a cobalt-60 gamma radiation source and infected with Trypanosoma musculi. Trypanosomes were also collected from immuno-suppressed mice and from nonirradiated, infected animals. Rabbit antiserum was prepared against trypanosomes fron nonirradiated mice and employed in immunodiffusion analyses to detect trypanosome exoantigens (ExAg) in plasma of irradiated, infected mice and cellular antigens (CAg) in extracts of parasites which had been collected from immunosuppressed and nonirradiated hosts. The rabbit antiserum formed at least 3 precipitin lines with plasma from irradiated, infected mice and 8–9 precipitin lines with extracts of parasites which were obtained from immunosuppressed and untreated mice. Two of the precipitin reactions were against mouse plasma antigens (PAg). Lower levels of PAg appeared to be present in extracts of trypanosomes which were isolated from the irradiated mice than in those from nonirradiated animals.Mice synthesized antibodies against 1 ExAg which was demonstrable in immunodiffusion tests by 14 days after T. musculi infection. A single precipitin reaction was also seen after 21 days. One to 2 precipitin lines were formed with ExAg after 42 days of infection. Two to 3 precipitin lines formed between the ExAg and mouse antisera collected 98, 175 and 341 days after injection of the T. musculi.Similar immunodiffusion reactions were detected with CAg present in both the extracts of T. musculi which had been isolated from irradiated and those from nonirradiated mice and the mouse antisera. One to 2 precipitin lines were found between CAg and antisera from mice which had been infected for 14 days. Two precipitating antigen-antibody systems were seen with antisera collected after 21, 42 and 98 days and 2–3 precipitin reactions were formed between CAg and antisera collected from mice 175 and 341 days after infection.Absorption and immunodiffusion analyses conducted with rabbit and mouse antisera indicated parasite ExAg in plasma of irradiated, T. musculi infected mice were also present in preparations of CAg of the trypanosomes. The persistence of antibody and the increase in the numbers of antigen-antibody systems detected by immunodiffusion during the course of the infection may in part be related to the presence of parasites in capillaries of the kidneys long after they cannot be demonstrated in the peripheral blood of the host.  相似文献   

15.
Association of Csk to VE-cadherin and inhibition of cell proliferation   总被引:1,自引:0,他引:1  
Vascular endothelial cadherin (VE-cadherin) mediates contact inhibition of cell growth in quiescent endothelial cell layers. Searching for proteins that could be involved in VE-cadherin signaling, we found the cytosolic C-terminal Src kinase (Csk), a negative regulator of Src family kinases. We show that Csk binds via its SH2 domain to the phosphorylated tyrosine 685 of VE-cadherin. VE-cadherin recruits Csk to cell contacts and both proteins can be co-precipitated from cell lysates of transfected cells and endothelial cells. Association of VE-cadherin and Csk in endothelial cells increased with increasing cell density. CHO cells expressing the tyrosine replacement mutant VE-cadherin-Y685F grow to higher cell densities than cells expressing wild-type VE-cadherin. Overexpression of Csk in these cells under an inducible promoter inhibits cell proliferation in the presence and absence of VE-cadherin, but not in the presence of VE-cadherin-Y685F. Reduction of Csk expression by RNA interference enhances endothelial cell proliferation. Our results suggest that the phosphorylated tyrosine residue 685 of VE-cadherin and probably the binding of Csk to this site are involved in inhibition of cell growth triggered by cell density.  相似文献   

16.
Previous studies have suggested that 1,25(OH)2D3, the active form of vitamin D3, may increase the survival of bone-forming osteoblasts through an inhibition of apoptosis. On the other hand, vitamin D3 has also been shown to trigger apoptosis in human cancer cells, including osteosarcoma-derived cell lines. In the present study, we show that 1,25(OH)2D3 induces a time- and dose-dependent loss of cell viability in the rat osteosarcoma cell line, UMR-106, and the human osteosarcoma cell line, TE-85. We were unable, however, to detect nuclear condensation, phosphatidylserine externalization, or other typical signs of apoptosis in this model. Moreover, 1,25(OH)2D3 failed to protect against apoptosis induced by serum starvation or incubation with the protein kinase inhibitor, staurosporine. These in vitro findings are thus at variance with several previous reports in the literature and suggest that induction of or protection against apoptosis of bone-derived cells may not be a primary function of vitamin D3.  相似文献   

17.
CTP Synthase from Trypanosoma brucei (TbCTPS) catalyzes the conversion of UTP to CTP and is a recognized target for the development of antiprotozoal agents. GTP activates glutamine-dependent CTP formation catalyzed by TbCTPS at concentrations below 0.2 mM, but inhibits this activity at concentrations above 0.2 mM. TbCTPS catalyzes ammonia-dependent CTP formation, which is inhibited by purine derivatives such as GTP, guanosine, caffeine, and uric acid with IC(50) values of 460, 380, 480, and 100 μM, respectively. These observations suggest that the purine ring may serve as a useful scaffold for the development of inhibitors of trypanosomal CTP synthase.  相似文献   

18.
Abe S  Sasaki R  Masuda S 《Cytotechnology》2011,63(2):101-109
Erythropoietin is responsible for the red blood cell formation by stimulating the proliferation and the differentiation of erythroid precursor cells. Erythropoietin triggers the conformational change in its receptor thereby induces the phosphorylation of JAK2. In this study, we show that an extra high dose of erythropoietin, however, fails to activate the erythropoietin receptor, to stimulate the phosphorylation of JAK2 and to support the cell proliferation of Ep-FDC-P2 cell. Moreover, high dose of EPO also inhibited the proliferation of various erythropoietin-dependent cell lines, suggesting that excess amount of EPO could not trigger the conformational change of the receptor. In the presence of an extra high dose of erythropoietin as well as in the absence of erythropoietin, the cells caused the DNA fragmentation, a typical symptom of apoptosis. The impairment of cell growth and the DNA fragmentation at the extremely high concentration of EPO was rescued by the addition of erythropoietin antibody or soluble form of erythropoietin receptor by titrating the excess erythropoietin. These results suggest that two erythropoietin binding sites on erythropoietin receptor dimer should be occupied by a single erythropoietin molecule for the proper conformational change of the receptor and the signal transduction of erythropoietin, instead, when two erythropoietin binding sites on the receptor are shared by two erythropoietin molecules, it fails to evoke the conformational change of erythropoietin receptor adequate for signal transduction.  相似文献   

19.
Treatment of human lymphoblastoid (Daudi) cells with interferons inhibits cell proliferation in culture within 24 h. The failure of cell growth has been shown to be associated with impaired processing and decreased stability of newly replicated DNA. Because there is a close relationship between DNA replication and protein synthesis we have measured protein synthesis in intact Daudi cells. Protein synthesis declined steadily between 24 and 96 h after interferon treatment to a value which is only 20-30% of the rate in control cells. The enzyme 2',5'-oligo(A) synthetase is induced but our data do not support a role for the 2',5'-oligo(A)-activated ribonuclease in the control of translation in this system.  相似文献   

20.
During Trypanosoma cruzi infection the trans-sialidase superfamily stimulates the development of a large population of CD4 T lymphocytes that produces IFNgamma. These CD4 T cells fail to proliferate when stimulated in vitro. Why they fail to proliferate remains unclear. Nitric oxide is a critical component of the host immune response against T. cruzi, and to determine if NO inhibits trans-sialidase superfamily-specific proliferative responses, mice were fed either N(G)-nitro-L-arginine methylester (L-NAME), an inhibitor of inducible nitric oxide synthase (iNOS), or N(G)-nitro-D-arginine methyl ester (D-NAME), an inactive analog of L-NAME. The L-NAME-fed mice had increased parasitemia and mortality compared to the D-NAME-fed mice. Following stimulation with a T. cruzi trans-sialidase superfamily protein, splenocytes from both groups of mice failed to proliferate but continued to make similar amounts of IFNgamma, suggesting that the development of the trans-sialidase superfamily-specific CD4 response was not affected by iNOS inhibition. In addition, IL-2 receptor (IL-2R) expression was increased on T cells isolated from L-NAME-fed mice. These data suggest that during T. cruzi infection NO causes downregulation of IL-2R expression, but does not cause inhibition of trans-sialidase superfamily-specific CD4 T cell proliferation. Rather, the trans-sialidase superfamily proliferation may be inhibited by epitope variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号