首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The meiotic behavior of a special maize trisome was quantitatively observed at pachytene, metaphase I, anaphase I, prophase II, metaphase II and anaphase II. The data obtained are consistent with (but do not prove) the model that sister chromatid cohesiveness at anaphase I may be established during pachytene synapsis of the chromosome regions involved. The data suggest, however, that the normal prophase II maintenance of dyad integrity by cohesiveness of sister chromatid centromere regions does not depend upon prior synapsis of these regions, although monads separated from each other on the anaphase I spindle may be delivered to the same prophase II daughter nucleus. — The strands which some of the time connect sister chromatids which are separating equationally at anaphase I show a positive Feulgen staining reaction.  相似文献   

2.
The meiotic cytological behavior of chromosomes in maize microsporocytes homozygous for the recessive mutant desynaptic was studied at various stages. It was found that following apparently normal pachytene synapsis there appears to be sporadic precocious desynapsis. By diakinesis bivalents heterozygous for a distal knob have often separated to pairs of univalents, each with a knob-carrying and a knobless chromatid. From the frequency of such events it is inferred that the crossover process is probably not affected by the mutant and that the genetic defect affects instead a distinct function concerned with chiasma maintenance following crossing over. Since precocious separation of dyads to monads at prophase II was also found in the desynaptic material, it is suggested that normal chiasma maintenance until anaphase I and normal dyad integrity maintenance between anaphase I and anaphase II may depend upon the same mechanism; it is also suggested that this may involve a special tendency for cohesiveness of sister chromatids during meiosis, beyond that which is ordinarily found at mitosis.  相似文献   

3.
Sister chromatid cohesiveness: vital function, obscure mechanism   总被引:6,自引:0,他引:6  
Observations of chromosome behavior have suggested that it is sister chromatid cohesiveness which is primarily responsible for maintenance of chiasmate association between pachytene and anaphase of the first meiotic division and also for maintenance of sister centromere association until anaphase II. These associations seem essential for assurance of normal distribution of chromosomes into gametes (except in organisms in which alternative means have evolved, such as the male of Drosophila melanogaster). Sister chromatid cohesiveness is also found in varying degrees at mitosis. Reports of observations that are relevant to the nature of this cohesiveness are reviewed here with particular attention to behavior under a variety of conditions which include ploidy changes, presence of mutation effects, chromosome rearrangements, and experimental treatments. Attention is focused on constraints imposed upon model building by the observations, and also on directions for future study, which seem promising.  相似文献   

4.
Kinetochores and chromatid cores of meiotic chromosomes of the grasshopper species Arcyptera fusca and Eyprepocnemis plorans were differentially silver stained to analyse the possible involvement of both structures in chromatid cohesiveness and meiotic chromosome segregation. Special attention was paid to the behaviour of these structures in the univalent sex chromosome, and in B univalents with different orientations during the first meiotic division. It was observed that while sister chromatid of univalents are associated at metaphase I, chromatid cores are individualised independently of their orientation. We think that cohesive proteins on the inner surface of sister chromatids, and not the chromatid cores, are involved in the chromatid cohesiveness that maintains associated sister chromatids of bivalents and univalents until anaphase I. At anaphase I sister chromatids of amphitelically oriented B univalents or spontaneous autosomal univalents separate but do not reach the poles because they remain connected at the centromere by a long strand which can be visualized by silver staining, that joins stretched sister kinetochores. This strand is normally observed between sister kinetochores of half-bivalents at metaphase II and early anaphase II. We suggest that certain centromere proteins that form the silver-stainable strand assure chromosome integrity until metaphase II. These cohesive centromere proteins would be released or modified during anaphase II to allow normal chromatid segregation. Failure of this process during the first meiotic division could lead to the lagging of amphitelically oriented univalents. Based on our results we propose a model of meiotic chromosome segregation. During mitosis the cohesive proteins located at the centromere and chromosome arms are released during the same cellular division. During meiosis those proteins must be sequentially inactivated, i.e. those situated on the inner surface of the chromatids must be eliminated during the first meiotic division while those located at the centromere must be released during the second meiotic division.by D.P. Bazett-Jones  相似文献   

5.
During meiosis, homologues become juxtaposed and synapsed along their entire length. Mutations in the cohesin complex disrupt not only sister chromatid cohesion but also homologue pairing and synaptonemal complex formation. In this study, we report that Pds5, a cohesin-associated protein known to regulate sister chromatid cohesion, is required for homologue pairing and synapsis in budding yeast. Pds5 colocalizes with cohesin along the length of meiotic chromosomes. In the absence of Pds5, the meiotic cohesin subunit Rec8 remains bound to chromosomes with only minor defects in sister chromatid cohesion, but sister chromatids synapse instead of homologues. Double-strand breaks (DSBs) are formed but are not repaired efficiently. In addition, meiotic chromosomes undergo hypercondensation. When the mitotic cohesin subunit Mcd1 is substituted for Rec8 in Pds5-depleted cells, chromosomes still hypercondense, but synapsis of sister chromatids is abolished. These data suggest that Pds5 modulates the Rec8 activity to facilitate chromosome morphological changes required for homologue synapsis, DSB repair, and meiotic chromosome segregation.  相似文献   

6.
Two disjunction defective meiotic mutants, ord and mei-S332, each of which disrupts meiosis in both male and female Drosophila melanogaster, were analyzed cytologically and genetically in the male germ-line. It was observed that sister-chromatids are frequently associated abnormally during prophase I and metaphase I in ord. Sister chromatid associations in mei-S332 are generally normal during prophase I and metaphase I. By telophase I, sister chromatids have frequently precociously separated in both mutants. During the first division sister chromatids disjoin from one another frequently in ord and rarely in mei-S332. It is argued that the simplest interpretation of the observations is that each mutant is defective in sister chromatid cohesiveness and that the defect in ord manifests itself earlier than does the defect in mei-S332. In addition, based on these mutant effects, several conclusions regarding normal meiotic processes are drawn. (1) The phenotype of these mutants support the proposition that the second meiotic metaphase (mitotic-type) position of chromosomes and their equational orientation is a consequence of the equilibrium, at the metaphase plate, of pulling forces acting at the kinetochores and directed towards the poles. (2) Chromosomes which lag during the second meiotic division tend to be lost. (3) Sister chromatid cohesiveness, or some function necessary for sister chromatid cohesiveness, is required for the normal reductional orientation of sister kinetochores during the first meiotic division. (4) The kinetochores of a half-bivalent are double at the time of chromosome orientation during the first meiotic division. Finally, functions which are required throughout meiosis in both sexes must be considered in the pathways of meiotic control.  相似文献   

7.
Slk19p is necessary to prevent separation of sister chromatids in meiosis I   总被引:4,自引:0,他引:4  
BACKGROUND: A fundamental difference between meiotic and mitotic chromosome segregation is that in meiosis I, sister chromatids remain joined, moving as a unit to one pole of the spindle rather than separating as they do in mitosis. It has long been known that the sustained linkage of sister chromatids through meiotic anaphase I is accomplished by association of the chromatids at the centromere region. The localization of the cohesin Rec8p to the centromeres is essential for maintenance of sister chromatid cohesion through meiosis I, but the molecular basis for the regulation of Rec8p and sister kinetochores in meiosis remains a mystery. RESULTS: We show that the SLK19 gene product from Saccharomyces cerevisiae is essential for proper chromosome segregation during meiosis I. When slk19 mutants were induced to sporulate they completed events characteristic of meiotic prophase I, but at the first meiotic division they segregated their sister chromatids to opposite poles at high frequencies. The vast majority of these cells did not perform a second meiotic division and proceeded to form dyads (asci containing two spores). Slk19p was found to localize to centromere regions of chromosomes during meiotic prophase where it remained until anaphase I. In the absence of Slk19p, Rec8p was not maintained at the centromere region through anaphase I as it is in wild-type cells. Finally, we demonstrate that Slk19p appears to function downstream of the meiosis-specific protein Spo13p in control of sister chromatid behavior during meiosis I. CONCLUSIONS: Our results suggest that Slk19p is essential at the centromere of meiotic chromosomes to prevent the premature separation of sister chromatids at meiosis I.  相似文献   

8.
Regular meiotic chromosome segregation requires sister centromeres to mono-orient (orient to the same pole) during the first meiotic division (meiosis I) when homologous chromosomes segregate, and to bi-orient (orient to opposite poles) during the second meiotic division (meiosis II) when sister chromatids segregate. Both orientation patterns require cohesion between sister centromeres, which is established during meiotic DNA replication and persists until anaphase of meiosis II. Meiotic cohesion is mediated by a conserved four-protein complex called cohesin that includes two structural maintenance of chromosomes (SMC) subunits (SMC1 and SMC3) and two non-SMC subunits. In Drosophila melanogaster, however, the meiotic cohesion apparatus has not been fully characterized and the non-SMC subunits have not been identified. We have identified a novel Drosophila gene called sisters unbound (sunn), which is required for stable sister chromatid cohesion throughout meiosis. sunn mutations disrupt centromere cohesion during prophase I and cause high frequencies of non-disjunction (NDJ) at both meiotic divisions in both sexes. SUNN co-localizes at centromeres with the cohesion proteins SMC1 and SOLO in both sexes and is necessary for the recruitment of both proteins to centromeres. Although SUNN lacks sequence homology to cohesins, bioinformatic analysis indicates that SUNN may be a structural homolog of the non-SMC cohesin subunit stromalin (SA), suggesting that SUNN may serve as a meiosis-specific cohesin subunit. In conclusion, our data show that SUNN is an essential meiosis-specific Drosophila cohesion protein.  相似文献   

9.
Spo76p is conserved and related to the fungal proteins Pds5p and BIMD and the human AS3 prostate proliferative shutoff-associated protein. Spo76p localizes to mitotic and meiotic chromosomes, except at metaphase(s) and anaphase(s). During meiotic prophase, Spo76p assembles into strong lines in correlation with axial element formation. As inferred from spo76-1 mutant phenotypes, Spo76p is required for sister chromatid cohesiveness, chromosome axis morphogenesis, and chromatin condensation during critical transitions at mitotic prometaphase and meiotic midprophase. Spo76p is also required for meiotic interhomolog recombination, likely at postinitiation stage(s). We propose that a disruptive force coordinately promotes chromosomal axial compaction and destabilization of sister connections and that Spo76p restrains and channels the effects of this force into appropriate morphogenetic mitotic and meiotic outcomes.  相似文献   

10.
The POLO kinase is a key regulator of the release of sister chromatid cohesion at the onset of mitotic anaphase, as well as of other features of the mitotic and meiotic processes. In this issue of Developmental Cell, Clarke et al. show that POLO also regulates the function of the MEI-S332 protein, which plays a critical role in the maintenance of sister chromatid cohesion at the centromere during meiosis.  相似文献   

11.
Sister chromatid cohesion ensures the faithful segregation of chromosomes in mitosis and in both meiotic divisions. Meiosis-specific components of the cohesin complex, including the recently described SMC1 isoform SMC1 beta, were suggested to be required for meiotic sister chromatid cohesion and DNA recombination. Here we show that SMC1 beta-deficient mice of both sexes are sterile. Male meiosis is blocked in pachytene; female meiosis is highly error-prone but continues until metaphase II. Prophase axial elements (AEs) are markedly shortened, chromatin extends further from the AEs, chromosome synapsis is incomplete, and sister chromatid cohesion in chromosome arms and at centromeres is lost prematurely. In addition, crossover-associated recombination foci are absent or reduced, and meiosis-specific perinuclear telomere arrangements are impaired. Thus, SMC1 beta has a key role in meiotic cohesion, the assembly of AEs, synapsis, recombination, and chromosome movements.  相似文献   

12.
Immunocytology of chiasmata and chromosomal disjunction at mouse meiosis   总被引:13,自引:0,他引:13  
Immunocytological and in situ hybridization evidence supports the hypothesis that at meiosis of chiasmate organisms, chromosomal disjunction and reductional segregation of sister centromeres are integrated with synaptonemal complex functions. The Mr 125,000 synaptic protein, Syn1, present between cores of paired homologous chromosomes during pachytene of meiotic prophase, is lost from synaptonemal complexes coordinately with homolog separation at diplotene. Separation is constrained by exchanges between non-sister chromatids, the chiasmata. We show that the Mr 30,000 chromosomal core protein, Cor1, associated with sister chromatid pairs, remains an axial component of post-pachytene chromosomes until metaphase I. We demonstrate that at this time the chromatin loops are still attached to their cores. A reciprocal exchange event between two homologous non-sister chromatids is therefore immobilized by anchorage of sister chromatids to their respective cores. Cores thus contribute to the sister chromatid cohesiveness required for maintenance of chiasmata and proper chromosomal disjunction. Cor1 protein accumulates in juxtaposition to pairs of sister centromeres during metaphase I. Presumably, independent movement of sister centromeres at anaphase I is restricted by Cor1 anchorage. That reductional separation of sister centromeres is mediated by Cor1, is supported by the dissociation of Cor1 from separating sister centromeres at anaphase II and by its absence from mitotic anaphases.  相似文献   

13.
Sister chromatid cohesion is essential to maintain stable connections between homologues and sister chromatids during meiosis and to establish correct centromere orientation patterns on the meiosis I and II spindles. However, the meiotic cohesion apparatus in Drosophila melanogaster remains largely uncharacterized. We describe a novel protein, sisters on the loose (SOLO), which is essential for meiotic cohesion in Drosophila. In solo mutants, sister centromeres separate before prometaphase I, disrupting meiosis I centromere orientation and causing nondisjunction of both homologous and sister chromatids. Centromeric foci of the cohesin protein SMC1 are absent in solo mutants at all meiotic stages. SOLO and SMC1 colocalize to meiotic centromeres from early prophase I until anaphase II in wild-type males, but both proteins disappear prematurely at anaphase I in mutants for mei-S332, which encodes the Drosophila homologue of the cohesin protector protein shugoshin. The solo mutant phenotypes and the localization patterns of SOLO and SMC1 indicate that they function together to maintain sister chromatid cohesion in Drosophila meiosis.  相似文献   

14.
M P Maguire 《Génome》1987,29(5):744-747
A supernumerary, tiny chromosome with a transposed centromere, in an apparently normal maize background, was observed through meiotic stages from pachytene through anaphase II. Departures from normal meiotic chromosome behavior were noted for this tiny chromosome. These included failure of the usual degree of condensation at pachytene, failure of synapsis, and most strikingly the ability of sister centromeres to interact with the spindle on schedule with the normal dyads at anaphase I, so that monads were commonly distributed to the poles for telophase I and then often lagged at anaphase II. Possible significance of the unusual behavior is discussed.  相似文献   

15.
The meiotic behavior of heterozygotes from three different maize pericentric inversion stocks was quantitatively observed at a variety of stages throughout meiosis I and II. With heterozygosity for either of two of these inversions, the usual mode of pairing observed at pachytene involved synapsis of the centromere containing inverted region, and synaptic failure of the centromere region was rarely found. Abnormal chromosome behavior at subsequent meiotic stages was rare in these cases. With heterozygosity for the third inversion, however, homologous synapsis was generally found in the distal regions of the chromosome involved, the inverted region was often non-homologously synapsed, and a substantial frequency of cells apparently showed synaptic failure in the centromere containing inverted region. A substantial frequency of cells at anaphase II in this case contained two lagging monads in the plate region of the spindle. Where cells could be identified as sisters, sister cells showed identical behavior at anaphase II. Findings seem to be most simply explained by the supposition that pachytene synapsis of the centromere region is important to provision for sister centromere association until anaphase II.  相似文献   

16.
HIM-3 is a meiosis-specific protein that localizes to the cores of chromosomes from the earliest stages of prophase I until the metaphase to anaphase I transition in Caenorhabditis elegans. him-3 mutations disrupt homolog alignment, synapsis, and recombination and we propose that the association of HIM-3 with chromosome axes is a critical event in meiotic chromosome morphogenesis that is required for the proper coordination of these processes. The presence of HIM-3-like proteins in other eukaryotes, some of which are known to be required for synapsis and recombination, suggests the existence of a conserved class of axis-associated proteins that function at the junction of essential meiotic processes.  相似文献   

17.
Novel meiosis-specific isoform of mammalian SMC1   总被引:1,自引:0,他引:1       下载免费PDF全文
Structural maintenance of chromosomes (SMC) proteins fulfill pivotal roles in chromosome dynamics. In yeast, the SMC1-SMC3 heterodimer is required for meiotic sister chromatid cohesion and DNA recombination. Little is known, however, about mammalian SMC proteins in meiotic cells. We have identified a novel SMC protein (SMC1beta), which-except for a unique, basic, DNA binding C-terminal motif-is highly homologous to SMC1 (which may now be called SMC1alpha) and is not present in the yeast genome. SMC1beta is specifically expressed in testes and coimmunoprecipitates with SMC3 from testis nuclear extracts, but not from a variety of somatic cells. This establishes for mammalian cells the concept of cell-type- and tissue-specific SMC protein isoforms. Analysis of testis sections and chromosome spreads of various stages of meiosis revealed localization of SMC1beta along the axial elements of synaptonemal complexes in prophase I. Most SMC1beta dissociates from the chromosome arms in late-pachytene-diplotene cells. However, SMC1beta, but not SMC1alpha, remains chromatin associated at the centromeres up to metaphase II. Thus, SMC1beta and not SMC1alpha is likely involved in maintaining cohesion between sister centromeres until anaphase II.  相似文献   

18.
BACKGROUND: The halving of chromosome number that occurs during meiosis depends on three factors. First, homologs must pair and recombine. Second, sister centromeres must attach to microtubules that emanate from the same spindle pole, which ensures that homologous maternal and paternal pairs can be pulled in opposite directions (called homolog biorientation). Third, cohesion between sister centromeres must persist after the first meiotic division to enable their biorientation at the second. RESULTS: A screen performed in fission yeast to identify meiotic chromosome missegregation mutants has identified a conserved protein called Sgo1 that is required to maintain sister chromatid cohesion after the first meiotic division. We describe here an orthologous protein in the budding yeast S. cerevisiae (Sc), which has not only meiotic but also mitotic chromosome segregation functions. Deletion of Sc SGO1 not only causes frequent homolog nondisjunction at meiosis I but also random segregation of sister centromeres at meiosis II. Meiotic cohesion fails to persist at centromeres after the first meiotic division, and sister centromeres frequently separate precociously. Sgo1 is a kinetochore-associated protein whose abundance declines at anaphase I but, nevertheless, persists on chromatin until anaphase II. CONCLUSIONS: The finding that Sgo1 is localized to the centromere at the time of the first division suggests that it may play a direct role in preventing the removal of centromeric cohesin. The similarity in sequence composition, chromosomal location, and mutant phenotypes of sgo1 mutants in two distant yeasts with that of MEI-S332 in Drosophila suggests that these proteins define an orthologous family conserved in most eukaryotic lineages.  相似文献   

19.
Here we show that segregation of homologous chromosomes and that of sister chromatids are differentially regulated in Xenopus and possibly in other higher eukaryotes. Upon hormonal stimulation, Xenopus oocytes microinjected with antibodies against the anaphase-promoting complex (APC) activator Fizzy or the APC core subunit Cdc27, or with the checkpoint protein Mad2, a destruction-box peptide or methylated ubiquitin, readily progress through the first meiotic cell cycle and arrest at second meiotic metaphase. However, they fail to segregate sister chromatids and remain arrested at second meiotic metaphase when electrically stimulated or when treated with ionophore A34187, two treatments that mimic fertilization and readily induce chromatid segregation in control oocytes. Thus, APC is required for second meiotic anaphase but not for first meiotic anaphase.  相似文献   

20.
Faithful segregation of homologous chromosomes during the first meiotic division is essential for further embryo development. The question at issue is whether the same mechanisms ensuring correct separation of sister chromatids in mitosis are at work during the first meiotic division. In mitosis, sister chromatids are linked by a cohesin complex holding them together until their disjunction at anaphase. Their disjunction is mediated by Separase, which cleaves the cohesin. The activation of Separase requires prior degradation of its associated inhibitor, called securin. Securin is a target of the APC/C (Anaphase Promoting Complex/Cyclosome), a cell cycle-regulated ubiquitin ligase that ubiquitinates securin at the metaphase-to-anaphase transition and thereby targets it for degradation by the 26S proteasome. After securin degradation, Separase cleaves the cohesins and triggers chromatid separation, a prerequisite for anaphase. In yeast and worms, the segregation of homologous chromosomes in meiosis I depends on the APC/C and Separase activity. Yet, it is unclear if Separase is required for the first meiotic division in vertebrates because APC/C activity is thought to be dispensable in frog oocytes. We therefore investigated if Separase activity is required for correct chromosome segregation in meiosis I in mouse oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号