首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myosin heavy-chain isoforms in human smooth muscle   总被引:2,自引:0,他引:2  
The myosin heavy-chain composition of human smooth muscle has been investigated by sodium dodecyl sulfate/polyacrylamide gel electrophoresis, enzyme immunoassay, and enzyme-immunoblotting procedures. A polyclonal and a monoclonal antibody specific for smooth muscle myosin heavy chains were used in this study. The two antibodies were unreactive with sarcomeric myosin heavy chains and with platelet myosin heavy chain on enzyme immunoassay and immunoblots, and stained smooth muscle cells but not non-muscle cells in cryosections and cultures processed for indirect immunofluorescence. Two myosin heavy-chain isoforms, designated MHC-1 and MHC-2 (205 kDa and 200 kDa, respectively) were reactive with both antibodies on immunoblots of pyrophosphate extracts from different smooth muscles (arteries, veins, intestinal wall, myometrium) electrophoresed in 4% polyacrylamide gels. In the pulmonary artery, a third myosin heavy-chain isoform (MHC-3, 190 kDa) electrophoretically and antigenically distinguishable from human platelet myosin heavy chain, was specifically recognized by the monoclonal antibody. Analysis of muscle samples, directly solubilized in a sodium dodecyl sulfate solution, and degradation experiments performed on pyrophosphate extracts ruled out the possibility that MHC-3 is a proteolytic artefact. Polypeptides of identical electrophoretic mobility were also present in the other smooth muscle preparations, but were unreactive with this antibody. The presence of three myosin heavy-chain isoforms in the pulmonary artery may be related to the unique physiological properties displayed by the smooth muscle of this artery.  相似文献   

2.
Two monoclonal antibodies specific for smooth muscle myosin (designated SM-E7 and SM-A9) and one monoclonal anti-(human platelet myosin) antibody (designated NM-G2) have been used to study myosin heavy chain composition of smooth muscle cells in adult and in developing rabbit aorta. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis and Western blotting experiments revealed that adult aortic muscle consisted of two myosin heavy chains (MCH) of smooth muscle type, named MHC-1 (205 kDa), and MHC-2 (200 kDa). In the fetal/neonatal stage of development, vascular smooth muscle was found to contain only MHC-1 but not MHC-2. Non-muscle myosin heavy chain, which showed the same electrophoretic mobility as the slower migrating MHC, was expressed in an inverse manner with respect to MHC-2, i.e. it was detectable only in the early stages of development. The distinct pattern of smooth and non-muscle myosin isoform expression during development may be related to the different functional properties of smooth muscle cells during vascular myogenesis.  相似文献   

3.
Smooth muscle cells use an actin-myosin II-based contractile apparatus to produce force for a variety of physiological functions, including blood pressure regulation and gut peristalsis. The organization of the smooth muscle contractile apparatus resembles that of striated skeletal and cardiac muscle, but remains much more poorly understood. We have found that avian vascular and visceral smooth muscles contain a novel, megadalton protein, smitin, that is similar to striated muscle titin in molecular morphology, localization in a contractile apparatus, and ability to interact with myosin filaments. Smitin, like titin, is a long fibrous molecule with a globular domain on one end. Specific reactivities of an anti-smitin polyclonal antibody and an anti-titin monoclonal antibody suggest that smitin and titin are distinct proteins rather than differentially spliced isoforms encoded by the same gene. Smitin immunofluorescently colocalizes with myosin in chicken gizzard smooth muscle, and interacts with two configurations of smooth muscle myosin filaments in vitro. In physiological ionic strength conditions, smitin and smooth muscle myosin coassemble into irregular aggregates containing large sidepolar myosin filaments. In low ionic strength conditions, smitin and smooth muscle myosin form highly ordered structures containing linear and polygonal end-to-end and side-by-side arrays of small bipolar myosin filaments. We have used immunogold localization and sucrose density gradient cosedimentation analyses to confirm association of smitin with both the sidepolar and bipolar smooth muscle myosin filaments. These findings suggest that the titin-like protein smitin may play a central role in organizing myosin filaments in the contractile apparatus and perhaps in other structures in smooth muscle cells.  相似文献   

4.
Direct evidence that caldesmon is the Ca2+-regulated inhibitory component of native smooth muscle thin filaments is provided by studies using caldesmon-specific antibodies as antagonists. The antibodies reverse caldesmon inhibition of actomyosin ATPase and abolish Ca2+-regulation of native aorta thin filament activation of myosin ATPase. This effect is a result of antibody binding to the caldesmon on the filament thereby inactivating it and not due to antibody-induced caldesmon dissociation from the filament. The antibodies, however, neutralise caldesmon only in systems using skeletal muscle myosin and not in those using smooth muscle myosin; this implies that smooth muscle myosin prevents appropriate antibody binding to caldesmon perhaps because smooth muscle myosin binds to caldesmon thus preventing access of antibody to antigenic sites.  相似文献   

5.
Immunohistochemical localization of smooth muscle myosin, an immunologically distinct contractile protein, was achieved using rabbit anti-human uterine smooth muscle myosin antibodies. In immunodiffusion studies and in cryostat sections, these antibodies were highly specific and reacted with smooth muscle myosin but not with platelet, skeletal muscle, or cardiac muscle myosin. To evaluate comprehensively the structural profile of smooth muscle elements in normal human tissues, an indirect immunoperoxidase technique (peroxidase-antiperoxidase) was applied to a wide variety of specimens. Parallel studies comparing cryostat sections with fixed (10% formalin, B5, Bouin's, or Zenker's solution) paraffin-embedded tissues revealed optimal immunoreactivity, sensitivity, and specificity of staining for smooth muscle myosin using frozen tissues. Strong immunoreactivity was present in muscular tissues such as blood vessels and the muscularis of gastrointestinal and genitourinary tracts. Distinct delineation of smooth muscle elements, including individual smooth muscle cells, and their specific patterns of alignment and organization, were observed, e.g., cells comprising the muscularis mucosae and extending into the lamina propria of the gastrointestinal tract, and myoepithelial cells of skin, exocrine glands, and breast. This method provides excellent morphologic preservation and readily permits unambiguous identification of individual cells containing smooth muscle myosin.  相似文献   

6.
Summary Smooth muscle cells dispersed by low concentration of trypsin (0.125%) and grown in tissue culture will not bind antibodies against smooth muscle myosin added to the culture medium. These cells will attach, flatten and contract normally. When the trypsin concentration is raised to 0.25%, many of the attached cells will not flatten. Such round cells show uptake of the myosin antibody at the periphery and in the cytoplasm, using the indirect immunofluorescent technique. At a trypsin concentration of 1%, viable cells are no longer observed and all cells show uptake of myosin antibody. It is concluded from these experiments that above a crucial trypsin concentration, the membrane becomes altered sufficiently to permit the penetration of antibodies into the cell interior.  相似文献   

7.
We have produced and characterized monoclonal antibodies that label antigenic determinants distributed among three distinct, nonoverlapping peptide domains of the 200-kD heavy chain of avian smooth muscle myosin. Mice were immunized with a partially phosphorylated chymotryptic digest of adult turkey gizzard myosin. Hybridoma antibody specificities were determined by solid-phase indirect radioimmunoassay and immunoreplica techniques. Electron microscopy of rotary-shadowed samples was used to directly visualize the topography of individual [antibody.antigen] complexes. Antibody TGM-1 bound to a 50-kD peptide of subfragment-1 (S-1) previously found to be associated with actin binding and was localized by immunoelectron microscopy to the distal aspect of the myosin head. However, there was no antibody-dependent inhibition of the actin-activated heavy meromyosin ATPase, nor was antibody TGM-1 binding to actin-S-1 complexes inhibited. Antibody TGM-2 detected an epitope of the subfragment-2 (S-2) domain of heavy meromyosin but not the S-2 domain of intact myosin or rod, consistent with recognition of a site exposed by chymotryptic cleavage of the S-2:light meromyosin junction. Localization of TGM-2 to the carboxy-terminus of S-2 was substantiated by immunoelectron microscopy. Antibody TGM-3 recognized an epitope found in the light meromyosin portion of myosin. All three antibodies were specific for avian smooth muscle myosin. Of particular interest is that antibody TGM-1, unlike TGM-3, bound poorly to homogenates of 19-d embryonic smooth muscles. This indicates the expression of different myosin heavy chain epitopes during smooth muscle development.  相似文献   

8.
A new indirect method for fluorescence localization of proteins making use of the avidin-biotin complex is described. We have prepared both a biotin-modified rabbit heavy meromyosin (BHMM) and a biotin-modified antibody to a smooth muscle myosin. After fixation, cells can be treated with either BHMM, which binds to actin, or the biotinyl antibody, which binds to myosin. In a second step the cell are treated with a fluorescent derivative of avidin (Fl-avidin) which binds to the biotinyl proteins and thus indirectly reveals the location of the cellular action or myosin.  相似文献   

9.
Myosin II self-assembles to form thick filaments that are attributed to its long coiled-coil tail domain. The present study has determined a region critical for filament formation of vertebrate smooth muscle and nonmuscle myosin II. A monoclonal antibody recognizing the 28 residues from the C-terminal end of the coiled-coil domain of smooth muscle myosin II completely inhibited filament formation, whereas other antibodies recognizing other parts of the coiled-coil did not. To determine the importance of this region in the filament assembly in vivo, green fluorescent protein (GFP)-tagged smooth muscle myosin was expressed in COS-7 cells, and the filamentous localization of the GFP signal was monitored by fluorescence microscopy. Wild type GFP-tagged smooth muscle myosin colocalized with F-actin during interphase and was also recruited into the contractile ring during cytokinesis. Myosin with the nonhelical tail piece deleted showed similar behavior, whereas deletion of the 28 residues at the C-terminal end of the coiled-coil domain abolished this localization. Deletion of the corresponding region of GFP-tagged nonmuscle myosin IIA also abolished this localization. We conclude that the C-terminal end of the coiled-coil domain, but not the nonhelical tail piece, of myosin II is critical for myosin filament formation both in vitro and in vivo.  相似文献   

10.
Antibodies against actin and myosin from smooth muscle, which may react with contractile elements from both muscular and muscle-like cells, were applied to fresh frozen sections of adult guinea-pig testis. Sections stained with an antibody against pectoralis (striated) muscle myosin or with non-immune globulin were used for controls. Peritubular cells of the lamina propria surrounding seminiferous tubulus contained large amounts of actin and myosin as judged by the intensity of immunofluorescence. Sertoli cells did not stain with the antibodies. Our results support the concept of peritubular cells being the critical force for the contractility of seminiferous tubules.  相似文献   

11.
为了阐明非磷酸化肌球蛋白在平滑肌细胞迁移中的作用,研究探讨了非磷酸化肌球蛋白是否介导了血小板衍生生长因子(PDGF)诱导豚鼠脑基底动脉平滑肌细胞(GbaSM-4)的迁移。研究结果显示,20ng/ml以下剂量的PDGF可诱导GbaSM-4细胞发生迁移,此时肌球蛋白轻链(MLC20)磷酸化水平无变化。该迁移作用可被肌球蛋白特异性抑制剂blebbistatin所拮抗。应用RNA干扰技术抑制肌球蛋白轻链激酶表达,经免疫印迹检测经果显示,MLC20的磷酸化水平发生了显著下降;但对PDGF诱导的迁移作用无影响;在RNA干扰后blebbistatin也可抑制其迁移作用。体外ATP酶活性测定结果显示,blebbistatin对从平滑肌中提取的非磷酸化肌球蛋白的ATP酶活性有明显的抑制作用,其主要作用位点位于肌球蛋白头的头部S1。上述结果提示,非磷酸化的肌球蛋白参与了PDGF诱导的平滑肌细胞迁移。  相似文献   

12.
Summary Antibodies against actin and myosin from smooth muscle, which may react with contractile elements from both muscular and muscle-like cells, were applied to fresh frozen sections of adult guinea-pig testis. Sections stained with an antibody against pectoralis (striated) muscle myosin or with non-immune globulin were used for controls. Peritubular cells of the lamina propria surrounding seminiferous tubulus contained large amounts of actin and myosin as judged by the intensity of immunofluorescence. Sertoli cells did not stain with the antibodies. Our results support the concept of peritubular cells being the critical force for the contractility of seminiferous tubules.  相似文献   

13.
14.
Myosin heavy chains (MHCs) from rat aorta smooth muscle cells were analyzed prior to and after these cells were placed into cell culture using sodium dodecyl sulfate-5% polyacrylamide gels, immunoblots, and two-dimensional peptide maps of tryptic digests. Rat aorta smooth muscle cells prior to culture were found to contain two MHCs (mass = 204 and 200 kDa) which cross-reacted with antibodies raised to smooth muscle myosin, but not with antibodies raised to platelet myosin. Tryptic peptide maps of these two MHCs showed no major differences when compared to each other and to maps of vas deferens and uterus smooth muscle MHCs. When rat aorta smooth muscle cells were placed into culture, the MHCs isolated from the cell extracts differed, depending on whether the cells were rapidly growing or postconfluent. Extracts from log-phase cultures contained predominantly MHCs that migrated more rapidly than smooth muscle myosin in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (mass = 196 kDa) and cross-reacted with antibodies raised to platelet myosin, but not to smooth muscle myosin. Tryptic peptide maps of this MHC were very similar to those obtained with MHCs from non-muscle sources such as platelets and fibroblasts. In contrast, extracts from postconfluent rat aorta cell cultures contained three MHCs (mass = 204, 200, and 196 kDa). Using immunoblots and peptide maps, the fastest migrating MHC was found to be identical to the 196-kDa non-muscle MHC, while the two slower migrating MHCs had the same properties as aorta smooth muscle MHCs prior to culture. These results suggest that smooth muscle cells grown in primary culture contain predominantly (greater than 80%) non-muscle myosin while actively growing, but at a postconfluent stage, contain more equivalent amounts of smooth muscle and non-muscle myosins.  相似文献   

15.
Myosin light chain kinase purified from chicken white skeletal muscle (Mr = 150,000) was significantly larger than both rabbit skeletal (Mr = 87,000) and chicken gizzard smooth (Mr = 130,000) muscle myosin light chain kinases, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Km and Vmax values with rabbit or chicken skeletal, bovine cardiac, and chicken gizzard smooth muscle myosin P-light chains were very similar for the chicken and rabbit skeletal muscle myosin light chain kinases. In contrast, comparable Km and Vmax data for the chicken gizzard smooth muscle myosin light chain kinase showed that this enzyme was catalytically very different from the two skeletal muscle kinases. Affinity-purified antibodies to rabbit skeletal muscle myosin light chain kinase cross-reacted with chicken skeletal muscle myosin light chain kinase, but the titer of cross-reacting antibodies was approximately 20-fold less than the anti-rabbit skeletal muscle myosin light chain kinase titer. There was no detectable antibody cross-reactivity against chicken gizzard myosin light chain kinase. Proteolytic digestion followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis or high performance liquid chromatography showed that these enzymes are structurally very different with few, if any, overlapping peptides. These data suggest that, although chicken skeletal muscle myosin light chain kinase is catalytically very similar to rabbit skeletal muscle myosin light chain kinase, the two enzymes have different primary sequences. The two skeletal muscle myosin light chain kinases appear to be more similar to each other than either is to chicken gizzard smooth muscle myosin light chain kinase.  相似文献   

16.
Summary Phosphorylation of a light chain subunit of myosin by Ca2+ and calmodulin-dependent myosin light chain kinase is believed to be essential for smooth muscle contraction. The biochemical properties of the myosin phosphorylation system in human myometrial smooth muscle cells in monolayer culture were compared with those of human myometrial tissue and nonmuscle cells in culture. Native myosin was isolated from other cellular proteins of crude homogenates by polyacrylamide gel electrophoresis (in the presence of pyrophosphate) and quantified by densitometry. The myosin content of myometrial smooth muscle cells in culture and that of myometrial tissue were similar and four- to five-fold greater than that of human endometrial stromal cells or skin fibroblasts in culture. The specific activities of myosin light chain kinase in homogenates of myometrial smooth muscle cells that were maintained in culture and in myometrial tissue were similar (2.05±0.18 and 1.60±0.37 nmol phosphate incorporated per min per mg protein, respectively). On the other hand, enzyme activity in skin fibroblasts was only 5% of that in myometrial smooth muscle cells. Myosin light chain kinase activity in myometrial smooth muscle cells was dependent upon Ca2+ and was inhibited reversibly by the calmodulin antagonist, calmidazolium. The intracellular Ca2+ concentration measured by quin2 fluorescence was 0.12 μM in resting cells and increased in a concentration-dependent manner with KC1 to a maximal value of 0.47 μM. These results indicate that biochemical processes important for smooth muscle contraction are retained in human myometrial smooth muscle cells in culture. This research was supported by grants HL26043, HD11149, and GM07062 from the National Institutes of Health, Bethesda, MD.  相似文献   

17.
We examined the relationship between growth arrest of smooth muscle cells and structural changes in microfilament bundles, and also that between the structural changes and the actions of contractile agonist using a multipassagable variant cell line (SM-3) derived from rabbit aortic smooth muscle cells. The content of smooth muscle type alpha-actin increased with density-dependent growth arrest of the SM-3 cells, but was attenuated in the logarithmically growing cultures. As assessed cytochemically, the growth-arrested cells contained longitudinally oriented bundles of actin-containing microfilament and myosin-based filaments visualized with rhodamine-phalloidin and antibody against myosin light chain 20, respectively, whereas both actin- and myosin-containing structures in logarithmically growing cells showed slight, shortened, or diffused patterns. Electron microscopic examination of the growth-arrested cells revealed that the cells contained numerous and conspicuous microfilament bundles associated with many compact electron-dense bodies. In addition, pinocytotic vesicles were often found near the plasma membrane in the growth-arrested cells. SM-3 cells in the growth-arrested phase responded to prostaglandin F2 alpha (3-30 microM) and rat endothelin (0.1-1.0 microM) with a reversible contractile response, in association with monophosphorylation and/or diphosphorylation of the myosin light chain 20. However, the influence of the contractile agonists was greatly reduced during logarithmic growth. These results suggest that in the SM-3 cells in the growth-arrested phase, there is a restoration of the contractile architecture and the myosin light chain phosphorylation system. Thus, this SM-3 cell line is expected to serve as a useful model for examining biochemical and physiological phenomena of smooth muscle.  相似文献   

18.
Agonist-induced translocation of RhoA and the spatio-temporal change in myosin regulatory light chain (MLC20) phosphorylation in smooth muscle was clarified at the single cell level. We expressed green fluorescent protein-tagged RhoA in the differentiated tracheal smooth muscle cells and visualized the translocation of RhoA in a living cell with three-dimensional digital imaging analysis. The stimulation of the cells by carbachol initiated the translocation of green fluorescent protein-tagged wild type RhoA to the plasma membrane within a minute. The change in MLC20 phosphorylation level after carbachol stimulation was monitored by using phospho-Ser-19-specific antibody recognizing the phosphorylated MLC20 in single cells. Cells expressing the dominant negative form (T19N) of RhoA significantly suppressed sustained MLC20 phosphorylation during the prolonged phase (>300 s), whereas the maximum phosphorylation level (reached at 10 s after stimulation) of these cells was not significantly different from the control cells. The kinetics of RhoA translocation was consistent with that of sustained myosin phosphorylation, suggesting the involvement of a RhoA pathway. Carbachol stimulation increased myosin phosphorylation within a minute both at the cortical and the central region. On the other hand, during prolonged phase, myosin phosphorylation was sustained at the cortical region of the cells but not at the central fibers. A myosin light chain kinase-specific inhibitor, ML-9, diminished myosin phosphorylation at the central region of the cells after the stimulation but not at the cortical area. On the other hand, Y-27632, a Rho kinase-specific inhibitor, diminished myosin phosphorylation at the cortical region but not the central region. The results clearly show that the myosin light chain kinase pathway and the Rho pathway distinctly change myosin phosphorylation in smooth muscle cells in both a temporal and spatial manner.  相似文献   

19.
R M Bagby  F A Pepe 《Histochemistry》1978,58(3):219-235
Highly purified chicken gizzard myosin was used to induce antibody production in rabbits. The IgG fraction was separated from the antisera and coupled to fluorescein isothiocyanate (FITC). Specific antibody (AGM) was isolated from the IgG fraction by affinity purification. Comparisons of the specificity of IgG and AGM for chicken smooth muscle myosin revealed a much greater specificity by AGM. Staining with IgG led to an apparent cross-reactivity with guinea pig smooth muscles which was not seen with AGM staining. Therefore, staining of cells for localization of myosin was performed with AGM. Isolated cells were obtained from chicken gizzards either by collagenase digestion or by agitation of glycerinated pieces. Stained cells and cell fragments revealed the presence of myofibrils as structural units with diameters of about 1.0 micrometer. Stained myofibrils occasionally displayed regular banding patterns with a repeating period of about 1.5 +/- 0.2 micrometer. The presence of banded myofibrils in non-cultured cells shows that the organization of the contractile material is similar to that previously reported for cultured cells by Gr?schel-Stewart.  相似文献   

20.
An antibody prepared against smooth muscle myosin interferes with active Ca2+ accumulation of fibroblasts. This provides further evidence for the existence of myosin at the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号