首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Coat and scaffolding subunits derived from P22 procapsids have been purified in forms that co-assemble rapidly and efficiently into icosahedral shells in vitro under native conditions. The half-time for this reaction is approximately five minutes at 21 degrees C. The in vitro reaction exhibits the regulated features observed in vivo. Neither coat nor scaffolding subunits alone self-assemble into large structures. Upon mixing the subunits together they polymerize into procapsid-like shells with the in vivo coat and scaffolding protein composition. The subunits in the purified coat protein preparations are monomeric. The scaffolding subunits appear to be monomeric or dimeric. These results confirm that P22 procapsid formation does not proceed through the assembly of a core of scaffolding, which then organizes the coat, but requires copolymerization of coat and scaffolding. To explore the mechanisms of the control of polymerization, shell assembly was examined as a function of the input ratio of scaffolding to coat subunits. The results indicated that scaffolding protein was required for both initiation of shell assembly and continued polymerization. Though procapsids produced in vivo contain about 300 molecules of scaffolding, shells with fewer subunits could be assembled down to a lower limit of about 140 scaffolding subunits per shell. The overall results of these experiments indicate that coat and scaffolding subunits must interact in both the initiation and the growth phases of shell assembly. However, it remains unclear whether during growth the coat and scaffolding subunits form a mixed oligomer prior to adding to the shell or whether this occurs at the growing edge.  相似文献   

2.
P E Prevelige  Jr  J King    J L Silva 《Biophysical journal》1994,66(5):1631-1641
The pressure stability of bacteriophage P22 coat protein in both monomeric and polymeric forms under hydrostatic pressure was examined using light scattering, fluorescence emission, polarization, and lifetime methodology. The monomeric protein is very unstable toward pressure and undergoes significant structural changes at pressures as low as 0.5 kbar. These structural changes ultimately lead to denaturation of the subunit. Comparison of the protein denatured by pressure to that in guanidine hydrochloride suggests that pressure results in partial unfolding, perhaps by a domain mechanism. Fluorescence lifetime measurements indicate that at atmospheric pressure the local environments of the tryptophans are remarkably similar, suggesting they may be clustered. In contrast to the monomeric protein subunit, the protein when polymerized into procapsid shells is very stable to applied pressure and does not dissociate with pressure up to 2.5 kbar. However, under applied pressure the procapsid shells are cold-labile, suggesting they are entropically stabilized. The significance of these results in terms of virus assembly are discussed.  相似文献   

3.
In the morphogenesis of double stranded DNA phages, a precursor protein shell empty of DNA is first assembled and then filled with DNA. The assembly of the correctly dimensioned precursor shell (procapsid) of Salmonella bacteriophage P22 requires the interaction of some 420 coat protein subunits with approximately 200 scaffolding protein subunits to form a double shelled particle with the scaffolding protein on the inside. In the course of DNA packaging, all of the scaffolding protein subunits exit from the procapsid and participate in further rounds of procapsid assembly (King and Casjens. 1974. Nature (Lond.). 251:112-119). To study the mechanism of shell assembly we have purified the coat and scaffolding protein subunits by selective dissociation of isolated procapsids. Both proteins can be obtained as soluble subunits in Tris buffer at near neutral pH. The coat protein sedimented in sucrose gradients as a roughly spherical monomer, while the scaffolding protein sedimented as if it were an elongated monomer. When the two proteins were mixed together in 1.5 M guanidine hydrochloride and dialyzed back to buffer at room temperature, procapsids formed which were very similar in morphology, sedimentation behavior, and protein composition to procapsids formed in vivo. Incubation of either protein alone under the same conditions did not yield any large structures. We interpret these results to mean that the assembly of the shell involves a switching of both proteins from their nonaggregating to their aggregating forms through their mutual interaction. The results are discussed in terms of the general problem of self-regulated assembly and the control of protein polymerization in morphogenesis.  相似文献   

4.
The coat and scaffolding proteins of bacteriophage P22 procapsids have been purified in soluble form. By incubating both purified proteins with a mutant-infected cell extract lacking procapsids, but competent for DNA packaging in vitro (Poteete et al., 1979), we were able to obtain assembly of biologically active procapsids in vitro. The active species for complementation in vitro in both protein preparations copurified with the soluble subunits, indicating that these subunits represent precursors in procapsid polymerization.When the purified coat and scaffolding subunits were mixed directly, they polymerized into double-shelled procapsid-like structures during dialysis from 1.5 m-guanidine hydrochloride to buffer. When dialyzed separately under the same conditions, the scaffolding subunits did not polymerize but remained as soluble subunits, as did most of the coat subunits. No evidence was found for self-assembly of the scaffolding protein in the absence of the coat protein.The unassembled coat subunits sedimented at 3.9 S and the unassembled scaffolding subunits sedimented at 2.4 S in sucrose gradients. The Stokes' radius, determined by gel filtration, was 25 Å for the coat subunits and 34 Å for the scaffolding subunits. These results indicate that the scaffolding subunits are relatively slender elongated molecules, whereas the coat subunits are more globular.The experiments suggest that the procapsid is built by copolymerization of the two protein species. Their interaction on the growing surface of the shell structure, and not in solution, appears to regulate successive binding interactions.  相似文献   

5.
Assembly of bacteriophage P22 procapsids requires the participation of approximately 300 molecules of scaffolding protein in addition to the 420 coat protein subunits. In the absence of the scaffolding, the P22 coat protein can assemble both wild-type-size and smaller size closed capsids. Both sizes of procapsid assembled in the absence of the scaffolding protein have been studied by electron cryomicroscopy. These structural studies show that the larger capsids have T = 7 icosahedral lattices and appear the same as wild-type procapsids. The smaller capsids possess T = 4 icosahedral symmetry. The two procapsids consist of very similar penton and hexon clusters, except for an increased curvature present in the T = 4 hexon. In particular, the pronounced skewing of the hexons is conserved in both sizes of capsid. The T = 7 procapsid has a local non-icosahedral twofold axis in the center of the hexon and thus contains four unique quasi-equivalent coat protein conformations that are the same as those in the T = 4 procapsid. Models of how the scaffolding protein may direct these four coat subunit types into a T = 7 rather than a T = 4 procapsid are presented.  相似文献   

6.
Chlamydiaphage Chp2 is a member of the family Microviridae, of which bacteriophage phiX174 is the type species. Although grouped in the same family, the relationship between the Microviridae coliphages and the Chp2-like viruses, which infect obligate intracellular parasitic bacteria, is quite distant, with major differences in structural protein content and scaffolding protein dependence. To investigate the morphogenesis of Chp2, large particles were isolated from infected Chlamydophila abortus by equilibrium and rate zonal sedimentation. A monoclonal antibody that recognizes only assembled viral coat proteins was used in these detection assays. Thus, the detected particles represent virions and/or postcapsid formation assembly intermediates. Two distinct particle types were detected, differing in both protein and DNA content. Filled particles lacked VP3, the putative internal scaffolding protein, whereas empty particles contained this protein. These results indicate that VP3 is a scaffolding protein and that the isolated VP3-containing particles most likely represent Chp2 procapsids.  相似文献   

7.
A wide variety of viruses require the transient presence of scaffolding proteins to direct capsid assembly. In the case of bacteriophage P22, a model in which the scaffolding protein selectively stabilizes on-pathway growing intermediates has been proposed. The stoichiometry and thermodynamics of binding of the bacteriophage P22 scaffolding protein within the procapsid were analyzed by light scattering and isothermal titration calorimetry. Calorimetric experiments carried out between 10 and 37 degrees C were consistent with the presence of at least two distinct populations of binding sites, in agreement with kinetic evidence obtained by a light scattering assay. Binding to the high-affinity sites occurred at 20 degrees C with a stoichiometry of approximately 60 scaffolding molecules per procapsid and an apparent K(d) of approximately 100-300 nM and was almost completely enthalpy-driven. For the second binding population, precise fitting of the data was impossible due to small heats of binding, but the thermodynamics of binding were clearly distinct from the high-affinity phase. The heat capacity change (DeltaC(p)()) of binding was large for the high-affinity sites and negative for both sets of sites. Addition of sodium chloride (1 M) greatly reduced the magnitude of the apparent DeltaH, in agreement with previous evidence that electrostatic interactions play a major role in binding. A mutant scaffolding protein that forms covalent dimers (R74C/L177I) bound only to the high-affinity sites. These data comprise the first quantitative measurements of the energetics of the coat protein/scaffolding protein interaction.  相似文献   

8.
Previous studies have shown that the assembly of the precursor shell (prohead) of bacteriophage P22 requires the copolymerization of the gene 5 coat protein with the gene 8 scaffolding protein. Removal of the scaffolding protein by mutation prevents efficient coat protein assembly, but some aberrant particles do form. We have now isolated these structures and characterized them with respect to morphology, protein composition, and small-angle X-ray scattering properties.The aberrant particles fall into three morphological classes, i.e. complex spirals and closed shells of two sizes. Small-angle X-ray scattering studies confirm that the larger particles are hollow shells with the radius of proheads (r = 260 A?), and not of the mature virus (r = 285 A?). These structures lack the inner shell of scaffolding protein found in proheads. The small particles have a radius of 195 Å, smaller than proheads, and appear to contain material, not scaffolding protein, within the outer shell.The aberrant particles contain two minor protein species, the gene 9 tail-spike protein, and an unidentified 67,000 molecular weight polypeptide, probably from the host. Neither is found in normal proheads. Removal of gene.9 product by mutation did not affect the formation of the aggregates. Fractionation of the morphological classes of particles revealed that the 67,000 molecular weight band was associated with the closed shells. It may be serving as a pseudo-initiator.Earlier studies had shown that treatment of proheads with sodium dodecyl sulfate in vitro resulted in loss of the scaffolding protein, and expansion of the shell to the mature radius of 285 Å. When the 8? prohead-sized shells were treated similarly, they also expanded to the mature-sized shell. These results support the idea that there are at least two stable states of the coat protein, one of which, the prohead form, is an obligatory precursor of the mature form.  相似文献   

9.
An in vitro system is described for the assembly of herpes simplex virus type 1 (HSV-1) procapsids beginning with three purified components, the major capsid protein (VP5), the triplexes (VP19C plus VP23), and a hybrid scaffolding protein. Each component was purified from insect cells expressing the relevant protein(s) from an appropriate recombinant baculovirus vector. Procapsids formed when the three purified components were mixed and incubated for 1 h at 37 degrees C. Procapsids assembled in this way were found to be similar in morphology and in protein composition to procapsids formed in vitro from cell extracts containing HSV-1 proteins. When scaffolding and triplex proteins were present in excess in the purified system, greater than 80% of the major capsid protein was incorporated into procapsids. Sucrose density gradient ultracentrifugation studies were carried out to examine the oligomeric state of the purified assembly components. These analyses showed that (i) VP5 migrated as a monomer at all of the protein concentrations tested (0.1 to 1 mg/ml), (ii) VP19C and VP23 migrated together as a complex with the same heterotrimeric composition (VP19C1-VP232) as virus triplexes, and (iii) the scaffolding protein migrated as a heterogeneous mixture of oligomers (in the range of monomers to approximately 30-mers) whose composition was strongly influenced by protein concentration. Similar sucrose gradient analyses performed with mixtures of VP5 and the scaffolding protein demonstrated the presence of complexes of the two having molecular weights in the range of 200,000 to 600,000. The complexes were interpreted to contain one or two VP5 molecules and up to six scaffolding protein molecules. The results suggest that procapsid assembly may proceed by addition of the latter complexes to regions of growing procapsid shell. They indicate further that procapsids can be formed in vitro from virus-encoded proteins only without any requirement for cell proteins.  相似文献   

10.
The herpes simplex virus 1 capsid is formed in the infected cell nucleus by way of a spherical, less robust intermediate called the procapsid. Procapsid assembly requires the capsid shell proteins (VP5, VP19C, and VP23) plus the scaffolding protein, pre-VP22a, a major component of the procapsid that is not present in the mature virion. Pre-VP22a is lost as DNA is packaged and the procapsid is transformed into the mature, icosahedral capsid. We have employed a cell-free assembly system to examine the role of the scaffolding protein in procapsid formation. While other reaction components (VP5, VP19C, and VP23) were held constant, the pre-VP22a concentration was varied, and the resulting procapsids were analyzed by electron microscopy and SDS-polyacrylamide gel electrophoresis. The results demonstrated that while standard-sized (T = 16) procapsids with a measured diameter of approximately 100 nm were formed above a threshold pre-VP22a concentration, at lower concentrations procapsids were smaller. The measured diameter was approximately 78 nm and the predicted triangulation number was 9. No procapsids larger than the standard size or smaller than 78-nm procapsids were observed in appreciable numbers at any pre-VP22a concentration tested. SDS-polyacrylamide gel analyses indicated that small procapsids contained a reduced amount of scaffolding protein compared to the standard 100-nm form. The observations indicate that the scaffolding protein concentration affects the structure of nascent procapsids with a minimum amount required for assembly of procapsids with the standard radius of curvature and scaffolding protein content.  相似文献   

11.
Both the circular dichroism and fluorescence spectra of the dissociated coat protein subunits from potato virus X changed substantially over the pH range 8 to 4, irreversible changes resulted below pH 4, with tyrosyl and tryptophanyl residues affected most. The titration curves show a pKa of about 5.6 and do not require cooperative interactions between the coat protein subunits, thus they are in marked contrast to titrations of tobacco mosaic virus A-protein. The spectra of the intact virus were little changed between pH 8 and 4 and suggested that the coat protein was locked into a conformation similar to that of the subunits in solution at pH 7. It is proposed that the pH induced conformational change is responsible for determining the acidic branch of the pH profile for reconstitution of potato virus X from its dissociated coat protein subunits and RNA.  相似文献   

12.
The polymerization kinetics of sickle cell hemoglobin are found to exhibit stochastic variations when observed in very small volumes (approximately 10(-10) cm3). The distribution of progress curves has been measured at several temperatures for a 4.50 mM-hemoglobin S sample using a laser-photolysis, light-scattering technique. The progress curves at a given temperature are superimposable when translated along the time axis, showing that the variability of the kinetic progress curves results primarily from fluctuations in the time at which polymerization is initiated. The shapes of the initial part of the progress curves are well-fitted using the functional form I(t) = Io + As exp (Bt), derived from a dual nucleation model. When the distribution of the measured tenth times is broad, the rate of homogeneous nucleation can be obtained by fitting the exponential tail of the distribution. As the distribution sharpen, the rate of homogeneous nucleation can be estimated by modelling the width of the distribution function using a simple Monte-Carlo simulation of the polymerization kinetics. Using the rates of homogeneous nucleation obtained from the distributions, the rates of heterogeneous nucleation and polymer growth can be obtained from the experimental parameters As and B. The resulting nucleation rates are roughly 1000 times greater than those obtained from an analysis of bulk kinetic data. The results provide strong support for the dual-nucleation mechanism and show that the distribution of progress curves provides a powerful independent method for measuring the rate of homogeneous nucleation and thereby obtaining values for the other principal rates of the mechanism.  相似文献   

13.
VP23 is a key component of the triplex structure. The triplex, which is unique to herpesviruses, is a complex of three proteins, two molecules of VP23 which interact with a single molecule of VP19C. This structure is important for shell accretion and stability of the protein coat. Previous studies utilized a random transposition mutagenesis approach to identify functional domains of the triplex proteins. In this study, we expand on those findings to determine the key amino acids of VP23 that are required for triplex formation. Using alanine-scanning mutagenesis, we have made mutations in 79 of 318 residues of the VP23 polypeptide. These mutations were screened for function both in the yeast two-hybrid assay for interaction with VP19C and in a genetic complementation assay for the ability to support the replication of a VP23 null mutant virus. These assays identified a number of amino acids that, when altered, abolish VP23 function. Abrogation of virus assembly by a single-amino-acid change bodes well for future development of small-molecule inhibitors of this process. In addition, a number of mutations which localized to a C-terminal region of VP23 (amino acids 205 to 241) were still able to interact with VP19C but were lethal for virus replication when introduced into the herpes simplex virus 1 (HSV-1) KOS genome. The phenotype of many of these mutant viruses was the accumulation of large open capsid shells. This is the first demonstration of capsid shell accumulation in the presence of a lethal VP23 mutation. These data thus identify a new domain of VP23 that is required for or regulates capsid shell closure during virus assembly.  相似文献   

14.
Scaffolding proteins are required for high fidelity assembly of most high T number dsDNA viruses such as the large bacteriophages, and the herpesvirus family. They function by transiently binding and positioning the coat protein subunits during capsid assembly. In both bacteriophage P22 and the herpesviruses the extreme scaffold C terminus is highly charged, is predicted to be an amphipathic alpha-helix, and is sufficient to bind the coat protein, suggesting a common mode of action. NMR studies show that the coat protein-binding domain of P22 scaffolding protein exhibits a helix-loop-helix motif stabilized by a hydrophobic core. One face of the motif is characterized by a high density of positive charges that could interact with the coat protein through electrostatic interactions. Results from previous studies with a truncation fragment and the observed salt sensitivity of the assembly process are explained by the NMR structure.  相似文献   

15.
16.
A cell plated on a two-dimensional substrate forms adhesions with that surface. These adhesions, which consist of aggregates of various proteins, are thought to be important in mechanosensation, the process by which the cell senses and responds to the mechanical properties of the substrate (e.g., stiffness). On the basis of experimental measurements, we model these proteins as idealized molecules that can bind to the substrate in a strain-dependent manner and can undergo a force-dependent state transition. The model forms molecular aggregates that are similar to adhesions. Substrate stiffness affects whether a simulated adhesion is initially formed and how long it grows, but not how that adhesion grows or shrinks. Our own experimental tests support these predictions, suggesting that the mechanosensitivity of adhesions is an emergent property of a simple molecular-mechanical system.  相似文献   

17.
Uchiyama A  Fane BA 《Journal of virology》2005,79(11):6751-6756
The phiX174 external scaffolding protein D mediates the assembly of coat protein pentamers into procapsids. There are four external scaffolding subunits per coat protein. Organized as pairs of asymmetric dimers, the arrangement is unrelated to quasi-equivalence. The external scaffolding protein contains seven alpha-helices. The protein's core, alpha-helices 2 to 6, mediates the vast majority of intra- and interdimer contacts and is strongly conserved in all Microviridae (canonical members are phiX174, G4, and alpha3) external scaffolding proteins. On the other hand, the primary sequences of the first alpha-helices have diverged. The results of previous studies with alpha3/phiX174 chimeric external scaffolding proteins suggest that alpha-helix 1 may act as a substrate specificity domain, mediating the initial coat scaffolding protein recognition in a species-specific manner. However, the low sequence conservation between the two phages impeded genetic analyses. In an effort to elucidate a more mechanistic model, chimeric external scaffolding proteins were constructed between the more closely related phages G4 and phiX174. The results of biochemical analyses indicate that the chimeric external scaffolding protein inhibits two morphogenetic steps: the initiation of procapsid formation and DNA packaging. phiX174 mutants that can efficiently utilize the chimeric protein were isolated and characterized. The substitutions appear to suppress both morphogenetic defects and are located in threefold-related coat protein sequences that most likely form the pores in the viral procapsid. These results identify coat-external scaffolding domains needed to initiate procapsid formation and provide more evidence, albeit indirect, that the pores are the site of DNA entry during the packaging reaction.  相似文献   

18.
19.
Fetal growth was studied in 78 newborns who had serial scans in pregnancy. Weight at birth correlated with growth in the first 2 trimesters but better with the growth between 28 and 32 weeks. The correlations for weight at growth cessation were better than those for weight at birth. Crown-heel length at cessation did not correlate with fetal growth in the first 2 trimesters. Maternal weight increase correlated with fetal weight and crown-heel length but not with head circumference at cessation. Maternal prepregnancy weight correlated with fetal growth between 28 and 32 weeks, but not with fetal growth in the second trimester. A negative correlation was found between estimated duration of growth cessation and relative head circumference at birth.  相似文献   

20.
Nucleation and growth of cadherin adhesions   总被引:3,自引:0,他引:3  
Cell-cell contact formation relies on the recruitment of cadherin molecules and their anchoring to actin. However, the precise chronology of events from initial cadherin trans-interactions to adhesion strengthening is unclear, in part due to the lack of access to the distribution of cadherins within adhesion zones. Using N-cadherin expressing cells interacting with N-cadherin coated surfaces, we characterized the formation of cadherin adhesions at the ventral cell surface. TIRF and RIC microscopies revealed streak-like accumulations of cadherin along actin fibers. FRAP analysis indicated that engaged cadherins display a slow turnover at equilibrium, compatible with a continuous addition and removal of cadherin molecules within the adhesive contact. Association of cadherin cytoplasmic tail to actin as well as actin cables and myosin II activity are required for the formation and maintenance of cadherin adhesions. Using time lapse microscopy we deciphered how cadherin adhesions form and grow. As lamellipodia protrude, cadherin foci stochastically formed a few microns away from the cell margin. Neo-formed foci coalesced aligned and coalesced with preformed foci either by rearward sliding or gap filling to form cadherin adhesions. Foci experienced collapse at the rear of cadherin adhesions. Based on these results, we present a model for the nucleation, directional growth and shrinkage of cadherin adhesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号