首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A nuclear factor-κB (NF-κB) luciferase assay has been employed to identify the bengamides, previously known for their anti-tumor activity, as a new class of immune modulators. A unique element of this study was that the bengamide analogs were isolated from two disparate sources, Myxococcus virescens (bacterium) and Jaspis coriacea (sponge). Comparative LC-MS/ELSD and NMR analysis facilitated the isolation of M. viriscens derived samples of bengamide E (8) and two congeners, bengamide E' (13) and F' (14) each isolated as an insperable mixture of diastereomers. Additional compounds drawn from the UC, Santa Cruz repository allowed expansion of the structure activity relationship (SAR) studies. The activity patterns observed for bengamide A (6), B (7), E (8), F (9), LAF 389 (12) and 13-14 gave rise to the following observations and conclusions. Compounds 6 and 7 display potent inhibition of NF-κB (at 80 and 90 nM, respectively) without cytotoxicity to RAW264.7 macrophage immune cells. Western blot and qPCR analysis indicated that 6 and 7 reduce the phosphorylation of IκBα and the LPS-induced expression of the pro-inflammatory cytokines/chemokines TNFα, IL-6 and MCP-1 but do not effect NO production or the expression of iNOS. These results suggest that the bengamides may serve as therapeutic leads for the treatment of diseases involving inflammation, that their anti-tumor activity can in part be attributed to their ability to serve as immune modulating agents, and that their therapeutic potential against cancer merits further consideration.  相似文献   

2.
Amino-terminal processing in the yeast Saccharomyces cerevisiae has been investigated by examining numerous mutationally altered forms of iso-1-cytochrome c. Amino-terminal residues of methionine were retained in sequences having penultimate residues of arginine, asparagine, glutamine, isoleucine, leucine, lysine, and methionine; in contrast, the amino-terminal methionine residues were exercised from residues of alanine, glycine, and threonine and were partially excised from residues of valine. The results suggest the occurrence of a yeast aminopeptidase that removes amino-terminal residues of methionine when they precede certain amino acids. A systematic search of the literature for amino-terminal sequences formed at initiation sites suggests the hypothetical yeast aminopeptidase usually has the same specificity as the amino peptidase from bacteria and higher eukaryotes. Our results and the results from the literature search suggest that the aminopeptidase cleaves amino-terminal methionine when it precedes residues of alanine, glycine, proline, serine, threonine, and valine but not when it precedes residues of arginine, asparagine, aspartic acid, glutamine glutamic acid, isoleucine, leucine, lysine, or methionine. In contrast to the normal iso-1-cytochrome c and in contrast to the majority of the mutationally altered proteins, certain forms were acetylated including the following sequences: acetyl(Ac)-Met-Ile-Arg-, Ac-Met-Ile-Lys, Ac-Met-Met-Asn-, and Ac-Met-Asn-Asn-. We suggest yeast contains acetyltransferases that acetylates these mutant forms of iso-1-cytochromes c because their amino-terminal regions resemble the amino-terminal regions of natural occurring proteins which are normally acetylated. The lack of acetylation of closely related sequences suggest that the hypothetical acetyltransferases are specific for certain amino-terminal sequences and that the 3 amino-terminal residues may play a critical role in determining these specificities.  相似文献   

3.
The specificities of methionine aminopeptidase and amino-terminal acetylation in the yeast Saccharomyces cerevisiae were investigated in vivo by sequencing a series of altered iso-1-cytochrome c. Twenty iso-1-cytochromes c, each having a different penultimate residue in the sequence Met-Xaa-Phe-Leu-, were created by transforming yeast directly with synthetic oligonucleotides. The degree of methionine cleavage and amino-terminal acetylation was estimated from the levels of pertinent peptides separated by high performance liquid chromatography. The results confirmed our earlier hypothesis (Sherman, F., Stewart, J. W., and Tsunasawa, S. (1985) BioEssays 3, 27-31) that methionine is completely removed from penultimate residues having radii of gyration of 1.29 A or less (glycine, alanine, serine, cysteine, threonine, proline, and valine). However, only partial cleavage occurred in the sequences Met-Thr-Pro-Leu- and Met-Val-Pro-Leu-, demonstrating that proline at the third position inhibits methionine cleavage when the penultimate residue has an intermediate radius of gyration. Acetylation of the retained amino-terminal methionine occurred completely with the Ac-Met-Glu-Phe-Leu- and Ac-Met-Asp-Phe-Leu- sequences and partially with the Ac-Met-Asn-Phe-Leu-sequence. Although the consensus for acetylation of the retained amino-terminal methionine is not completely known, these results and the results of published sequences indicated that Ac-Met-Glu- and Ac-Met-Asp- (methionine followed by an acidic residue) is sufficient for amino-terminal acetylation in eukaryotes but not in prokaryotes.  相似文献   

4.
Methionine aminopeptidase (MAP) catalyzes the removal of amino-terminal methionine from proteins. The Escherichia coli map gene encoding this enzyme was cloned; it consists of 264 codons and encodes a monomeric enzyme of 29,333 daltons. In vitro analyses with purified enzyme indicated that MAP is a metallo-oligopeptidase with absolute specificity for the amino-terminal methionine. The methionine residues from the amino-terminal end of the recombinant proteins interleukin-2 (Met-Ala-Pro-IL-2) and ricin A (Met-Ile-Phe-ricin A) could be removed either in vitro with purified MAP enzyme or in vivo in MAP-hyperproducing strains of E. coli. In vitro analyses of the substrate preference of the E. coli MAP indicated that the residues adjacent to the initiation methionine could significantly influence the methionine cleavage process. This conclusion is consistent, in general, with the deduced specificity of the enzyme based on the analysis of known amino-terminal sequences of intracellular proteins (S. Tsunasawa, J. W. Stewart, and F. Sherman, J. Biol. Chem. 260:5382-5391, 1985).  相似文献   

5.
The 14-3-3 protein family plays critical regulatory roles in signaling pathways in cell division and apoptosis. 14-3-3gamma is mainly expressed in brain. Using primary cultures of cerebral cortical astrocytes, we investigated the relationships between 14-3-3gamma proteins and actin in astrocytes in cell division and under ischemia. Our results showed that endogenous 14-3-3gamma proteins in immature astrocytes appeared filamentous and co-localized with filamentous actin (F-actin). During certain stages of mitosis, 14-3-3gamma proteins first aggregated and then formed a ring-like structure that surrounded the daughter nuclei and enclosed the F-actin. In 4-week-old cultures of astrocytes, 14-3-3gamma proteins appeared as punctate aggregates in the cytoplasm. Under ischemia, 14-3-3gamma proteins formed filamentous structures and were closely associated with F-actin in surviving astrocytes. However, in apoptotic astrocytes, the intensity of immunostaining of 14-3-3gamma proteins in the cytoplasm decreased. The proteins aggregated around the nucleus and dissociated from the actin filaments. Reciprocal co-immunoprecipitations demonstrated that endogenous 14-3-3gamma proteins bound to detergent-soluble actin and the level of binding increased after 4h of ischemia. As actin is a critical structural protein heavily involved in cell division and apoptotic death, our findings suggest that 14-3-3gamma proteins play a role in cytoskeletal function during the process of cell division and apoptosis in astrocytes in association with actin.  相似文献   

6.
14-3-3 family members act coordinately to regulate mitotic progression   总被引:4,自引:0,他引:4  
The mitosis promoting phosphatase, cdc25C, is a target of both the DNA replication and DNA damage checkpoint pathways. These pathways regulate cdc25C function, in part, by promoting the association of cdc25C with 14-3-3 proteins, which results in the retention of cdc25C in the cytoplasm. To determine which 14-3-3 proteins were required to regulate cdc25C function, we tested the ability of various 14-3-3 family members to form a complex with and negatively regulate cdc25C in human cells. Two 14-3-3 family members, 14-3-3epsilon and 14-3-3gamma specifically formed a complex with cdc25C but not with the 14-3-3 binding defective cdc25C mutant, S216A. In addition, 14-3-3epsilon and 14-3-3gamma inhibited the ability of cdc25C, but not the S216A mutant, to induce premature chromatin condensation (PCC) in U-2OS cells. These results suggested that the reduction in PCC by 14-3-3epsilon and 14-3-3gamma was due to inhibition of cdc25C function. In contrast, 14-3-3sigma was unable to form a complex with cdc25C, but was able to inhibit the ability of both wild type cdc25C and S216A to induce PCC. This suggests that 14-3-3sigma regulates entry into mitosis independently of cdc25C and 14-3-3epsilon and 14-3-3gamma. Thus, specific members of the 14-3-3 family of proteins may act coordinately to maintain the DNA replication checkpoint by regulating the activity of different cell cycle proteins.  相似文献   

7.
Identifying 14-3-3 isoform-specific substrates and functions may be of broad relevance to cell signaling research because of the key role played by this family of proteins in many vital processes. A multitude of ligands have been identified, but the extent to which they are isoform-specific is a matter of debate. Herein we demonstrate, both in vitro and in vivo, a specific, functionally relevant interaction of human 14-3-3gamma with the molecular scaffold KSR1, which is mediated by the C-terminal stretch of 14-3-3gamma. Specific binding to 14-3-3gamma protected KSR1 from epidermal growth factor-induced dephosphorylation and impaired its ability to activate ERK2 and facilitate Ras signaling in Xenopus oocytes. Furthermore, RNA interference-mediated inhibition of 14-3-3gamma resulted in the accumulation of KSR1 in the plasma membrane, all in accordance with 14-3-3gamma being the cytosolic anchor that keeps KSR1 inactive. We also provide evidence that KSR1-bound 14-3-3gamma heterodimerized preferentially with selected isoforms and that KSR1 bound monomeric 14-3-3gamma. In sum, we have demonstrated ligand discrimination among 14-3-3 isoforms and shed light on molecular mechanisms of 14-3-3 functional specificity and KSR1 regulation.  相似文献   

8.
cdc25C induces mitosis by activating the cdc2-cyclin B complex. The intracellular localization of cyclin B1 is regulated in a cell cycle-specific manner, and its entry into the nucleus may be required for the initiation of mitosis. To determine the cellular localization of cdc25C, monoclonal antibodies specific for cdc25C were developed and used to demonstrate that in human cells, cdc25C is retained in the cytoplasm during interphase. A deletion analysis identified a 58-amino-acid region (amino acids 201 to 258) in cdc25C that was required for the cytoplasmic localization of cdc25C. This region contained a specific binding site for 14-3-3 proteins, and mutations in cdc25C that disrupted 14-3-3 binding also disrupted the cytoplasmic localization of cdc25C during interphase. cdc25C proteins that do not contain a binding site for 14-3-3 proteins showed a pancellular localization and an increased ability to induce premature chromosome condensation. The cytoplasmic localization of cdc25C was not altered by gamma irradiation or treatment with the nuclear export inhibitor leptomycin B. These results suggest that 14-3-3 proteins may negatively regulate cdc25C function by sequestering cdc25C in the cytoplasm.  相似文献   

9.
Specificity of cotranslational amino-terminal processing of proteins in yeast   总被引:17,自引:0,他引:17  
Polypeptides synthesized in the cytoplasm of eukaryotes are generally initiated with methionine, but N-terminal methionine is absent from most mature proteins. Many proteins are also N alpha-acetylated. The removal of N-terminal methionine and N alpha-acetylation are catalyzed by two enzymes during translation. The substrate preferences of the methionine aminopeptidase (EC 3.4.11.x) and N alpha-acetyltransferase (EC 2.3.1.x) have been partially inferred from the distribution of amino-terminal residues and/or mutations found for appropriate mature proteins, but with some contradictions. In this study, a synthetic gene corresponding to the mature amino acid sequence of the plant protein thaumatin, expressed in yeast as a nonexported protein, i.e., lacking a signal peptide, has been used to delineate the specificities of these enzymes with respect to the penultimate amino acid. Site-directed mutagenesis, employing synthetic oligonucleotides, was utilized to construct genes encoding each of the 20 amino acids following the initiation methionine codon, and each protein derivative was isolated and characterized with respect to its amino-terminal structure. All four possible N-terminal variants--those with and without methionine and those with and without N alpha-acetylation--were obtained. These results define the specificity of these enzymes in situ and suggest that the nature of the penultimate amino-terminal residue is the major determinant of their selectivity.  相似文献   

10.
The 14-3-3 proteins are among the most abundant proteins expressed in the brain, comprising about 1% of the total amount of soluble brain proteins. Through phosphoserine- and phosphothreonine-binding motifs, 14-3-3 proteins regulate many signaling proteins and cellular processes including cell death. In the present study, we utilized a well-known kainic acid (KA)-induced excitotoxicity rat model and examined the expression of 14-3-3 and its isoforms in the frontal cortex of KA-treated and control animals. Among the different 14-3-3 isoforms, abundant levels of eta and tau were detected in the frontal cortex, followed by sigma, epsilon, and gamma, while the expression levels of alpha/beta and zeta/delta isoforms were low. Compared to the control animals, KA treatment induced a significant downregulation of the overall 14-3-3 protein level as well as the levels of the abundant isoforms eta, tau, epsilon, and gamma. We also investigated two 14-3-3-interacting proteins that are involved in the cell death process: Bcl-2-associated X (BAX) and extracellular signal-regulated kinase (ERK). Both BAX and phosphorylated ERK showed increased levels following KA treatment. Together, these findings demonstrate an abundance of several 14-3-3 isoforms in the frontal cortex and that KA treatment can cause a downregulation of 14-3-3 expression and an upregulation of 14-3-3-interacting proteins BAX and phospho-ERK. Thus, downregulation of 14-3-3 proteins could be one of the early molecular events associated with excitotoxicity. This could lead to subsequent upregulation of 14-3-3-binding proteins such as BAX and phospho-ERK that contribute to further downstream apoptosis processes, eventually leading to cell death. Maintaining sufficient levels of 14-3-3 expression and function may become a target of therapeutic intervention for excitotoxicity-induced neurodegeneration.  相似文献   

11.
《Phytochemistry》1987,26(3):633-636
The effect of chemical modification of histidine, lysine, arginine, tryptophan and methionine residues on the enzymatic activity of calotropin DI has been studied. 1,3-Dibromoacetone inhibited the enzyme completely, indicating that a single histidine residue and a cysteine residue are involved in its catalytic activity. Its second bistidine residue was modified with diethyl pyrocarbonate without loss of activity. Modification of seven of its 13 lysine residues with 2,4,6-trinitrobenzene sulphonic acid led to 90% loss of its activity, but no single lysine residue appears to be essential for its activity. Four of the 12 arginine residues by 1,2-cyclohexanedione can be modified with little loss of activity. Modification of a single tryptophan residue and two methionine residues did not inhibit enzymatic activity. The blocked amino-terminal amino acid residue of calotropin DI has been identified as pyroglutamic acid. Its amino-terminal amino acid sequence to residue 14 has been determined and compared with that of papain. They show an extensive homology in their amino-terminal amino acid sequences.  相似文献   

12.
H I Magazine  H M Johnson 《Biochemistry》1991,30(23):5784-5789
A receptor binding region of mouse interferon gamma (IFN gamma) has previously been localized to the N-terminal 39 amino acids of the molecule by use of synthetic peptides and monoclonal antibodies. In this report, a detailed analysis of the synthetic peptide corresponding to this region, IFN gamma (1-39), is presented. Circular dichroism (CD) spectroscopy indicated that the peptide has stable secondary structure under aqueous conditions and adopts a combination of alpha-helical and random structure. A peptide lacking two N-terminal amino acids, IFN gamma (3-39), had similar secondary structure and equivalent ability to compete for receptor binding, while peptides lacking four or more N-terminal residues had reduced alpha-helical structure and did not inhibit 125I-IFN gamma binding. Substitution of proline, a helix-destabilizing amino acid, for leucine (residue 8) of a predicted amphipathic alpha-helix (residues 3-12), IFN gamma (1-39) [Pro]8, resulted in a substantial reduction in the helical content of the peptide, supporting the presence of helical structure in this region. However, destabilization of the helix did not reduce the competitive ability of the peptide. A peptide lacking eight C-terminal residues, IFN gamma (1-31), did not block 125I-IFN gamma binding and had no detectable alpha-helical structure, suggesting a requirement of the predicted second alpha-helix (residues 20-34) for receptor interaction and helix stabilization. Substitution of phenylalanine for tyrosine at position 14, IFN gamma (1-39) [Phe]14, a central location of a predicted omega-loop structure, did not affect the secondary structure associated with the region yet resulted in a 30-fold increase in receptor competition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
A method for quantitation of amino-terminal residues in proteins is presented. The method is a modification of a double isotope-labelling technique, using 3H-labelled dansyl chloride and 14C-labelled amino acids as internal standards. The method is demonstrated on human fibrinogen, horse myoglobin and on mouse myoloma IgA. A linear relationship between the ratio 3H/14C in the separated amino-terminal amino acid of the protein and the amount of protein added in the labelling mixture was obtained with standard deviations of +/- 7.4% +/- 3.4% and +/- 10.3%, respectively. An application of the method is demonstrated by measuring the increase in amino-terminal glycine in fibrinogen following the proteolytic action of thrombin. The method seems to be useful when 0.1 nmol or more of protein is used.  相似文献   

15.
The 14-3-3 protein family associates with many proteins involved in intracellular signalling. In many cases, there is a distinct preference for a particular isoform(s) of 14-3-3. A specific repertoire of 14-3-3 dimer formation may therefore influence which of the interacting proteins could be brought together. We have analysed the pattern of dimer formation for two of the most abundant isoforms of 14-3-3, epsilon ( epsilon ) and gamma (gamma), following their stable expression. This revealed a distinct preference for particular dimer combinations that is largely independent of cellular conditions. gamma 14-3-3 occurred as homodimers and also formed heterodimers, mainly with epsilon 14-3-3 (In PC12 and Cos cells). The epsilon isoform formed heterodimers with 14-3-3 beta, gamma, zeta, and eta, but no homodimers were detected. The two 14-3-3 homologues, BMH1 and BMH2 from Saccharomyces cerevisiae, were mainly heterodimers.  相似文献   

16.
Circular dichroism (CD) studies of parathyroid hormone (PTH), its oxidized forms, and some fragments of the hormone are described. The CD spectrum of native PTH (84 amino acids) and the active fragment, 1-34 PTH, suggests that most of the secondary structure resides in the amino-terminal segment of this hormone. Oxidation of the methionine residue at position 18 has a small impact on secondary structure, whereas oxidation of the methionine at position 8 produces substantial changes. Oxidation of both methionines produces secondary structure changes that are greater than the sum of those seen upon oxidation of the individual methionines. The CD spectrum for the 3-34 fragment of PTH is identical to that of the 1-34 fragment, and that of the 7-34 fragment is only slightly different. The spectra of the 13-34 and 19-34 fragments are markedly altered from that of the 1-34 peptide, and those of the 9-84 and 19-84 fragments of native PTH are significantly different from the intact hormone. Computer-assisted estimates of secondary structure content, and difference spectra, were utilized to evaluate the secondary structure content of the peptides. These results suggest that residues 6-12 are important in formation of helical secondary structure and that a reverse turn may be important for the folding of PTH into a conformation with high affinity for receptors. Residues 1 and 2 appear to make no contribution to the secondary structure and may be directly involved in activation of receptors.  相似文献   

17.
The 14-3-3 family of proteins exerts diverse influences on the signal transduction pathways of cells. We have newly identified a human cDNA encoding the gamma subtype of the 14-3-3 family of genes. The deduced amino acid sequence of human 14-3-3gamma was identical to that of rat 14-3-3gamma. The human 14-3-3gamma gene (HGMW-approved symbol YWHAG) is highly expressed in brain, skeletal muscle, and heart. By fluorescence in situ hybridization analysis, the human 14-3-3gamma gene was mapped to chromosome 7q11.23. Radiation hybrid mapping has shown that this gene is localized 2.33 cR telomeric to D7S1870, a polymorphic marker located at the most telomeric end of the common deletion region of Williams-Beuren syndrome (WBS). This suggests that haploinsufficiency of 14-3-3gamma may not contribute to the WBS phenotype. However, information regarding the precise chromosomal location of a member of the 14-3-3 family of genes will aid in examining the relationship between this family of proteins and human disorders.  相似文献   

18.
The Fc receptor (Fc gamma R) of the murine macrophage cell line, J774, was purified by immunoaffinity chromatography then subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and amino-terminal sequencing. FcR material judged to be pure by these criteria was digested with a number of enzymes to identify the cysteine residues engaged in disulfide bonds within the native structure. The results clearly establish that the mouse macrophage Fc gamma R contains two intrachain disulfide bonds, each of which connects adjacent cysteine residues within the two putative extracellular domains of the molecule. In addition, each disulfide-bonded domain was shown to contain two authentic sites of N-linked glycosylation. Extensive peptide sequencing resulted in the unexpected identification of peptide fragments from a fourth Fc gamma R whose sequences were highly homologous to sequences surrounding the two Cys residues in the amino-terminal domain of both alpha and beta 1 Fc gamma R. The fourth Fc gamma R contains a disulfide-bonded amino-terminal domain similar to beta 1 Fc gamma R.  相似文献   

19.
20.
The functional role of the deazaguanine-derivative queuine was investigated using virus-transformed erythroleukaemic cells of mice as a model. The two-dimensional patterns of [35S]methionine-labelled proteins on two-dimensional O'Farrell gels of queuine-deficient (Q-), compared with queuine-supplemented (Q+) growing cells, showed specific characteristic alterations in the synthesis of 36 and 42 kd basic proteins. According to pI values and immunoreactivity with anti-LDH antibodies, the 36 kd proteins represent various forms of LDH A subunits or closely related proteins. Cell-free systems of protein synthesis were established from growing (Q-) or (Q+) cells. Addition of 3 x 10(-8) M queuine to the (Q-) in vitro system inhibited the incorporation of [35S]methionine into total protein to approximately 20%; raising the concentration of queuine up to 1 x 10(-6) M did not increase the inhibitory effect appreciably. In the (Q-) system, a series of 36 kd proteins, with pI values corresponding to LDH A isoforms, were synthesized. The in vitro synthesis of these proteins was completely inhibited by addition of queuine at a concentration of 3 x 10(-8) M. Furthermore, the expression of certain other proteins was lower in the (Q+) than in the (Q-) in vitro system. Labelling of growing (Q+) or (Q-) cells with [32P]orthophosphate and subsequent analysis of phosphoproteins on two-dimensional O'Farrell gels showed that queuine inhibited the synthesis of distinct phosphoproteins. Protein synthesis performed in cell-free (Q-) or (Q+) systems in the presence of non-labelled amino acids and 32P-labelled gamma ATP also indicated that queuine interferes with the synthesis and/or phosphorylation of particular phosphoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号