首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It was examined whether biofilm growth on dissolved organic matter (DOM) of a three-species consortium whose members synergistically degrade the phenylurea herbicide linuron affected the consortium''s integrity and subsequent linuron-degrading functionality. Citrate as a model DOM and three environmental DOM (eDOM) formulations of different quality were used. Biofilms developed with all DOM formulations, and the three species were retained in the biofilm. However, biofilm biomass, species composition, architecture, and colocalization of member strains depended on DOM and its biodegradability. To assess the linuron-degrading functionality, biofilms were subsequently irrigated with linuron at 10 mg liter−1 or 100 μg liter−1. Instant linuron degradation, the time needed to attain maximal linuron degradation, and hence the total amount of linuron removed depended on both the DOM used for growth and the linuron concentration. At 10 mg liter−1, the final linuron degradation efficiency was as high as previously observed without DOM except for biofilms fed with humic acids which did not degrade linuron. At 100 μg liter−1 linuron, DOM-grown biofilms degraded linuron less efficiently than biofilms receiving 10 mg liter−1 linuron. The amount of linuron removed was more correlated with biofilm species composition than with biomass or structure. Based on visual observations, colocalization of consortium members in biofilms after the DOM feed appears essential for instant linuron-degrading activity and might explain the differences in overall linuron degradation. The data show that DOM quality determines biofilm structure and composition of the pesticide-degrading consortium in periods with DOM as the main carbon source and can affect subsequent pesticide-degrading activity, especially at micropollutant concentrations.  相似文献   

2.
Using a combination of various enrichment techniques, the strictly anaerobic, gram-positive, endospore-forming bacterium Sedimentibacter hongkongensis strain KI as revealed by 16S rRNA analysis and the gram-negative enterobacterium Citrobacter amalonaticus strain G as revealed by physiological tests were isolated from an anaerobic cyanophycin (CGP)-degrading bacterial consortium. S. hongkongensis strain KI is the first anaerobic bacterium with the ability to hydrolyze CGP to β-Asp-Arg and β-Asp-Lys dipeptides, as revealed by electrospray ionization-mass spectrometry and reversed-phase high-performance liquid chromatography analysis. However, these primary accumulated hydrolysis products were only partially used by S. hongkongensis strain KI, and significant growth on CGP did not occur. On the other hand, C. amalonaticus strain G did not degrade CGP but grew on the β-linked iso-dipeptides formed in vitro by enzymatic CGP degradation or in vivo by metabolic activity of S. hongkongensis strain KI. Dipeptide utilization occurred at the highest rate if both strains were used in cocultivation experiments with CGP, indicating that cooperation between different bacteria occurs in anaerobic natural environments for complete CGP turnover. The amino acids obtained from the cleavage of dipeptides were fermented to ethanol, acetic acid, and succinic acid, as revealed by gas chromatographic analysis and by spectrophotometric enzyme assays.  相似文献   

3.
An aerobic bacterial consortium consisting of two isolated strains (BF1, BF2) and a strain of Pseudomonas putida (MTCC1194) was developed for the aerobic degradation of a mixture of textile azodyes and individual azodyes at alkaline pH (9-10.5) and salinity (0.9-3.68 g/l) at ambient temperature (28 +/- 2 degrees C). The degradation efficiency of the strains in different media (mineral media and in the Simulated textile effluent (STE)) and at different dye concentrations were studied. The presence of a H2O2 independent oxidase-laccase (26.5 IU/ml) was found in the culture filtrate of the organism BF2. The analysis of the degraded products by TLC and HPLC, after the microbial treatment of the dyes showed the absence of amines and the presence of low molecular weight oxidative degradation products. The enzymes present in the crude supernatant was found to be reusable for the dye degradation.  相似文献   

4.
一株茶碱降解菌的分离和鉴定   总被引:6,自引:0,他引:6  
从制药废水生物处理系统的活性污泥中经富集分离到一株能以茶碱作为唯一碳、氮源生长的茶碱降解菌Tcn3,该菌株可以利用茶碱的最高浓度为3 000 mg/L。当茶碱浓度为1000 mg/L时被彻底降解的时间仅需48 h。Tcn3菌株降解茶碱的最适pH为80。K+是该菌株降解茶碱的必需元素。采用16S rDNA序列分析法及传统的生理生化特征鉴定法对该菌株进行鉴定,结果表明,Tcn3的16S rDNA的核苷酸序列与善变副球菌(Paracoccus versutus) ATCC 25364的同源性为997%,在细菌系统发育分类学上属于变形菌α亚类,Rhodobacter组:副球菌属,善变副球菌。  相似文献   

5.
目的:有机磷农药和杀虫剂广泛应用于众多国内和国外生产的,其数量已超过100种。大量使用的有机磷农药会增加农业生产,而且还造成了不可估量的环境污染。研究降解敌敌畏的微生物,为微生物以降低产品敌敌畏农药残留,恢复敌敌畏污染土壤中的研究奠定基础。方法:本文从种植蔬菜的温室大棚的土壤中分离了一株降解O,O-二甲基-O-(2,2-二氯乙烯基)磷酸酯(敌敌畏)的细菌,根据该菌的形态学、生理生化特征及16S rDNA序列比对。结果:该菌鉴定为荧光假单胞菌(菌株P)。该菌的最适生长温度为27℃,其培养基的最适初始pH为7.0,4天内该菌可将培养液中61.24%的降解。结论:本实验从蔬菜大棚的土样中筛选出一株能降解敌敌畏的菌株,并鉴定为荧光假单胞菌。本研究将为基于微生物以降低产品敌敌畏农药残留,恢复敌敌畏污染土壤中的研究打下基础。  相似文献   

6.
Chlorpyrifos is a commonly used organophosphate pesticide. Its extensive use and associated serious soil and water contamination have gained increasing environmental concern. Biodegradation is a promising way to remediate chlorpyrifos contamination. There are many reports on various chlorpyrifos degrading microorganisms, but only a few on biodegradation of chlorpyrifos by consortia. Hence, the present study attempted to assemble a novel bacterial consortium C5 for the biodegradation of chlorpyrifos. The 16S rRNA gene-based molecular analysis revealed that the bacterial consortium consisted of Staphylococcus warneri CPI 2, Pseudomonas putida CPI 9 and Stenotrophomonas maltophilia CPI 15. Optimization of chlorpyrifos degradation by the consortium C5, using a Box–Behnken design, was carried out taking into account four important variables: temperature, pH, the initial concentration of chlorpyrifos and time of incubation. C5 is capable of giving 90% degradation of chlorpyrifos (125 ppm) in 8 days of incubation under optimized conditions of pH (7) and temperature (30°C). Growth curve and degradation study under optimized conditions confirmed that consortium could improve the biodegradation potential. From these results, we conclude that the novel consortium C5 of three species can be used to eliminate chlorpyrifos from various environmental compartments and can be implemented in bioreactors in a cost-effective, safe and environmentally friendly manner.  相似文献   

7.
Degradation of Fumonisin B1 by a Bacterial Strain Isolated from Soil   总被引:2,自引:0,他引:2  
A mixed microbial culture degrading fumonisin B l was obtained from soil samples using an enrichment culture procedure. A bacterial isolate from the enrichment culture (strain NCB 1492) degraded fumonisin B1 after incubation for 3 h, as indicated by TLC and HPLC analysis. On the basis of the sequence analysis of 16S rDNA, strain NCB 1492 was related to the Delftia/Comamonas group. Thin-layer chromatographic analysis indicated the presence of metabolites in the NCB 1492 culture filtrates after degradation of fumonisin B1 supplied as sole carbon and nitrogen source in phosphate buffer. Four metabolites were identified by mass spectrometry analysis.  相似文献   

8.
目的:从污染环境中分离耐低温石油降解菌,并对其降解特性进行研究。方法:采用摇瓶富集培养和平板划线分离的方法,得到一株能以原油为碳源、能源生长的细菌菌株,采用分子生物学方法对该降解菌进行初步鉴定。结果:从天津大港油田污染土壤和水体中分离到一株耐低温石油降解菌DSY171,该菌株能够在10℃条件下,以石油为惟一碳源生长。经过对其形态特征、生理生化及16S rDNA序列分析,初步鉴定该菌株归属红球菌属。菌株DSY171在低温条件下(10~15℃)12 d的石油降解率显著优于常温条件(20~30℃),原油降解率为60%左右;菌株DSY171的pH适应范围较广,初始pH值为6~9时均能代谢生长,但在偏碱性环境下(pH7~9)的代谢生长好于偏酸性环境(pH6~7)。除了降解石油外,菌株DSY171对柴油、食用油等不同碳源也均能够降解代谢,具有一定的碳源利用广谱性。结论:耐低温石油降解菌DSY171的分离及其降解特性的研究,为生物学方法解决低温环境石油污染问题提供了高效菌种,在环境微生物学理论研究和实践应用中具有一定的意义和价值。  相似文献   

9.
Abstract A newly isolated strain of Variovorax paradoxus could grow on homovanillate and several monohydroxylated phenylacetic acids. During growth on homovanillate, the organism formed separate NAD(P)H-dependent hydroxylases with activity towards 4-hydroxyphenylacetic acid and homovanillate. Homovanillate hydroxylase catalysed a typical monooxygenase reaction and had little activity towards 4-hydroxyphenylacetic acid. GC-MS and TLC analysis suggested that homovanillate was 1-hydroxylated to yield a dihydroxymonomethoxyphenylacetic acid which served as a substrate for homogentisate 1,2-dioxygenase. Methanol, but not formaldehyde, was released either during ring-cleavage or subsequent metabolism of the ring-cleavage product.  相似文献   

10.
一株DMP降解菌的分离鉴定及其降解特性   总被引:1,自引:0,他引:1  
从山东省潍坊市污染河流底泥中筛选到1株能够以酞酸酯(Phthalic acid esters, PAEs)为唯一碳源和能源生长的微生物, 命名为JDC-3, 根据形态学观察、生理生化指标测定和分子生物学鉴定结果, 将该菌株初步鉴定为戴尔福特菌属(Delftia sp.), 以一对简并引物, 首次在该属中扩增出编码邻苯二甲酸双加氧酶的基因片段。同时以邻苯二甲酸二甲酯(Dimethyl phthalate, DMP)为目标测试物, 利用高效液相色谱(HPLC)测定了JDC-3的降解性能, 得出该菌对DMP降解的最佳条件为: pH 7.0~8.0、温度30°C~35°C; 在不同DMP初始浓度下研究了该菌的降解动力学, 结果表明当浓度低于300 mg/L时的降解动力学方程为ln C = - 0.06837 t + A, 半衰期为12.48 h, 当初始浓度不断增加, DMP对JDC-3的抑制能力增强, JDC-3对DMP的降解速率不断下降, 半衰期增大。  相似文献   

11.
一株[艹屈]高效降解菌的分离鉴定及其降解特性   总被引:4,自引:0,他引:4  
以多环芳烃[艹屈] (Chrysene)为选择培养基的碳源, 从焦化污泥中筛选出一株[艹屈]的高效降解菌SQ-1, SQ-1可在以[艹屈]为唯一碳源的无机盐培养基中生长, 经过电镜形态学观察、生理生化和16S rDNA序列分析, 并基于16S rDNA序列结果, 构建了该菌株的系统发育树。最终确定菌株SQ-1为木糖氧化无色杆菌(Achromobacter xylosoxidans)。又考察了[艹屈]的初始浓度、投菌量、pH值对SQ-1菌株降解[艹屈]效果的影响, 确定了最佳降解条件。结果表明, 该菌对水中[艹屈]具有良好的降解特性, 在[艹屈]浓度为40 mg/L、接种量10% (V/V)、pH 7.0~7.5、温度30°C条件下, 接种5 d后对[艹屈]的降解效率达到80%以上。  相似文献   

12.
卡马西平降解菌的筛选及降解特性研究   总被引:3,自引:0,他引:3  
药品和个人护理品类污染物日益成为新兴污染物研究的重点, 药品卡马西平因具有多种药效被广泛使用, 在环境中频繁被检出, 且浓度较高, 不易去除, 通常作为环境中药品和个人护理品污染状况的指示化合物。本研究从某制药厂的污水处理厂中分离到一株细菌HY-7, 能以卡马西平为唯一碳源、氮源和能源生长, 通过生理生化以及16S rDNA、gyrB基因序列分析鉴定并命名为Acinetobacter sp. HY-7。该菌株生长和降解卡马西平的最适条件为25°C和pH 6.0, 经HPLC分析10 d内能将初始浓度为20 mg/L的卡马西平降解48%。菌株HY-7还能以邻苯二酚、吲哚、萘、蒽等芳香族化合物为唯一碳源生长。  相似文献   

13.
一株DDT降解菌的筛选、鉴定及降解特性的初步研究   总被引:1,自引:0,他引:1  
从DDT污染的土壤中筛选具有DDT降解能力的细菌, 经过富集培养、分离纯化得到56株细菌, 将其接种到基础盐酵母培养基, 7 d后用紫外分光光度计法初筛得到降解率较高的一株菌, 编号为D-1。通过16S rDNA序列分析结合传统分类学方法确定该菌为寡养单胞菌属(Stenotrophomonas sp.)的一株菌。对菌体降解DDT的特性的研究表明, 在培养温度为30℃, 底物质量浓度为40 mg/L, pH 7.0, 摇床转速为200 r/min的条件下, 该菌株对DDT降解10 d的降解率为69.0%。  相似文献   

14.
一株DDT降解菌的筛选、鉴定及降解特性的初步研究   总被引:2,自引:0,他引:2  
从DDT污染的土壤中筛选具有DDT降解能力的细菌,经过富集培养、分离纯化得到56株细菌,将其接种到基础盐酵母培养基,7d后用紫外分光光度计法初筛得到降解率较高的一株菌,编号为D-1.通过16S rDNA序列分析结合传统分类学方法确定该菌为寡养单胞菌属(Stenotrophomonas sp.)的一株茵.对菌体降解DDT的特性的研究表明,在培养温度为3℃,底物质量浓度为40 mg/L, pH 7.0,摇床转速为200 r/min的条件下,该菌株对DDT降解10d的降解率为69.0%.  相似文献   

15.
Isolation of a Bacterial Strain Able To Degrade Branched Nonylphenol   总被引:14,自引:3,他引:11       下载免费PDF全文
Conventional enrichment of microorganisms on branched nonylphenol (NP) as only carbon and energy source yielded mixed cultures able to grow on the organic compound. However, plating yielded no single colonies capable, alone or in combination with other isolates, of degrading the NP in liquid culture. Therefore, a special approach was used, referred to as “serial dilution-plate resuspension,” to reduce culture complexity. In this way, one isolate, TTNP3, tentatively identified as a Sphingomonas sp., was found to be able to grow on NP in liquid culture. Remarkably, this isolate was able to be filtered through a 0.45-μm-pore-diameter filter. Moreover, isolate TTNP3 did not form visible colonies on mineral medium with NP, and it formed visible colonies on R2A agar only after a prolonged incubation of 1 week. High-performance liquid chromatography and gas chromatography-mass spectroscopy analysis of the culture media indicated that the strain starts the degradation of NP with a fission of the phenol ring and preferably uses the para isomer of NP and not the ortho isomer. No distinct accumulation of an intermediary product could be observed.  相似文献   

16.
A marine bacterial strain that degraded fucoidan from Kjellmaniella crassifolia (class Phaeophyceae, order Laminariales, family Laminariaceae) was isolated in our laboratory. The strain was gram-negative, ubiquinone 8 was the predominant respiratory quinone, and the GC-content of its genomic DNA was 36%. The cells of the strain were rod-shaped (2.0 m long × 1.0 m wide), and each cell was motile by means of one polar flagellum. Phylogenetic analysis of its 16S ribosomal DNA sequence indicated that it was a member of the family Alteromonadaceae. It produced a type of extracellular fucoidanase, an endosulfated fucan-digesting enzyme. The enzyme was purified with 3500-fold purity at 12.0% yield. Optimum conditions for the enzyme reaction were approximately pH 6.5 to 8.0 and temperature 30° to 35°C. The enzyme was activated by calcium ions, and maximum activity was observed in the presence of greater than 30 mM calcium ion.  相似文献   

17.
采用逐量分批驯化的方法以污水处理厂污泥作为菌源,苯、甲苯、二甲苯为唯一碳源,驯化、分离、筛选能够有效降解苯系物的真菌,命名为B1。采用单因素以及正交实验方法并对真菌降解环境影响因素及降解效率进行了测定和研究。结果表明:真菌B1对苯系物降解的最佳条件为C:N=5:1,pH5,温度30℃,菌种接种量为5.5ml(50ml培养基)。采用GC对初始液相浓度0~90mg/L范围内的苯系物降解效果进行测定,未发现苯系物对真菌降解活性产生抑制作用。真菌对苯系物的降解效率为:甲苯>苯>二甲苯,最高降解效率分别达到87.39%,85.21%,81.47%。混合物降解效果略高于单一底物的降解效果。  相似文献   

18.
This paper reports the tolerance and biodegradation of phenol by a heavy metal–adapted environmental bacterial consortium, known as consortium culture (CC). At the highest tolerable phenol concentration of 1200 mg/L, CC displayed specific growth rate of 0.04 h?1, phenol degradation rate of 6.11 mg L?1 h?1 and biomass of 8.45 ± 0.35 (log10 colony-forming units [CFU]/ml) at the end of incubation. Phenol was degraded via the ortho-cleavage pathway catalyzed by cathechol-1,2-dioxygenase with specific activity of 0.083 (µmol min?1 mg?1 protein). The different constituent bacterial isolates of CC preferentially grow on benzene, toluene, xylene, ethylbenzene, cresol, and catechol, suggesting a synergistic mechanism involved in the degradation process. Microtox assay showed that phenol degradation was achieved without producing toxic dead-end metabolites. Moreover, lead (Pb) and cadmium (Cd) at the highest tested concentration of 1.0 and 0.1 mg/L, respectively, did not inhibit phenol degradation by CC. Simultaneous metal removal during phenol degradation was achieved using CC. These findings confirmed the dual function of CC to degrade phenol and to remove heavy metals from a mixed-pollutant medium.  相似文献   

19.
苯酚高效降解菌的筛选和降解特性研究   总被引:14,自引:0,他引:14  
李江  白涛  饶军  宋钞穷 《微生物学通报》2007,34(3):0492-0495
从东华理工学院北区原化学系排污口土壤中筛选到一株高效的苯酚降解细菌PS1。该菌为球菌,革兰氏染色阴性,能以苯酚为唯一碳源和能源生长。经16S rRNA基因部分序列分析PS1为Raoultella属菌株(Raoultella sp.strain PS1),其最高苯酚耐受和降解浓度在3500mg/L以上,当苯酚浓度为500mg/L和1000mg/L时,22h和32h可完全降解,在1500mg/L~3000mg/L时,32h~50h可完全降解,2500mg/L时降解速率最快,达78.1mg/h。通过正交试验得出该菌最适生长条件为25℃、pH6.5、葡萄糖500mg/L;最佳苯酚降解条件为20℃、pH7.0、葡萄糖500mg/L。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号