首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 326 毫秒
1.
Prostanoids, especially prostaglandin (PG) E(2), are important mediators of uterine relaxation and contractions during gestation and parturition. Inhibitors of PG formation as well as PG analogues are used to modulate uterine tonus. So far, only limited data are available regarding the expression of prostanoid receptors in human pregnant myometrium. In the present study, the expression of the receptors for PGE(2) (EP1, EP2, EP3, EP4), PGF(2alpha) (FP), prostacyclin (IP), and thromboxane A(2) (TP) in human pregnant myometrium was studied by RT-PCR, in situ hybridization and immunohistochemistry. Myometrial tissue was obtained from five women at term and not in labour and from two women who delivered preterm. Tissue specimens were excised from the upper edge of the transverse lower uterine segment incision. In all tissues analysed, EP1, EP2, EP3, EP4, FP, TP and IP receptor mRNA and protein was detected. mRNA expression for PGD(2) (DP) receptor was not detected in the majority of tissue specimens. EP1, EP2, EP4, IP, TP and FP receptor protein was detected on myometrial smooth muscle cells, whereas EP3 receptor protein was only expressed by stromal and endothelial cells. In situ hybridization experiments yielded similar results. The expression of the EP2 receptor mRNA was inversely related to gestational age. We suggest that the contractile effect of PGE(2) at term is probably mediated directly by the EP1 receptor expressed in myometrial smooth muscle cells and indirectly by the EP3 receptor expressed in stromal cells and a decrease in EP2 receptor expression.  相似文献   

2.
3.
To clarify the molecular basis for the prostaglandin (PG) mediated effects in adipose cells at various stages of their development, expression of mRNAs encoding receptors specific for prostaglandin E2, F2alpha and I2 (i.e. EP, FP, and IP receptors) was investigated in differentiating clonal Ob1771 pre-adipocytes, as well as in mouse primary adipose precursor cells and mature adipocytes. We have further characterized the differential expression of mRNAs encoding three subtypes of the EP receptor, i.e. EP1, EP3, and EP4, and examined the expression of mRNAs encoding the three isoforms (alpha, beta, and gamma) of the EP3 receptor. Altogether the results show that the expression of IP, FP, EP1, and EP4 receptor mRNAs was considerably more pronounced in pre-adipose cells than in adipose cells, mRNAs encoding the alpha, beta, and gamma isoforms of the EP3 receptor were all exclusively expressed in freshly isolated mature adipocytes. These data may indicate that PGI2, PGF2alpha, and PGE2 may interact directly with specific receptors in pre-adipose cells, whose transduction mechanisms are known to affect maturation related changes. In mature adipocytes, however, the equipment of mRNAs encoding the EP3 receptor isoforms is in agreement with the well known effect of PGE2 on adenylate cyclase and lipolysis in mature adipocytes.  相似文献   

4.
Inflammatory mediators, including prostaglandins, cytokines, and chemokines, are strongly implicated in the mechanism of human labor, though their precise roles remain unknown. Here we demonstrate that interleukin 1 beta (IL-1beta) significantly increased the expression and release of interleukin-8 (CXCL8), monocyte chemotactic protein-1 (CCL2), and granulocyte macrophage colony-stimulating factor (CSF2) by primary human myometrial cells. However, this effect was repressed by prostaglandin E(2) (PGE(2)). As PGE(2) can activate four distinct PGE(2) receptors (EP(1), EP(2), EP(3), and EP(4)) to elicit various responses, we sought to define the EP receptor(s) responsible for this repression. Using selective EP receptor agonists and a selective EP(4) antagonist, we show that PGE(2) mediates the repression of IL-1beta-induced release of CXCL8, CCL2, and CSF2 via activation of the EP(2) and EP(4) receptors. The use of siRNA gene-specific knockdown further confirmed a role for both receptors. Real-time RT-PCR demonstrated that EP(2) was the most highly expressed of all four EP receptors at the mRNA level in human myometrial cells, and immunocytochemistry showed that EP(2) protein is abundantly present throughout the cells. Interestingly, PGE(2) does not appear to reduce mRNA expression of CXCL8, CCL2, and CSF2. Our results demonstrate that PGE(2) can elicit anti-inflammatory responses via activation of the EP(2) and EP(4) receptors in lower segment term pregnant human myometrial cells. Further elucidation of the EP receptor-mediated signaling pathways in the pregnant human uterus may be beneficial for optimizing the maintenance of pregnancy, induction of labor or indeed treatment of preterm labor.  相似文献   

5.
Prostaglandin F(2alpha) (PGF(2alpha)) is produced during myocardial inflammation and many of the insults that trigger contractile dysfunction also activate prostaglandin synthesis and production. However, although PGF(2alpha) plays a significant role in the cardiac response to inflammation, the effect of this particular compound on the heart was largely studied at the cellular level and probably no due attention was paid to the effect of PGF(2alpha) on the whole heart contractility. Therefore, in the present study we have investigated the effect of PGF(2alpha) on isolated right ventricle of the rat heart. PGF(2alpha) (1nM-1microM) induced concentration-dependent decrease of the amplitude of contractions of the ventricular muscle. Real time RT-PCR has revealed that prostaglandin FP receptors are expressed in the rat myocardium and the level of expression was similar to those of creatine kinase and adenylate kinase, which are proteins abundantly present in the heart. An antagonist of FP receptors, PGF(2alpha) dimetilamide (10nM), abolished negative inotropic effect induced by PGF(2alpha). To examine the possibility that PGF(2alpha) could activate non-FP prostaglandin receptor, we have measured the level of expression of all known prostaglandin receptors in the rat heart. These experiments have shown that the order of expression of prostaglandin receptors in the rat heart is FP>EP1=TP>EP4>EP3>DP=IP. Based on the obtained results we conclude that PGF(2alpha) induces negative inotropic effect on rat heart by activating FP prostaglandin receptors. This effect of PGF(2alpha) could contribute to cardiac dysfunction in conditions of systemic and myocardial inflammation.  相似文献   

6.
This study provided a pharmacological evaluation of prostaglandin binding to bovine luteal plasma membrane. It was found that [3H]PGF2 alpha' [3H]PGE2' [3H]PGE1 and [3H]PGD2 all bound with high affinity to luteal plasma membrane but had different specificities. Binding of [3H]PGF2 alpha and [3H]PGD2 was inhibited by non-radioactive PGF2 alpha (IC50 values of 21 and 9 nmol l-1, respectively), PGD2 (35 and 21 nmol l-1), and PGE2 (223 and 81 nmol l-1), but not by PGE1 (> 10,000 and 5616 nmol l-1). In contrast, [3H]PGE1 was inhibited by non-radioactive PGE1 (14 nmol l-1) and PGE2 (7 nmol l-1), but minimally by PGD2 (2316 nmol l-1) and PGF2 alpha (595 nmol l-1). Binding of [3H]PGE2 was inhibited by all four prostaglandins, but slopes of the dissociation curves indicated two binding sites. Binding of [3H]PGE1 was inhibited, resulting in low IC50 values, by pharmacological agonists that are specific for EP3 receptor and possibly EP2 receptor. High affinity binding of [3H]PGF2 alpha required a C15 hydroxyl group and a C1 carboxylic acid that are present on all physiological prostaglandins. Specificity of binding for the FP receptor depended on the C9 hydroxyl group and the C5/C6 double bond. Alteration of the C11 position had little effect on affinity for the FP receptor. In conclusion, there is a luteal EP receptor with high affinity for PGE1' PGE2' agonists of EP3 receptors, and some agonists of EP2 receptors. The luteal FP receptor binds PGF2 alpha' PGD2 (high affinity), and PGE2 (moderate affinity) but not PGE1 due to affinity determination by the C9 and C5/C6 moieties, but not the C11 moiety.  相似文献   

7.
Systemic inflammation induces various adaptive responses including tachycardia. Although inflammation-associated tachycardia has been thought to result from increased sympathetic discharge caused by inflammatory signals of the immune system, definitive proof has been lacking. Prostanoids, including prostaglandin (PG) D(2), PGE(2), PGF(2alpha), PGI(2) and thromboxane (TX) A(2), exert their actions through specific receptors: DP, EP (EP(1), EP(2), EP(3), EP(4)), FP, IP and TP, respectively. Here we have examined the roles of prostanoids in inflammatory tachycardia using mice that lack each of these receptors individually. The TXA(2) analog I-BOP and PGF(2alpha) each increased the beating rate of the isolated atrium of wild-type mice in vitro through interaction with TP and FP receptors, respectively. The cytokine-induced increase in beating rate was markedly inhibited in atria from mice lacking either TP or FP receptors. The tachycardia induced in wild-type mice by injection of lipopolysaccharide (LPS) was greatly attenuated in TP-deficient or FP-deficient mice and was completely absent in mice lacking both TP and FP. The beta-blocker propranolol did not block the LPS-induced increase in heart rate in wild-type animals. Our results show that inflammatory tachycardia is caused by a direct action on the heart of TXA(2) and PGF(2alpha) formed under systemic inflammatory conditions.  相似文献   

8.
The change from uterine quiescence to enhanced contractile activity may be due to the differential expression of prostaglandin receptors within the myometrium and fetal membranes, in a temporal and topographically distinct manner. To address this question, we determined the localization and expression of the PGE2 receptor subtypes (PTGER1-4) and the PGF2alpha receptor (PTGFR) in paired upper and lower segment myometrium, amnion, and choriodecidual samples throughout human pregnancy, with and without labor. All receptor subtypes were found throughout the muscle layers in both the upper and lower uterine segments, colocalizing with alpha smooth muscle actin. A change in intracellular localization was observed at term labor, where PTGER1 and PTGER4 were predominately associated with the nucleus. Minimal changes in the expression of the PGE2 and PGF2alpha receptor subtypes were observed with gestational age, labor, or between the upper and lower myometrial segments. Receptor expression in maternal and fetal tissues differed between the receptor subtypes; PTGER1 and PTGER4 were predominately expressed in the fetal membranes, PTGER2 was greatest in the myometrium, whereas PTGER3 and PTGFR were similarly expressed in the myometrium and fetal membranes. Myometrial activation through the prostaglandin receptors is perhaps more subtle and may be mediated by a balance between one or several of the prostaglandin receptor subtypes together with other known contraction associated proteins. Lack of coordination in receptor expression between the myometrium and fetal membranes may indicate different regulatory mechanisms between these tissues, or it may suggest a function for these receptors in the amnion and choriodecidua that is independent of that seen in the myometrium.  相似文献   

9.
The asynchronous secretion of gonadotrope LH and FSH under the control of GnRH is crucial for ovarian cyclicity but the underlying mechanism is not fully resolved. Because prostaglandins (PG) are autocrine regulators in many tissues, we determined whether they have this role in gonadotropes. We first demonstrated that GnRH stimulates PG synthesis by induction of cyclooxygenase-2, via the protein kinase C/c-Src/phosphatidylinositol 3'-kinase/MAPK pathway in the LbetaT2 gonadotrope cell line. We then demonstrated that PGF(2alpha) and PGI2, but not PGE2 inhibited GnRH receptor expression by inhibition of phosphoinositide turnover. PGF(2alpha), but not PGI2 or PGE2, reduced GnRH-induction of LHbeta gene expression, but not the alpha-gonadotropin subunit or the FSHbeta subunit genes. The prostanoid receptors EP1, EP2, FP, and IP were expressed in rat gonadotropes. Incubations of rat pituitaries with PGF(2alpha), but not PGI2 or PGE2, inhibited GnRH-induced LH secretion, whereas the cyclooxygenase inhibitor, indomethacin, stimulated GnRH-induced LH secretion. None of these treatments had any effect on GnRH-induced FSH secretion. The findings have thus elaborated a novel GnRH signaling pathway mediated by PGF(2alpha)-FP and PGI2-IP, which acts through an autocrine/paracrine modality to limit autoregulation of the GnRH receptor and differentially inhibit LH and FSH release. These findings provide a mechanism for asynchronous LH and FSH secretions and suggest the use of combination therapies of GnRH and prostanoid analogs to treat infertility, diseases with unbalanced LH and FSH secretion and in hormone-dependent diseases such as prostatic cancer.  相似文献   

10.
Prostaglandins are potent lipid hormones that activate multiple signaling pathways resulting in regulation of cellular growth, differentiation, and apoptosis. In the skin, prostaglandins are rapidly released by keratinocytes following ultraviolet radiation and are chronically present in inflammatory skin lesions. We have shown previously that melanocytes, which provide photoprotection to keratinocytes through the production of melanin, express several receptors for prostaglandins, including the PGE2 receptors EP1 and EP3 and the PGF2alpha receptor FP, and that PGF2alpha stimulates melanocyte dendricity. We now show that PGF2alpha stimulates the activity and expression of tyrosinase, the rate-limiting enzyme in melanin synthesis. Analysis of FP receptor regulation showed that the FP receptor is regulated by ultraviolet radiation in melanocytes in vitro and in human skin in vivo. We also show that ultraviolet irradiation stimulates production of PGF2alpha by melanocytes. These results show that PGF2alpha binding to the FP receptor activates signals that stimulate a differentiated phenotype (dendricity and pigmentation) in melanocytes. The regulation of the FP receptor and the stimulation of production of PGF2alpha in melanocytes in response to ultraviolet radiation suggest that PGF2alpha could act as an autocrine factor for melanocyte differentiation.  相似文献   

11.
The development of oxytocin (OT) sensitivity in the parturient uterus is associated with increases in myometrial OT receptor concentration, gap junction formation, and prostaglandin (PG) production. To investigate whether PGs mediate these responses, we measured OT responsiveness, OT receptor concentrations, and gap junction formations in uteri of Day 19, 20, 21, 22, 23 pregnant and Day 2 postpartum rats. Inhibition of endogenous PG synthesis was produced by infusion of naproxen sodium delivered by an implanted osmotic pump. Naproxen treatment, but not placebo treatment, markedly attenuated in vitro uterine PGE2, PGF2 alpha, and PGI2 releases, suppressed OT responsiveness, and prolonged gestation. The increase of OT receptor concentration that normally occurred on Day 23 term pregnancy was delayed to Day 24. Co-administration of PGF2 alpha reversed the suppressive effects of naproxen. Naproxen treatment did not significantly affect gap junction formations on Day 23 but appeared to delay both the onset and disappearance of gap junction formations. PGF2 alpha co-administration with naproxen also had no apparent effect on gap junction development. The inhibition of OT receptor formation but not gap junction formation on Day 23 in the presence of naproxen indicates that these two events are controlled independently. Furthermore, the failure of naproxen-treated rats to deliver at term suggests that gap junction formation in the absence of an increase in OT receptors is insufficient to initiate labor. It appears that increases in both OT receptor concentrations and gap junction densities may be required for labor.  相似文献   

12.
In the present study, we characterized the mRNA abundance of prostaglandin E(2) receptor subtypes (EP1 and EP3, which stimulate excitatory responses; EP2 and EP4, which stimulate inhibitory responses) and the FP receptor in pregnant sheep myometrium and endometrium in relation to parturition. Myometrial and endometrial poly(A) RNA was extracted from control ewes at 143-147 days gestational age (dGA, n = 6) and from ewes in spontaneous term labor at 145-147 dGA (n = 6), and was subjected to Northern blot analysis for FP, EP1, EP2, EP3, and EP4 mRNA. Myometrial EP3, EP4, and FP mRNA abundance increased during labor (P<0.05); EP2 mRNA did not change. EP1 mRNA was not detectable in the myometrium. Endometrial EP2 and EP4 mRNA remained unchanged during labor. EP3 mRNA was expressed at a very low level, and EP1 and FP mRNA were not detected in endometrium in any animals studied. In conclusion, there is differential expression in myometrium and endometrium of EP subtypes and FP receptor in relation to labor. Increases in EP3 and FP, together with increased prostaglandin production from intrauterine tissues, may lead to the switch in the myometrial contraction pattern that occurs during labor. These differences within and between myometrium and endometrium may result from different anatomical location, such as longitudinal or circular layers of myometrium, or vascular location.  相似文献   

13.
There is substantial evidence that decidual activation, in association with infection, is linked with the onset of both preterm and term labor. We therefore undertook the present study to evaluate prostaglandin production and its potential regulation by inflammatory mediators in human decidual cells in primary monolayer culture. Upon attaining confluence, the cells were incubated with endotoxin, interleukin 1 alpha (IL1 alpha), interleukin 1 beta (IL1 beta); or tumor necrosis factor (TNF). Production of prostaglandin (PG) E2 and PGF2 alpha was determined using specific radioimmunoassays. Endotoxin and these cytokines all induced significant concentration-dependent increases in PGE2 and PGF2 alpha production. Our results suggest that term human decidual cells are responsive to endotoxin and cytokines and that generation of these substances in the decidua or nearby (eg. in response to infection) will lead to increased prostaglandin production and uterine contractions.  相似文献   

14.
15.
Past studies of uterine prostaglandin (PGs) and pig reproduction have focused on endometrial rather than myometrial PGs. This study documents the synthesis and secretion of myometrial prostaglandins (PGs) in pigs and the involvement of oxytocin (OT) in these processes. Cyclooxygenase-2 (COX-2) expression was similar in myometrial explants from cyclic and pregnant pigs (days 14-16) and OT (10(-7) M) in vitro significantly increased COX-2 protein regardless of reproductive state. Basal expression of prostaglandin E2 synthase (PGES) was higher during pregnancy than during luteolysis. Conversely, prostaglandin F synthase (PGFS) was highest during luteolysis and lower in myometrium from gravid animals. OT had no influence on the expression of PGES and PGFS. In another tissue culture experiment, myometrial slices produced more PGE2 than PGF2alpha regardless of reproductive state of the female. OT stimulated PGE2 production in myometrium harvested during luteolysis and increased PGF2alpha production in all tissues examined. Progesterone (P4; 10(-5) M) blocked stimulatory effect of OT on myometrial PG release. Myometrial OTr mRNA was higher (P=0.03) during luteolysis than during pregnancy. In conclusion: (1) oxytocin increases myometrial COX-2 expression, but does not influence the expression of terminal enzymes of PGs synthesis (PGES and PGFS); (2) porcine myometrium preferentially produces PGs during early pregnancy and secretes more PGE2 than PGF2alpha; (3) myometrial OT and OTr support secretion of PGs from myometrium during luteolysis.  相似文献   

16.
Connective tissue growth factor (CTGF) and Cyr61 (cysteine-rich angiogenic protein 61) are members of the CCN gene family that encode multifunctional, extracellular matrix-associated signaling proteins. Because the mechanism of action of certain anti-glaucoma drugs involves extracellular matrix remodeling of ocular ciliary muscle, with a resultant increase in drainage of aqueous humor from the eye, we compared the effects of three pharmacologically distinct ocular hypotensive agents on Cyr61 and CTGF gene expression. Thus, prostaglandin F2alpha (PGF2alpha) (FP receptor agonist), Butaprost (EP2 receptor agonist), and Bimatoprost (a prostamide) were compared. Using Affymetrix gene chip technology, we first identified that PGF2alpha dramatically up-regulated Cyr61 and CTGF mRNA expression in HEK 293/EBNA cells (hFP-HEK 293/EBNA). Northern blot further confirmed the Cyr61 and CTGF up-regulation is in a dose- and time-dependent manner. PGF2alpha-induced up-regulation of Cyr61 appeared to exclusively involve the Rho pathway, and up-regulation of CTGF was via multiple intracellular pathways. Because prostamide receptors are, to date, defined only at the pharmacological level, Bimatoprost effects on Cyr61 and CTGF were studied in the isolated feline iris sphincter preparation, a tissue highly responsive to prostamides. Both PGF2alpha and Bimatoprost up-regulated Cyr61 mRNA expression in the cat iris tissue. Only PGF2alpha up-regulated CTGF mRNA expression in the cat iris. Therefore, PGF2alpha and Bimatoprost appear to interact with different receptors populations in the cat iris, according to their markedly different effects on CTGF. Activation of prostaglandin EP2 receptors (Gs-coupled) also up-regulated Cyr61 but not CTGF mRNA expression in the isolated cat iris. Similar data were observed in human primary ciliary smooth muscle cells. Thus, despite quite different signal transduction pathways, FP receptor stimulation up-regulates CTGF and Cyr61. The prostamide analog Bimatoprost and an EP2-selective agonist affects only Cyr61.  相似文献   

17.
Our past studies have shown that porcine myometrium produce prostaglandins (PG) during luteolysis and early pregnancy and that oxytocin (OT) and its receptor (OTr) support myometrial secretion of prostaglandins E2 and F2alpha (PGE2 and PGF2alpha) during luteolysis. This study investigates the role of intracellular Ca2+ [Ca2+]i as a mediator of OT effects on PG secretion from isolated myometrial cells in the presence or absence of progesterone (P4). Basal [Ca2+]i was similar in myometrial cells from cyclic and pregnant pigs (days 14-16). OT (10(-7)M) increased [Ca2+]i in myometrial cells of cyclic and pregnant pigs, although this effect was delayed in myometrium from pregnant females. After pre-incubation of the myocytes with P4 (10(-5)M) the influence of OT on [Ca2+]i)was delayed during luteolysis and inhibited during pregnancy. Myometrial cells in culture produce more PGE2 than PGF2alpha regardless of reproductive state of the female. OT (10(-7)M) increased PGE2 secretion after 6 and 12 h incubation for the tissue harvested during luteolysis and after 12 h incubation when myometrium from gravid females was used. In the presence of P4 (10(-5)M), the stimulatory effect of OT on PG secretion was diminished. In conclusion: (1) porcine myometrial cells in culture secrete PG preferentially during early pregnancy and produce more PGE2 than PGF2alpha, (2) OT controls myometrial PGF2alpha secretion during luteolysis, (3) release of [Ca2+]i is associated with the influence of OT on PG secretion, and (4) the effects of OT on PG secretion and Ca2+ accumulation are delayed by P4 during luteolysis and completely inhibited by P4 during pregnancy.  相似文献   

18.
Prostaglandins (PG) E1, E2 and F2alpha induce bone resorption in isolated neonatal parietal bone cultures, and an associated increase in interleukin-6 (IL-6) production. Indomethacin had little effect on the response to PGE2, or the relatively non-selective EP receptor agonists 11-deoxy PGE1 and misoprostol, but blocked the effects of PGF2alpha and the F receptor agonist fluprostenol, indicating an indirect action via release of other prostaglandins. It is more likely that there is positive autoregulation of prostaglandins production in this preparation mediated via stimulation of F receptors. The effects of selective EP receptor agonists sulprostone (EP1,3) and 17-phenyl trinor PGE2(EP1), indicated the involvement of EP2 and/or EP4 receptors, which signal via cAMP. The relatively weak increase in IL-6 production by misoprostol (with respect to resorption) suggests that these responses are controlled by different combination of EP2 and EP4 receptors. The PKA activator, forskolin, induced small increases in bone resorption at lower concentrations (50-500 ng/ml) but a reversal of this effect, and inhibition of resorption induced by other stimuli (PTH, PGE2), at higher concentrations (0.5-5 microg/ml). IL-6 production was markedly increased only at the higher concentrations. The inhibitory effect of forskolin may be a calcitonin-mimetic effect. PMA induced both resorption and IL-6 production which were both blocked by indomethacin, indicating a role for PKC in the control of prostaglandin production.  相似文献   

19.
The regulatory effect of amniotic fluid factors on prostaglandin production by sheep seminal vesicle prostaglandin synthetase was determined using samples obtained before and after the onset of labor. Variations in the enzymes incubation conditions permitted the effects on both prostaglandin E (PGE) and prostaglandin F (PGF) production to be assessed. Amniotic fluid obtained before the onset of labor and during early labor resulted in a net stimulation of PGE production and no difference was observed between these two groups. Samples obtained before and during early labor had no effect of PGF production. However, when samples obtained late in labor were tested, there was a greater stimulation of PGF and less of PGE compared to early labor suggesting a preference for PGF production rather than PGE in late labo. When samples obtained from patients in dysfunctional labor were compared to normal labor, no difference on the effect of either PGE or PGF production was observed. This implies that the decreased PGF previously described in dysfunctional labor is due to an intrinsic abnormality of the fetal membranes rather than inhibition of prostaglandin production by factors mediated via the amniotic fluid.  相似文献   

20.
We sought to determine whether expression of genes encoding prostaglandin receptors varied with advancing gestational age and in association with the onset of spontaneous labor in the cervix of pregnant baboons. We performed cesarean hysterectomy on 14 pregnant baboons, five during spontaneous labor. Expression of genes was quantified by Northern analysis. Clear signals which were similar in estimated size to the human genes were detected by Northern analysis for the genes encoding the EP1, EP2, EP3, EP4, FP, IP and TP receptors. Expression of the gene encoding the prostanoid EP1 receptor increased with advancing gestational age prior to labor (r2 = 0.8, P = 0.007). There was a 4 fold lower level of expression of the EP2 receptor gene among animals in labor compared with animals not in labor (P = 0.006) and approximately 2-fold lower levels of expression of the FP and TP receptor genes (P < 0.0001 and P = 0.0002, respectively). We conclude that variation in the relative expression of prostanoid receptor types and sub-types may have a role in cervical dilatation in primate parturition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号