首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
城市生态系统长期观测是开展城市生态安全评价和制定人居环境健康管理政策的基础。为了确保城市生态观测数据的准确性和科学性,通过辨识城市生态观测质量控制的概念,基于"人机料法环"理论构建了城市生态观测质量控制体系,结合城市生态观测质量控制相关规范的编制与实施现状,探讨了城市生态观测质量控制规范的编制技术。结果表明:(1)城市生态观测质量控制是面向城市生态观测内容(要素、空间格局、功能、服务),为保证生态观测全过程质量要求、提高生态观测结果的准确性而实施的质量控制活动和措施。(2)城市生态观测质量控制体系可从对象和过程这两个维度进行界定:对象维度方面,包括"人"-人员、"机"-仪器设备、"料"-数据、"法"-文件和"环"-观测过程5个方面;过程维度方面,涵盖城市生态观测全过程,包括城市生态观测前期准备工作、观测过程中以及观测后的数据录入、审核与评价等环节的质量控制措施。(3)我国已发布的生态观测相关技术标准中,发布的时间越晚,质量控制内容越完整,目前生态观测相关标准共102则,仅38则明确提出了质量控制具体要求。(4)《城市生态观测质量控制规范》编制需包含质量体系和质量控制措施两项技术内容,主要包括前引、正文和附录三个章节,对生态观测全过程质量保证和质量控制技术进行规定。  相似文献   

3.
The two-stage control system, ensuring the high quality of serological investigations in the network of screening laboratories in Moscow was developed and introduced into practice. At the first stage the entry control of the quality of the test system for the detection of HbsAg, coming to the screening laboratories, is made in the reference laboratory with the use of specially developed "representative" panels, as well as the test systems for comparison ("reference" test systems). Then "minipanels" are formed from specimens included into the "representative" panels, which are used for the evaluation of the quality of laboratory investigations made in the screening laboratories. The high quality of such system for controlling the quality of the detection of HBsAg in the screening laboratories of Moscow is shown.  相似文献   

4.
With the Quality-Control-Service (QCS) for blood coagulation a system for the statistical quality control of blood coagulation methods is presented. The system is based on the universal control plasma PreciClot which contains target values in the normal and abnormal range. As the control plasma is used daily from the participants for quality control exercises and datas are statistically analyzed each month this programme of quality assessment can be compared with a monthly ring trial. For the methods prothrombin time (PT/Quick), activated partial prothrombin time (APTT), fibrinogen assay (Fibrinogen) and thrombin time (Thrombin) datas of a survey period (January-December 1985) with 75 labs were evaluated. Calculated results for the methods are given and accuracy and precision of the methods are compared with the results of former ring trials. Based on the results the interlaboratory reliability of the methods is discussed and the advantages of QCS for blood Coagulation for a better information about quality of coagulation tests are presented.  相似文献   

5.
Mitochondrial dysfunction has long been associated with the aging process and the onset of numerous diseases. Regulation of the complex protein-folding environment within the organelle is essential for maintaining efficient metabolic output. Over time, dysregulation of protein homeostasis arises through stress induced by the accumulation of reactive oxygen species and mutations in the mitochondrial genome introduced during replication. To preserve organelle function during biogenesis, remodeling and stress, quality control of mitochondrial proteins must be monitored by molecular chaperones and proteases stationed in the four compartments of the organelle. Here, we review mitochondrial protein quality control with a focus on organelle biogenesis and aging.  相似文献   

6.
We describe a temperature-regulated surface plasmon resonance (SPR) imaging biosensor in this article. The sample temperature can be regulated for specific requirements of the bioaffinity sensing, and stabilized to suppress the measurement noise caused by temperature fluctuations. The water thermo optic coefficient is measured to test the temperature regulation performance. The protein interaction is monitored to demonstrate the feasibility of this system for real-time biomolecular interaction analysis. This temperature-regulated SPR imaging biosensor can be readily implemented by adding the common water path and peristaltic pump to the conventional SPR imaging system, which may provide an economical and convenient scheme to improve the analysis accuracy and quality of bioaffinity sensing using SPR sensing platform.  相似文献   

7.
High-content screening (HCS) is increasingly used in biomedical research generating multivariate, single-cell data sets. Before scoring a treatment, the complex data sets are processed (e.g., normalized, reduced to a lower dimensionality) to help extract valuable information. However, there has been no published comparison of the performance of these methods. This study comparatively evaluates unbiased approaches to reduce dimensionality as well as to summarize cell populations. To evaluate these different data-processing strategies, the prediction accuracies and the Z' factors of control compounds of a HCS cell cycle data set were monitored. As expected, dimension reduction led to a lower degree of discrimination between control samples. A high degree of classification accuracy was achieved when the cell population was summarized on well level using percentile values. As a conclusion, the generic data analysis pipeline described here enables a systematic review of alternative strategies to analyze multiparametric results from biological systems.  相似文献   

8.
Because of the rise in incidence of upper urinary tract tumors, there is a need for a simple and reliable method for diagnosing these tumors, especially in people in a "high-risk" group. This retrospective study showed the usefulness of cytology and cytomorphometry in making the diagnosis of transitional-cell carcinoma of the upper urinary tract. The study also emphasized that the methods of collection and processing are of the utmost importance: the cytologic evaluation of ureteral catheterized urine specimens gave 100% accuracy as compared with a 40% false-negative rate in the cytologic diagnosis of voided urine specimens. A higher accuracy of urinary cytology for the diagnosis of upper urinary tract lesions clearly requires selective catheterization of the ureter. Objective cytomorphologic grading of the urinary cytology specimens was shown to compare favorably with histologic grading. Cytomorphologic grading not only can offer important information in determining the prognosis and in planning treatment but can also assist in quality control of other diagnostic methods and can help to resolve apparent diagnostic discrepancies.  相似文献   

9.
10.
The accumulation of damaged and aggregated proteins is a hallmark of aging and increased proteotoxic stress. To limit the toxicity of damaged and aggregated proteins and to ensure that the damage is not inherited by succeeding cell generations, a system of spatial quality control operates to sequester damaged/aggregated proteins into inclusions at specific protective sites. Such spatial sequestration and asymmetric segregation of damaged proteins have emerged as key processes required for cellular rejuvenation. In this review, we summarize findings on the nature of the different quality control sites identified in yeast, on genetic determinants required for spatial quality control, and on how aggregates are recognized depending on the stress generating them. We also briefly compare the yeast system to spatial quality control in other organisms. The data accumulated demonstrate that spatial quality control involves factors beyond the canonical quality control factors, such as chaperones and proteases, and opens up new venues in approaching how proteotoxicity might be mitigated, or delayed, upon aging.  相似文献   

11.
The inability of current catheter ablation procedures to accurately monitor lesion formation limits their safety and efficacy. An advanced fully integrated radiofrequency (RF)/optical coherence tomography (OCT) ablation catheter is developed, which enables real-time monitoring during ablation. An OCT fiber array is especially designed, developed and integrated into an off-the-shelf irrigated RF ablation catheter. In-vitro experimental studies performed on poultry and ovine hearts demonstrate the ability of the integrated RF/OCT system to provide information on the quality and orientation of catheter/wall contact. Experimental results show that adipose tissue can be accurately identified from normal myocardial tissue with 94% accuracy and lesion formation is monitored with an overall accuracy of 93%. The ability to predict pop events is also demonstrated, with an accuracy of 86%.  相似文献   

12.
13.
An exposure chamber was designed to study the effects of electric and magnetic fields (EMF) on oestrous cycles, hormonal profile during gestation, pineal function, quantity and quality of milk production, feed intake, and central nervous system of dairy cattle. The chamber was 15 x 10 x 3 m; and the control system was fully computerized so that the field intensities can be varied and monitored continuously, on site or remotely. During exposure to EMF, milk production, feed consumption, and health were monitored closely and blood and cerebral spinal fluid were continuously sampled. The chamber characteristics allow use of a wide range of exposure such as electric fields (0-30 kV/m) and magnetic fields (0-100 microT) at frequencies ranging from 45 to 3000 Hz.  相似文献   

14.
Speed and accuracy of protein synthesis are fundamental parameters for the fitness of living cells, the quality control of translation, and the evolution of ribosomes. The ribosome developed complex mechanisms that allow for a uniform recognition and selection of any cognate aminoacyl-tRNA (aa-tRNA) and discrimination against any near-cognate aa-tRNA, regardless of the nature or position of the mismatch. This review describes the principles of the selection-kinetic partitioning and induced fit-and discusses the relationship between speed and accuracy of decoding, with a focus on bacterial translation. The translational machinery apparently has evolved towards high speed of translation at the cost of fidelity.  相似文献   

15.
In the field of orthopaedics, treatment of extremity deformities can be realised by means of external fixators. However, control of such biomedical system is very difficult. Some different mathematical models have been developed to improve quality of this service. Most of the parameters, which are used in these models, have been obtained from two orthogonal X-ray images: one from anteroposterior, AP, direction and the other from a lateral, L, direction. The quality of the results of this model is dependent on the accuracy of the input parameters. Measuring these parameters is a time-consuming issue, and the accuracy of the results is also low. To increase the quality of the measurement, the reference points should be chosen from the edges of the biomedical system, and it is important to find the edges without noise. To achieve this purpose, Sobel edge detector, binary large object analysis, thresholding and inverting are applied as image processing steps. The results are compared with manual measurement values which have been obtained earlier. The results show that semi-automatic measurement of the parameters is more accurate and faster than manual measurement. It shows that the efficiency of the fixator method has been improved.  相似文献   

16.
Recent circulating tumor DNA (ctDNA) research has demonstrated its potential as a non-invasive biomarker for cancer. However, the deployment of ctDNA assays in routine clinical practice remains challenging owing to variability in analytical approaches and the assessment of clinical significance. A well-developed, analytically valid ctDNA assay is a prerequisite for integrating ctDNA into cancer management, and an appropriate analytical technology is crucial for the development of a ctDNA assay. Other determinants including pre-analytical procedures, test validation, internal quality control (IQC), and continual proficiency testing (PT) are also important for the accuracy of ctDNA assays. In the present review, we will focus on the most widely used ctDNA detection technologies and the key quality management measures used to assure the accuracy of ctDNA assays. The aim of this review is to provide useful information for technology selection during ctDNA assay development and assure a reliable test result in clinical practice.  相似文献   

17.
In the field of orthopaedics, treatment of extremity deformities can be realised by means of external fixators. However, control of such biomedical system is very difficult. Some different mathematical models have been developed to improve quality of this service. Most of the parameters, which are used in these models, have been obtained from two orthogonal X-ray images: one from anteroposterior, AP, direction and the other from a lateral, L, direction. The quality of the results of this model is dependent on the accuracy of the input parameters. Measuring these parameters is a time-consuming issue, and the accuracy of the results is also low. To increase the quality of the measurement, the reference points should be chosen from the edges of the biomedical system, and it is important to find the edges without noise. To achieve this purpose, Sobel edge detector, binary large object analysis, thresholding and inverting are applied as image processing steps. The results are compared with manual measurement values which have been obtained earlier. The results show that semi-automatic measurement of the parameters is more accurate and faster than manual measurement. It shows that the efficiency of the fixator method has been improved.  相似文献   

18.
Process analytical technology is gaining interest in the biopharmaceutical industry as a means to enable consistency in processing and thereby in product quality via process control. Protein refolding is known to be significantly impacted by critical process parameters and feed material attributes including composition and pH of the solubilisation and refolding buffers. Hence, to achieve robust process control and product quality, these attributes and parameters need to be monitored. This paper presents an approach towards statistical process control and monitoring of protein refolding, from buffer preparation to refold quenching, during manufacturing of therapeutic proteins from Escherichia coli based systems. The proposed approach utilises measurements of online redox potential, temperature, and pH for development of a statistical model. The model has then been integrated with LabView to permit real-time monitoring of the refolding process. The proposed system has been demonstrated to successfully identify process deviations and thereby enable process control for manufacturing product of consistent quality.  相似文献   

19.
All next-generation sequencing (NGS) procedures include assays performed at the laboratory bench ("wet bench") and data analyses conducted using bioinformatics pipelines ("dry bench"). Both elements are essential to produce accurate and reliable results, which are particularly critical for clinical laboratories. Targeted NGS technologies have increasingly found favor in oncology applications to help advance precision medicine objectives, yet the methods often involve disconnected and variable wet and dry bench workflows and uncoordinated reagent sets. In this report, we describe a method for sequencing challenging cancer specimens with a 21-gene panel as an example of a comprehensive targeted NGS system. The system integrates functional DNA quantification and qualification, single-tube multiplexed PCR enrichment, and library purification and normalization using analytically-verified, single-source reagents with a standalone bioinformatics suite. As a result, accurate variant calls from low-quality and low-quantity formalin-fixed, paraffin-embedded (FFPE) and fine-needle aspiration (FNA) tumor biopsies can be achieved. The method can routinely assess cancer-associated variants from an input of 400 amplifiable DNA copies, and is modular in design to accommodate new gene content. Two different types of analytically-defined controls provide quality assurance and help safeguard call accuracy with clinically-relevant samples. A flexible "tag" PCR step embeds platform-specific adaptors and index codes to allow sample barcoding and compatibility with common benchtop NGS instruments. Importantly, the protocol is streamlined and can produce 24 sequence-ready libraries in a single day. Finally, the approach links wet and dry bench processes by incorporating pre-analytical sample quality control results directly into the variant calling algorithms to improve mutation detection accuracy and differentiate false-negative and indeterminate calls. This targeted NGS method uses advances in both wetware and software to achieve high-depth, multiplexed sequencing and sensitive analysis of heterogeneous cancer samples for diagnostic applications.  相似文献   

20.
Ha BH  Kim EE 《BMB reports》2008,41(6):435-443
Post-translational modifiers can alter the function of proteins in many different ways. The conjugation of ubiquitin (Ub) and ubiqutin-like modifiers (Ubls) to proteins has been shown to be especially crucial in regulating a variety of cellular processes including the cell cycle, growth control, quality control, localization and many more. It is a highly dynamic process and involves a number of enzymes called E1, E2 and E3. Ub and Ubls are removed from the target proteins by deubiquitinating enzymes (DUBs) or Ubl-specific proteases (ULPs), thereby deconjugation can act as an additional level of control over the ubiquitin-conjugation system. In addition, DUBs and ULPs are responsible for activating Ub and Ubls from their inactive corresponding precursor forms. Here we review recent progress in molecular details of these deconjugating enzymes of Ubls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号