首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seeds of Norway maple ( Acer platanoides L.) differing in water content (10, 20 and 30%) were stored for 6 weeks at 20 to 30°C. During this period changes in phospholipids and fatty acids as well as in seed viability and germination capacity were studied. A considerable decrease in the phospholipid content was observed, which depended on the water content in the seeds and was related to the decrease of the seed germination capacity. The level of linoleic (18:2) and linolenic (18:3) acids in the phospholipid fraction decreased considerably in the course of the accelerated seed ageing. The results obtained suggest that phospholipid degradation and peroxidation of unsaturated fatty acids, followed by membrane destruction, play a considerable role in maple seed ageing.  相似文献   

2.
The effects of dry heat, wet heat, charred wood and smoke on the germination of dormant soil‐stored seeds from a Eucalyptus woodland in western Victoria were tested by using a glasshouse seed‐bank germination experiment. Seedling density, species richness and species composition were compared between replicated treated and control samples. A total of 5922 seedlings, comprising 59 plant species, was recorded from the soil samples over a period of 150 days. While a few species dominated (including Centrolepis strigosa, Wahlenbergia gracilenta and Ixodia achillaeoides), 26 species were represented by fewer than five seedlings and 18 species were restricted to single treatment types. With the exception of charred wood, all treatments led to a significant increase in seed germination relative to the control. The highest number of germinants was obtained for the smoke treatment, with a mean (± SE) of 12 547 ± 449 seedlings m–2. Heat treatments yielded intermediate densities, with means (± SE) varying between 7445 ± 234 and 9133 ± 445 seedlings m–2. In comparison with the estimates of seed‐bank sizes from other fire‐prone ecosystems, these densities are high. Species richness differed significantly among treatments. Highest mean richness was recorded in the smoke treatment and lowest for the control and charred wood treatments. There were significant differences in seed‐bank species composition between treatment types based on analysis of similarity (Anosim) using Bray–Curtis similarity. While heat was a specific requirement for triggering germination in hard‐seeded species (e.g. Fabaceae), smoke was the most effective trigger for species from a broad range of other families. The potentially confounding effect of physical and chemical mechanisms of germination stimulation in heated bulk soil samples is raised as an issue requiring further investigation in relation to the role of smoke as a germination trigger.  相似文献   

3.
Abstract Many species found in fire‐prone habitats that possess a soil‐stored seedbank only recruit seedlings in large numbers following a fire. Fire‐related germination cues are presumably used by these seeds as signals that a fire has occurred, and would include the heating that occurs in the soil and the combustion products of burning vegetation, smoke and charcoal. Three Sydney species, Grevillea buxifolia (Sm.) R. Br., Grevillea sericea (Sm.) R. Br. and Grevillea speciosa (Knight) McGillivray, were studied for the interactive effects of these cues on their germination. The germination of all species was found to increase with both smoke and heat treatments. While smoke always had a greater influence than heat, the relationship between the two treatments varied with species. The presence of two fire‐related germination cues should allow these species to take better advantage of the recruitment opportunities of the post‐fire environment.  相似文献   

4.
Fire affects grassland composition by selectively influencing recruitment. Some exotic species can increase their abundance as a consequence of fire-stimulated seed germination, but response may depend on seed age. Rumex acetosella L. (Polygonaceae, sheep's sorrel) is a cosmopolitan herb that has invaded NW Patagonia's grasslands. This species forms persistent soil seed banks and increases after disturbances, particularly fire. We studied how fire and seed longevity influence R. acetosella germination. In 2008, we conducted laboratory experiments where we exposed different-aged seeds (up to 19 years old) to heat, smoke, charcoal, ash and control treatments. Total percentage germination and mean germination time depended on both seed age and fire treatment. Germination of younger seeds decreased with increasing temperature. There was no general pattern in germination responses of different-aged seeds to smoke, charcoal and ash. While smoke improved the germination of fresh seeds, charcoal decreased germination. Germination of untreated seeds was negatively correlated with seed age, and mean germination time increased with seed age. In most treatments, fresh seeds had lower germination than 1-5-year-old seeds, indicating an after-ripening requirement. Smoke stimulates R. acetosella germination, causing successful recruitment during post-fire conditions. Fresh seeds are particularly responsive to fire factors, possibly because they have not experienced physical degradation and are more receptive to environmental stimuli. Knowing the colonisation potential from the soil seed bank of this species during post-fire conditions will allow us to predict their impact on native communities.  相似文献   

5.
Many plant species are dependent on soil‐stored seeds for their persistence in fire‐prone systems. Seed germination is often stimulated by fire‐related cues including heat and smoke, but the way these cues promote germination may differ between structurally distinct plant communities with historically different fire regimes. In this study, we examined the effects of heat, smoke and their interactions on the germination of soil‐stored seeds from shrubby woodlands and herbaceous forests in south‐east Australia. The effect of these treatments on species richness, diversity and composition, and species richness and density of germinants within life‐forms (grass, forb and shrub) were assessed. Soils from each community were subjected to low heat (40°C), low heat with smoke, smoke, high heat (80°C), high heat with smoke and untreated (control) before being placed in a glasshouse, where the germinants were identified and counted. Greater species richness was stimulated by high heat treatments and smoke in both communities, a trend driven by shrubs and forbs, rather than grasses. Greater species diversity was stimulated by high heat with smoke in both communities. Greater densities of grass germinants were stimulated by all treatments, except low heat, in both communities. For forbs and shrubs, the effect of treatment depended on community. Compared to the control, low heat with smoke (forbs) and both low heat and low heat with smoke (shrubs) increased densities in the woodland but not in the forest. There were unique species compositions, different from the control, in all treatments in the forest but not in the woodland, where composition in low heat was not different from the control. These results indicate the importance of high soil temperatures and smoke in both communities. In the absence of wildfires, recurring prescribed burns that heat the soil to low temperatures are likely to reduce plant richness, diversity, and density resulting in a change in understorey species composition and structure.  相似文献   

6.
BACKGROUND AND AIMS: Following a period of burial, more Actinotus leucocephalus (Apiaceae) and Tersonia cyathiflora (Gyrostemonaceae) seeds germinate in smoke water. The main aim of this study was to determine whether these fire-ephemeral seeds exhibit annual dormancy cycling during burial. This study also aimed to determine the effect of dormancy alleviation on the range of light and temperature conditions at which seeds germinate, and the possible factors driving changes in seed dormancy during burial. METHODS: Seeds were collected in summer, buried in soil in mesh bags in autumn and exhumed every 6 months for 24 months. Germination of exhumed and laboratory-stored (15 degrees C) seeds was assessed at 20 degrees C in water or smoke water. Germination response to light or dark conditions, incubation temperature (10, 15, 20, 25 and 30 degrees C), nitrate and gibberellic acid were also examined following burial or laboratory storage for 24 months. In the laboratory seeds were also stored at various temperatures (5, 15, 37 and 20/50 degrees C) for 1, 2 and 3 months followed by germination testing in water or smoke water. KEY RESULTS: The two species exhibited dormancy cycling during soil burial, producing low levels of germination in response to smoke water when exhumed in spring and high levels of germination in autumn. In autumn, seeds germinated in both light and dark and at a broader range of temperatures than did laboratory-stored seeds, and some Actinotus leucocephalus seeds also germinated in water alone. Dormancy release of Actinotus leucocephalus was slow during dry storage at 15 degrees C and more rapid at higher temperatures (37 and 20/50 degrees C); weekly wet/dry cycles further accelerated the rate of dormancy release. Cold stratification (5 degrees C) induced secondary dormancy. By contrast, no Tersonia cyathiflora seeds germinated following any of the laboratory storage treatments. CONCLUSIONS: Temperature and moisture influence dormancy cycling in Actinotus leucocephalus seeds. These factors alone did not simulate dormancy cycling of Tersonia cyathiflora seeds under the conditions tested.  相似文献   

7.
Pepper ( Capsicum annuum L. cv. Keystone Resistance Giant 3) seeds were monitored during priming to determine if seed treatments which accelerate the rate of germination could be correlated with specific physiological changes within the seeds. Pepper seeds primed with −0.90 and −1.35 MPa NaCl solutions at 23°C for 18 days did not completely equilibrate with the osmotic potential of the priming solution. Seed respiratory rates indicated that priming extends the lag phase of germination following imbibition. Soluble protein levels increased 115% in primed seeds, and the uptake and incorporation of [14C(U)] labelled amino acids into the acid insoluble fraction increased throughout the priming treatments. Alcohol dehydrogenase (EC 1.1.1.1, anaerobic metabolism), glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44, pentose phosphate pathway) activities remained stable throughout the priming treatment, but were higher after 6 days. than the water-imbibed controls. Aldolase (EC 4.2.1.1. glycolysis) and isocitrate lyase (EC 4.1.3.1, glyoxylate cycle) activities increased with imbibition and were 61 and 56% (respectively) higher in primed seeds as compared to the water-imbibed controls after 12 days. Treatment with the −0.90 MPa NaCl solution was more effective than the −1.35 MPa solution in improving the rate of germination, yet there were no significant differences between the protein concentrations or enzyme activities of the two priming treatments. However, the incorporation of labelled amino acids into pepper seeds was significantly higher in the −0.90 MPa priming treatment.  相似文献   

8.
Mature canoia ( Brassica napus cv. Westar) seeds contain large quantities of the storage proteins cruciferin and napin and storage lipids rich in C18: 1 and C18:2 fatty acids. Both the quantity and quality of these products are altered by freezing during development. Further, the response to freezing changes during seed development. The effects include decreased fatty acid chain elongation, altered fatty acid unsaturation, higher lipid levels and lower protein levels. In addition, seeds in the pivotal moisture range (55%) may be predisposed to precocious germination, which is then inhibited by a lack of adequate seed moisture. The results indicate that freezing imparts its effect in two ways. Initially, there is a freezing (low temperature) component and this is followed by rapid desiccation of the seeds. Although most responses probably result from a combination of the stresses, it appears that inhibition of fatty acid chain elongation is caused by the freezing component and the gradual inhibition of storage protein accumulation is a result of accelerated seed desiccation.  相似文献   

9.
Field-collected, young plants of Ni hyperaccumulator Stackhousia tryonii, grown in a glasshouse for 20 weeks, were exposed to low- (available Ni concentration in the native serpentine soil, i.e. 60 microg g(-1) dry soil) and high- (external application of 1000 ppm) Ni concentrations in the substrate. Nickel concentration in the freeze-dried leaf tissues increased from 3700 microg g(-1) to 13 700 microg g(-1) with soil Ni supplementation, of which >60% was extracted with dilute acid (0.025 M HCl). Nickel supplementation also elicited a 575%, 211%, and 37% increase in the final concentrations of oxalic, citric, and malic acids, respectively, in leaf tissues. Malic acid was the dominant organic acid, followed by citric and oxalic acids. The molar ratio of Ni to malic acid was 1.0, consistent with a role for malate as a ligand for Ni in hyperaccumulating plants, supporting detoxification/transport and storage of this heavy metal in S. tryonii. The total amino acid concentrations in the xylem sap did not change with Ni supplementation (21.7+/-3.7 mM and 17.9+/-5 mM, respectively, for low- and high-nickel-treated plants). Glutamine was the major amino acid in both the low- and high-Ni-treated plants. The concentration of glutamine decreased by >60%, with a corresponding increase in alanine, aspartic acid, and glutamic acid, on exposure to high Ni. A role of amino acids in Ni complexation and transport in S. tryonii is not immediately apparent.  相似文献   

10.
Dormant seeds of 18 species from 9 families covering a diverse range of seed dormancy syndromes and life histories from the southwest Australian biodiversity hotspot were assessed for germinability following storage at 15–25°C for 36 months. A total of 10 species with physical dormancy (PY) and 8 with either physiological dormancy (PD) or morphophysiological dormancy (MPD) were assessed as part of the study. Prior to storage, germination from dormant seeds was 1–27%, rising to 41–100% following specific dormancy‐breaking treatments. When seed dormancy was removed prior to storage for 36 months seeds from all species were found to maintain a nondormant state and germinate to a similar level to that observed at the beginning of the experiment (44–100%). Likewise, seeds that did not receive a prestorage dormancy‐breaking treatment maintained a dormant state (0–50% germination) and subsequently responded well to a dormancy‐breaking treatment immediately prior to germination assessment (49–99%). There were minimal differences in response to dormancy‐breaking treatments before and after 36 months storage (average 4–6% difference) and in the germination responses observed between both storage environments assessed (15°C/15% eRH or 15–25°C air dried). Based on these findings, storing seeds in a nondormant state does not alter germinability and this approach provides significant benefits to current seed‐based restoration programs through reduction of double handling and improved seed use efficiency.  相似文献   

11.
The hypothesis that endogenous short chain fatty acids (C 6-C 10) are important in maintaining seeds of wild oat (Avena fatua L.) in the dormant state by acting as natural germination inhibitors (Berrie, Buller, Don, Parker, 1979 Plant Physiol 63: 758-764) was investigated. When germination of nondormant seeds was inhibited by treatment with short chain fatty acids, the seeds did not revert to a similar biochemical and physiological state as exhibited by dormant seeds. First, nonanoic acid-induced inhibition of seed germination was not reversed by hormone treatments which normally break dormancy in wild oat seeds. Second, nondormant seeds treated with short chain fatty acids maintained similar relative proportions of the pentose phosphate pathway and the Embden-Meyerhoff-Parnas pathway for respiratory glucose metabolism as that found in the nondormant controls. Seeds imbibed in the presence of nonanoic acid lost more amino acids and proteins into the imbibition solution than did the untreated controls, suggesting membrane damage had occurred. Inasmuch as increasing concentrations of nonanoic acid also progressively reduced the growth of the coleoptile and roots of intact seedlings until all growth ceased and no germination occurred, the inhibition of seed germination could be due to a nonspecific inhibition of growth of the embryo, perhaps because of disruption of membrane structure and function. Finally, no correlation between endogenous levels of short chain fatty acids in seeds or isolated embryonic axes and seed dormancy could be demonstrated.  相似文献   

12.
Lithium aluminum deuteride reduction released aliphatic monomers from the inner seed coat fraction but not from the outer seed coat fraction of mature apples. These monomers were identified by GC/MS and the results indicate that the inner coat of apple seed contains a cutin polymer with the major monomer acids being 18-hydroxyoctadec-9-enoic (31%), 9,10-epoxy-18-hydroxyoctadecanoic (28%) and 9,10,18-trihydroxyoctadecanoic (20 %). The monomer composition of this seed coat cuticular polymer was very similar in seeds taken from freshly harvested fruit and in those taken from fruit which had been stored at 4° for 6 months.  相似文献   

13.
The effects of plant‐derived smoke and of heat on the emergence of seedlings from seeds were assessed. Seeds had been stored in forest topsoil used for mine site rehabilitation. The study was carried out in a dry sclerophyll, spotted gum (Corymbia maculata), forest community at the Mount Owen open‐cut coal mine in the Hunter Valley region of New South Wales. Samples of the surface 2.5 cm of topsoil were either exposed to cool smoke from eucalypt foliage for 60 min, heated to 80°C, or left untreated. Seedling emergence from the seed bank in this soil was then monitored in a glasshouse. Within the first month, smoke alone promoted a 4.3‐fold increase in the density of seedlings relative to control. There were 540 emergents per m2 in the control and 2309 per m2 in the smoke treated topsoil. Many annual and perennial herbs emerged but grasses responded most strongly to smoke. Germination in seven of the 20 grass species was promoted by smoke. Smoke promoted the germination of some introduced species as well as native species, and accelerated the rate at which seedlings emerged, although these differences sometimes declined with time. Heat also stimulated germination but smoke and heat stimuli appeared to be complementary in their promotion of seedling emergence from the topsoil seed bank. Each treatment increased the density of different species, enhanced the species richness of different components of the seed bank, and had different effects on the rate of emergence. The results suggest that increased seed germination in the field immediately following a moderate intensity fire may sometimes be the result of smoke stimulation and sometimes the result of heat stimulation of the soil seed bank. These findings may have important implications for minesite revegetation programs where topsoils are replaced after mining and rapid germination of seeds stored in these soils is required during short periods when conditions are favourable for germination.  相似文献   

14.
三药槟榔种子休眠与萌发的研究   总被引:5,自引:0,他引:5  
对三药槟榔种子休眠和萌发的基本特性进行研究,结果表明种子的休眠属于综合休眠;种壳对种子 萌发的抑制作用不是由于其对水分透过的限制,而是种皮的机械束缚和透气性差;种子还需要一段低温的生 理后熟过程才能解除休眠。种子经0.2%的高锰酸钾溶液浸泡15 min,0.3%亚硝酸钠和0.2%的硝酸钾溶液 浸种24℃后,发芽速度均显著加快,以0.3%亚硝酸钠处理效果为最佳。种子在15、4℃和室温(昼24~32 ℃/夜18~24℃)三种不同温度下贮藏60 d后,在4℃贮藏的种子发芽情况最好。种子不耐脱水,采用硅胶脱 水,含水量降低至22%以下,种子活力显著降低。  相似文献   

15.
Seeds of beech (Fagus sylvatica L.) that have been subjected to dormancy breaking consisting of 10 weeks of prechilling at 3 °C and 34 % water content (WC) and then desiccation to 10 % WC, are non-dormant (ND). ND seeds are characterised by greater sensitivity to storage conditions, than no prechilled, dormant (D) seeds. The aim of the present work was to investigate factors affecting the loss of seed viability during storage of D and ND beech seeds at different temperatures (4 and 20 °C) and humidity levels (45 and 75 % RH) for 3 weeks. In general, both D and ND seeds maintained a high germination capacity after storage at 4 °C. At 20 °C and 45 and 75 % RH the germination capacity of D seeds diminished to 80 and 28 %, respectively. Under the same conditions, ND seeds lost germination capacity to a greater degree, with only 62 and 7 % germinated seeds, respectively. At 20 °C, an increase in production of reactive oxygen species was observed, and the increase was significantly higher in ND seeds. The loss of germination capacity was coincident with an increase in electrolyte leakage and accumulation of free fatty acids, which suggests that membrane deterioration was the cause of the decline in germinability. ND seeds stored at 20 °C and 45 and 75 % RH showed a greater decrease than D seeds in contents of the primary phospholipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE) as well as in polyunsaturated fatty acids (18:2 and 18:3). ND seeds possessed more unsaturated fatty acids, especially 18:3, than D seeds in the phospholipid fraction before storage. D seeds were characterised by a significantly higher level of α-tocopherol and UV-absorbing phenols. The level of ascorbate was similar in D and ND seeds. D seeds contained glutathione in both reduced (GSH) and oxidised (GSSG) forms, and GSSG dominated GSH. ND seeds contained more GSSG form than D seeds. We concluded that the membranes of ND seeds are exposed to greater oxidative stress during storage due to higher levels of unsaturation and lower levels of α-tocopherol, the main antioxidant that protects membranes against free radical attack.  相似文献   

16.
Giant ragweed (Ambrosia trifida, L. henceforth referred to as GR), an annual non‐native invasive weed, may cause health problems and can reduce agricultural productivity. Chemical control of GR in grasslands may have irreversible side effects on herbs and livestock. In an attempt to propose a solution to the harmful effects of GR on grasslands, this study explores the fate of its soil seed bank (SSB) and considers the physical control of its SSB reduction. By studying GR distributed in grasslands of the Yili Valley, Xinjiang, China, we measured the spatial and temporal changes in seed density, seed germination, dormancy, and death. We analyzed seed germination, dormancy, and death following different storage periods. The study analyzed population characteristics over time, including seed fate, and examined physical control methods for reducing the SSB density. The SSB of GR occurs in the upper 0–15 cm of soil in grasslands. Seed density in the SSB decreased by 68.1% to 82.01% from the reproductive growth period to the senescence period. More than 98.7% of the seeds were rotten, eaten, germinated, dispersed, or died within one year after being produced. The seed germination rate of the SSB decreased with the number of years after invasion. When stored for 0.5 or 3.5 years, seed germination rates fell by 40%, during which time seed death rate increased by almost 40%. When GR was completely eradicated for two consecutive years, the SSB and population densities decreased by >99%. The vast majority of GR seeds germinated or died within one year; the germination rate decreased significantly if the seeds were stored dry at room temperature for a long time. Newly produced seeds are the main source of seeds in the SSB. Therefore, thoroughly eradicating GR plants for several years before the seeds can mature provides an effective control method in grasslands.  相似文献   

17.
Under stress integrated germination test (SIGT), seeds undergo osmo-saline stresses, which enable to detect differences in vigour of long-term stored seeds with high germination percentage (G%). The quality of Brassica villosa subsp. drepanensis seeds stored in a genebank (at ? 20°C for 16 years) was compared with seeds at harvest by standard germination tests (GT), SIGT and cytogenetic analysis. No differences were detected in G% and mean germination time under GT. Conversely, SIGT performed with NaCl ? 0.9 MPa osmotic potential did not influence G% at harvest but reduced that of stored seeds, SIGT at ? 1.4 MPa reduced G% of both. Cytogenetic analysis showed reduction of mitotic index, appearance of chromosomal aberrations and smaller nucleoli in stored seeds compared with harvest seeds germinated in water. SIGT at ? 0.9 MPa had no effect on mitotic index, but increased chromosome aberrations and nucleoli number. SIGT at ? 1.4 MPa inhibited G% of harvest and stored seeds, reduced mitoses in harvest and completely prevented it in stored seeds. The results indicate that GT does not faithfully reflect the quality of stored seeds, with misinterpretation of their vigour, whereas SIGT and cytogenetical parameters are sensitive, reliable and inexpensive methods for early prediction of genetic erosion in germplasm banks.  相似文献   

18.
The effects of a plant-derived smoke extract, BA and GA3 on the thermodormancy of Grand Rapids lettuce seeds were studied. Thermodormant lettuce seeds treated either with BA, GA3 or smoke extract alone did not germinate. Combinations of BA with smoke extract and BA with GA3 were most effective in overcoming induced thermodormancy. GA3 plus smoke did not break the induced thermodormancy. The effects of the different treatments on germination were concentration dependent. BA was most effective at 10–5 to 10–3 M in combination with smoke dilutions 1:5,000 to 1:1,000,000 in overcoming thermodormancy.Abbreviations BA N6-benzyladenine; - GA3 gibberellic acid; - SM smoke extract  相似文献   

19.
  • Under Mediterranean climates with dry‐hot summers and cool‐wet winters, many forbs with potential for habitat restoration are winter annuals, but there is little information about their germination.
  • We performed laboratory germination experiments on 13 ruderal dicots native to Andalusia (southern Spain). We measured the germination of recently harvested seeds from natural populations across nine temperature treatments (from 5 to 35 °C, constant and alternate); two storage periods; and eight water stress treatments (from 0 to ?1.0 MPa). We then calculated the hydrothermal thresholds for seed germination.
  • Final germination ranged from 0–100% and results were mixed in response to temperature. Base temperature was below 6 °C, optimal temperature was around 14 °C and the ceiling temperature around 23 °C. For five species, 10 months of storage improved total germination, indicating a dormancy‐breaking effect, but the other species did not respond or had their germination reduced. All species were relatively tolerant to water stress, with base water potential ranging from ?0.8 to ?1.8 MPa.
  • Our results suggest that hydrothermal germination thresholds, rather than physiological dormancy, are the main drivers of germination phenology in annual forbs from Mediterranean semi‐dry environments. The variation in germination responses of these forb species differs from winter annual grasses, but their seeds are all suitable for being stored before restoration.
  相似文献   

20.
以索氏提取法为对照,采用超临界二氧化碳(SC-CO_2)萃取韭菜籽油,气相色谱-质谱联用技术(GC-MS)对韭菜籽油成分进行分析,NIST 02质谱数据库对其进行分析和鉴定.结果表明,SC-CO_2萃取压力为22.25 MPa、温度为40.40℃条件下萃取86.7 min时,萃取得率为17.52%,共分离鉴定出17种物质,其中,饱和脂肪酸以棕榈酸(6.25%)为主,占脂肪酸总量的 9.05%;不饱和脂肪酸主要是亚油酸(69.71%)和油酸(19.53%),占脂肪酸总量的90.50%.采用索氏提取得率为16.50%,共鉴定出10种物质,饱和脂肪酸以棕榈酸(7.22%)为主,占总脂肪酸量的9.84%;不饱和脂肪酸主要是亚油酸(69.34%)和油酸(20.12%),不饱和脂肪酸占脂肪酸总量的90.16%.另外SC-CO_2萃取韭菜籽油还检出单不饱和脂肪酸7-棕榈烯酸、角鲨烯和β-谷甾醇.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号