首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Due to concerns with biomass collection systems and soil sustainability there are opportunities to investigate the optimal plant fractions to collect for conversion. An ideal feedstock would require a low severity pretreatment to release a maximum amount of sugar during enzymatic hydrolysis. Corn stover fractions were separated manually and analyzed for glucan, xylan, acid soluble lignin, acid insoluble lignin, and ash composition. The stover fractions were also pretreated with either 0%, 0.4%, or 0.8% NaOH for 2 h at room temperature, washed, autoclaved and saccharified. In addition, dilute sulfuric acid pretreated samples underwent simultaneous saccharification and fermentation (SSF) to ethanol. In general, the two pretreatments produced similar trends with cobs, husks, and leaves responding best to the pretreatments, the tops of stalks responding slightly less, and the bottom of the stalks responding the least. For example, corn husks pretreated with 0.8% NaOH released over 90% (standard error of 3.8%) of the available glucan, while only 45% (standard error of 1.1%) of the glucan was produced from identically treated stalk bottoms. Estimates of the theoretical ethanol yield using acid pretreatment followed by SSF were 65% (standard error of 15.9%) for husks and 29% (standard error of 1.8%) for stalk bottoms. This suggests that integration of biomass collection systems to remove sustainable feedstocks could be integrated with the processes within a biorefinery to minimize overall ethanol production costs.  相似文献   

2.
Maize (Zea mays L.) stover and cobs are potential feedstock sources for cellulosic ethanol production. Nitrogen (N) fertilization is an important management decision that influences cellulosic biomass and grain production, but its effect on cell wall composition and subsequent cellulosic ethanol production is not known. The objectives of this study were to quantify the responses of maize stover (leaves, stalks, husks, and tassel) and cob cell wall composition and theoretical ethanol yield potential to N fertilization across a range of sites. Field experiments were conducted at rainfed and irrigated sites in Minnesota, USA, over a 2-year period. Stover cell wall polysaccharides, pentose sugar concentration, and theoretical ethanol yield decreased as N fertilization increased. Stover Klason lignin increased with N fertilization at all sites. Cob cell wall composition was less sensitive to N fertilization, as only pentose and Klason lignin decreased with N fertilization at two and one site(s), respectively, and hexose increased with N fertilization at one of eight sites. Cob theoretical ethanol yield was not affected by N fertilization at any site. These results indicate variation in stover cellulosic ethanol production is possible as a result of N management. This study also demonstrated that cell wall composition and subsequent theoretical ethanol yield of maize cobs are generally more stable than those with stover because of overall less sensitivity to N management.  相似文献   

3.
Abstract: This article reports an assessment of the global warming potential associated with the life cycle of a biopolymer (poly(hydroxyalkanoate) or PHA) produced in genetically engineered corn developed by Monsanto. The grain corn is harvested in a conventional manner, and the polymer is extracted from the corn stover (i.e., residues such as stalks, leaves and cobs), which would be otherwise left on the field. While corn farming was assessed based on current practice, four different hypothetical PHA production scenarios were tested for the extraction process. Each scenario differed in the energy source used for polymer extraction and compounding, and the results were compared to polyethylene (PE). The first scenario involved burning of the residual biomass (primarily cellulose) remaining after the polymer was extracted from the stover. In the three other scenarios, the use of conventional energy sources of coal, oil, and natural gas were investigated. This study indicates that an integrated system, wherein biomass energy from corn stover provides energy for polymer processing, would result in a better greenhouse gas profile for PHA than for PE. However, plant-based PHA production using fossil fuel sources provides no greenhouse gas advantage over PE, in fact scoring worse than PE. These results are based on a "cradle-to-pellet" modeling as the PHA end-of-life was not quantitatively studied due to complex issues surrounding the actual fate of postconsumer PHA.  相似文献   

4.
Saccharification of five cellulosic wastes, i.e. rice husks, wheat bran, corn cobs, wheat straw and rice straw by three cellulytic fungi, i.e. Aspergillus glaums MN1, Aspergillus oryzae MN2 and Penicillium purpurogenum MN3, during solid-state fermentation (SSF) was laboratory studied. Rice husks, wheat bran, and corn cobs were selected as inducers of glucose production in the tested fungi. An incubation interval of 10 days was optimal for glucose production. Maximal activities of the cellulases FP-ase, CMC-ase, and p-glucosidase were detected during SSF of rice husks by P. purpurogenum; however, a-amylase activity (7.2 U/g) was comparatively reduced. Meanwhile, the productivities of FP-ase, CMC-ase, and β-glucosidase were high during SSF of rice husks by A glaucus; however, they decreased during SSF of corn cobs by P. purpurogenum. Addition of rock phosphate (RP) (75 mg P2O5) decreased the pH of SSF media. (NH4)2SO4 was found to be less inducer of cellulytic enzymes, during SSF of rice husks by A. glaucus or A. oryzae; it also induced phytase production and solubilization of RP. The organic acids associated with saccharification of the wastes studied have also been investigated. The highest concentration of levulinic acid was detected (46.15 mg/g) during SSF of corn cobs by P. purpurogenum. Likewise, oxalic acid concentration was 43.20 mg/g during SSF of rice husks by P. purpurogenum.  相似文献   

5.
One-pass harvest equipment has been developed to collect corn (Zea mays L.) grain, stover, and cobs that can be used as bioenergy feedstock. Nutrients removed in these feedstocks have soil fertility implication and affect feedstock quality. The study objectives were to quantify nutrient concentrations and potential removal as a function of cutting height, plant organ, and physiological stage. Plant samples were collected in 10-cm increments at seven diverse geographic locations at two maturities and analyzed for multiple elements. At grain harvest, nutrient concentration averaged 5.5 g?N kg?1, 0.5 g?P kg?1, and 6.2 g?K kg?1 in cobs, 7.5 g?N kg?1, 1.2 g?P kg?1, and 8.7 g?K kg?1 in the above-ear stover fraction, and 6.4 g?N kg?1, 1.0 g?P kg?1, and 10.7 g?K kg?1 in the below-ear stover fraction (stover fractions exclude cobs). The average collective cost to replace N, P, and K was $11.66 Mg?1 for cobs, $17.59 Mg?1 for above-ear stover, and $18.11 Mg?1 for below-ear stover. If 3 Mg ha?1 of above-ear stover fraction plus 1 Mg of cobs are harvested, an average N, P, and K replacement cost was estimated at $64 ha?1. Collecting cobs or above-ear stover fraction may provide a higher quality feedstock while removing fewer nutrients compared to whole stover removal. This information will enable producers to balance soil fertility by adjusting fertilizer rates and to sustain soil quality by predicting C removal for different harvest scenarios. It also provides elemental information to the bioenergy industry.  相似文献   

6.
To prepare for a 2014 launch of commercial scale cellulosic ethanol production from corn/maize (Zea mays L.) stover, POET-DSM near Emmetsburg, IA has been working with farmers, researchers, and equipment dealers through “Project Liberty” on harvest, transportation, and storage logistics of corn stover for the past several years. Our objective was to evaluate seven stover harvest strategies within a 50-ha (125 acres) site on very deep, moderately well to poorly drained Mollisols, developed in calcareous glacial till. The treatments included the following: conventional grain harvest (no stover harvest), grain plus a second-pass rake and bale stover harvest, and single-pass grain plus cob-only biomass, grain plus vegetative material other than grain [(MOG) consisting of cobs, husks, and upper plant parts], grain plus all vegetative material from the ear shank upward (high cut), and all vegetative material above a 10 cm stubble height (low cut), with a John Deere 9750 STS combine, and grain plus direct baling of MOG with an AgCo harvesting system. Average grain yields were 11.4, 10.1, 9.7, and 9.5 Mg ha?1 for 2008, 2009, 2010, and 2011, respectively. Average stover harvest ranged from 0 to 5.6 Mg ha?1 and increased N, P, and K removal by an average of 11, 1.6, and 15 kg Mg?1, respectively. Grain yield in 2009 showed a significant positive response to higher 2008 stover removal rates, but grain yield was not increased in 2010 or 2011 due to prior-year stover harvest. High field losses caused the direct-bale treatment to have significantly lower grain yield in 2011 because the AgCo system could not pick up the severely lodged crop. We conclude that decreases in grain yield across the 4 years were due more to seasonal weather patterns, spatial variability, and not rotating crops than to stover harvest.  相似文献   

7.
Ethanol production using solid digestate (AD fiber) from a completely stirred tank reactor (CSTR) anaerobic digester was assessed comparing to an energy crop of switchgrass, and an agricultural residue of corn stover. A complete random design was fulfilled to optimize the reaction conditions of dilute alkali pretreatment. The most effective dilute alkali pretreatment conditions for raw CSTR AD fiber were 2% sodium hydroxide, 130 °C, and 3 h. Under these pretreatment conditions, the cellulose concentration of the AD fiber was increased from 34% to 48%. Enzymatic hydrolysis of 10% (dry basis) pretreated AD fiber produced 49.8 g/L glucose, while utilizing 62.6% of the raw cellulose in the AD fiber. The ethanol fermentation on the hydrolysate had an 80.3% ethanol yield. The cellulose utilization efficiencies determined that the CSTR AD fiber was a suitable biorefining feedstock compared to switchgrass and corn stover.  相似文献   

8.
The amount of corn stover that can be sustainably collected is estimated to be 80-100 million dry tonnes/yr (t/yr), a majority of which would be available to ethanol plants in the near term as only a small portion is currently used for other applications. Potential long-term demand for corn stover by non-fermentative applications in the United States is estimated to be about 20 million dry t/yr, assuming that corn stover-based products replace 50% of both hardwood pulp and wood-based particleboard, and that 50% of all furfural production is from corncobs. Hence, 60-80 million dry t/yr of corn stover should be available to fermentative routes. To achieve an ethanol production potential of 11 billion L (3 billion gal) per year (a target level for a non-niche feedstock), about 40% of the harvestable corn stover is needed. This amount should be available as long as the diversion of corn stover to non-ethanol fermentative products remains limited.  相似文献   

9.
A detailed model based on a non-dimensional transportation factor is developed to assess the economics of biomass collection, transportation, and storage. The optimum plant size for bio-refineries is investigated; ethanol production from corn stover via dilute acid hydrolysis is presented as a case study. The conversion of straight-line, farm-to-plant distances to road distances via a winding factor leads to a shift in the distribution of transportation distances towards shorter hauls. The capital investment scaling exponent was calculated using the model developed at the National Renewable Energy Laboratory (Aden et al., NREL/TP-510-32438, 2002) and found to be 0.7. The cost of the delivered corn stover is proportional to the square root of the inverse of the farmer participation; as a consequence, bio-fuel producers intending to use agricultural residues as feedstock should work towards a farmer participation of fifty percent. Costs associated with storage represent a significant portion of the production cost.  相似文献   

10.
Corn stover has great potential as a biomass feedstock due its widespread availability. However, storage characteristics of moist corn stover harvested from single-pass harvesters have not been well quantified. In 2007, whole-plant corn stover at 19.1–40.3% (w.b.) moisture content was stored for 237 days in aerobic piles, one covered and one uncovered, as well an anaerobic silo bag. In 2008, two stover materials—whole plant and cob/husk from 31.7% to 58.1% (w.b.) moisture—were stored for 183 or 204 days in covered and uncovered anaerobic piles, ventilated bags, or anaerobic silo bags. Stover stored in uncovered piles was rehydrated by precipitation, which increased biological activity resulting in dry matter (DM) losses from 8.2% to 39.1% with an average of 21.5%. Stover in covered piles was successfully conserved when the average moisture was less than 25% (w.b.) with DM losses of 3.3%. Stover above 36% (w.b.) moisture and piled under a plastic cover had DM losses from 6.4% to 20.2% with an average of 11.9%. Localized heating occurred in the aerobic piles when moisture was above 45% (w.b.) which lead to temperatures where spontaneous combustion might be a concern (i.e., >70°C). Ambient air blown through a center tube in the ventilated storage bag dried stover near the tube to an average of 24.2% (w.b.), but the remainder of the bag averaged 46.8% (w.b.) at removal. Loss of DM ranged from 7.4% to 22.0% with an average of 11.8% with this storage method. Stover was most successfully conserved in the bags where anaerobic conditions were maintained. Under anaerobic conditions, DM losses ranged from 0.2% to 0.9%. When anaerobic conditions were not maintained in the silo bag, DM losses averaged 6.1% of DM. Anaerobic storage is the best solution for conserving the value of moist corn stover.  相似文献   

11.
5-(Chloromethyl) Furfural (CMF) is a potential chemical building block for replacing petroleum-derived chemicals derived from lignocellulosic feedstocks. In this study, hand harvested corn stover and mechanically forage chopped corn stover was processed in a 1 L hydrolysis reactor to produce CMF in a biphasic, two solvent system. Both 1,2 dichloroethane (DCE) and dichloromethane (DCM) were tested as organic solvents. The results showed that DCE performed better than DCM due to temperature and pressure limitations of the reactor system. Using DCE as the extracting solvent, the effects of solids loading, particle size, and moisture content of the corn stover on the hydrolysis efficiency were determined. One liter acid hydrolysis reactor provides consistent and reproducible yields of 63% CMF from hand harvested corn stover as feedstock at solid loading of 10% wt/v, 100C for 1 h. For the forage chopped corn stover, increasing particle size brings an increase in the feedstock sugar content. Foraged chopped corn stover (FCCS) particle sizes larger than 19 mm (0.75 in.) results in significant reduction in CMF yield from 43 to 35%.  相似文献   

12.
A biorefinery may produce multiple fuels from more than one feedstock. The ability of these fuels to qualify as one of the four types of biofuels under the US Renewable Fuel Standard and to achieve a low carbon intensity score under California’s Low Carbon Fuel Standard can be strongly influenced by the approach taken to their life cycle analysis (LCA). For example, in facilities that may co-produce corn grain and corn stover ethanol, the ethanol production processes can share the combined heat and power (CHP) that is produced from the lignin and liquid residues from stover ethanol production. We examine different LCA approaches to corn grain and stover ethanol production considering different approaches to CHP treatment. In the baseline scenario, CHP meets the energy demands of stover ethanol production first, with additional heat and electricity generated sent to grain ethanol production. The resulting greenhouse gas (GHG) emissions for grain and stover ethanol are 57 and 25 g-CO2eq/MJ, respectively, corresponding to a 40 and 74 % reduction compared to the GHG emissions of gasoline. We illustrate that emissions depend on allocation of burdens of CHP production and corn farming, along with the facility capacities. Co-product handling techniques can strongly influence LCA results and should therefore be transparently documented.  相似文献   

13.
Maize stover, including stalks, leaves, and cobs, has potential utility as a cellulosic biofeedstock. Understanding how total stover ethanol potential is affected by the proportion and quality of major plant components would facilitate the genetic improvement of stover quality and inform decisions regarding which plant parts should be targeted for harvesting. Our objectives were to determine how the proportion and composition of plant components affected ethanol potential and whether there are early season predictors of stover quality at maturity. Twenty-three hybrids were evaluated including 20 from a factorial mating design between five silage inbred lines and four commercial inbreds and a brown-midrib3, a Leafy1, and a commercial grain hybrid checks. Plants were harvested and dissected into component parts at developmental stages vegetative 3, vegetative 12, reproductive 3, and reproductive 6 (R6). Tissues were evaluated for acid detergent fiber (ADF), neutral detergent fiber (NDF), and NDF digestibility (NDFD). Stalk was the largest fraction of whole plant dry matter (46.2%) and had the lowest NDFD (3,750 g/kg) at R6. No relationship was found between stalk ADF at early developmental stages and whole plant ADF at R6, suggesting that quality at early developmental stages is not indicative of quality at physiological maturity. Differences were observed among hybrids for ADF and NDF for most plant parts evaluated. Hybrid-by-developmental stage and hybrid-by-plant part interactions were statistically significant. This indicates that there is minimal opportunity to identify superior hybrids for biofuel production based on the proportion of total biomass represented by a plant part and its quality at early developmental stages. Maximum conversion efficiency is attained when leaves are harvested compared to other tissue types at physiological maturity.  相似文献   

14.
Maize stover, including stalks, leaves, and cobs, has potential utility as a cellulosic biofeedstock. Understanding how total stover ethanol potential is affected by the proportion and quality of major plant components would facilitate the genetic improvement of stover quality and inform decisions regarding which plant parts should be targeted for harvesting. Our objectives were to determine how the proportion and composition of plant components affected ethanol potential and whether there are early season predictors of stover quality at maturity. Twenty-three hybrids were evaluated including 20 from a factorial mating design between five silage inbred lines and four commercial inbreds and a brown-midrib3, a Leafy1, and a commercial grain hybrid checks. Plants were harvested and dissected into component parts at developmental stages vegetative 3, vegetative 12, reproductive 3, and reproductive 6 (R6). Tissues were evaluated for acid detergent fiber (ADF), neutral detergent fiber (NDF), and NDF digestibility (NDFD). Stalk was the largest fraction of whole plant dry matter (46.2%) and had the lowest NDFD (375.0 g/kg) at R6. No relationship was found between stalk ADF at early developmental stages and whole plant ADF at R6, suggesting that quality at early developmental stages is not indicative of quality at physiological maturity. Differences were observed among hybrids for ADF and NDF for most plant parts evaluated. Hybrid-by-developmental stage and hybrid-by-plant part interactions were statistically significant. This indicates that there is minimal opportunity to identify superior hybrids for biofuel production based on the proportion of total biomass represented by a plant part and its quality at early developmental stages. Maximum conversion efficiency is attained when leaves are harvested compared to other tissue types at physiological maturity.  相似文献   

15.
This study addresses the uncertainties related to potential changes in land use and management and associated impacts on hydrology and water quality resulting from increased production of biofuel from the conventional and cellulosic feedstock. The Soil Water Assessment Tool (SWAT) was used to assess the impacts on regional and field scale evapotranspiration, soil moisture content, stream flow, sediment, and nutrient loadings in the Ohio River Basin. The model incorporates spatially and temporally detailed hydrologic, climate and agricultural practice data that are pertinent to simulate biofuel feedstock production, watershed hydrology and water quality. Three future biofuel production scenarios in the region were considered, including a feedstock projection from the DOE Billion‐Ton (BT2) Study, a change in corn rotations to continuous corn, and harvest of 50% corn stover. The impacts were evaluated on the basis of relative changes in hydrology and water quality from historical baseline and future business‐as‐usual conditions of the basin. The overall impact on water quality is an order of magnitude higher than the impact on hydrology. For all the three future scenarios, the sub‐basin results indicated an overall increase in annual evapotranspiration of up to 6%, a decrease in runoff up to 10% and minimal change in soil moisture. The sediment and phosphorous loading at both regional and field levels increased considerably (up to 40–90%) for all the biofuel feedstock scenario considered, while the nitrogen loading increased up to 45% in some regions under the BT2 Study scenario, decreased up to 10% when corn are grown continuously instead of in rotations, and changed minimally when 50% of the stover are harvested. Field level analyses revealed significant variability in hydrology and water quality impacts that can further be used to identify suitable locations for the feedstock productions without causing major impacts on water quantity and quality.  相似文献   

16.
Corn stover is a promising feedstock for bioethanol production because of its abundant availability in China. To obtain higher ethanol concentration and higher ethanol yield, liquid hot water (LHW) pretreatment and fed-batch semi-simultaneous saccharification and fermentation (S-SSF) were used to enhance the enzymatic digestibility of corn stover and improve bioconversion of cellulose to ethanol. The results show that solid residues from LHW pretreatment of corn stover can be effectively converted into ethanol at severity factors ranging from 3.95 to 4.54, and the highest amount of xylan removed was approximately 89%. The ethanol concentrations of 38.4 g/L and 39.4 g/L as well as ethanol yields of 78.6% and 79.7% at severity factors of 3.95 and 4.54, respectively, were obtained by fed-batch S-SSF in an optimum conditions (initial substrate consistency of 10%, and 6.1% solid residues added into system at the prehydrolysis time of 6 h). The changes in surface morphological structure, specific surface area, pore volume and diameter of corn stover subjected to LHW process were also analyzed for interpreting the possible improvement mechanism.  相似文献   

17.
Three corn feedstocks (fibers, cobs and stover) available for sustainable second generation bioethanol production were subjected to pretreatments with the aim of preventing formation of yeast-inhibiting sugar-degradation products. After pretreatment, monosaccharides, soluble oligosaccharides and residual sugars were quantified. The size of the soluble xylans was estimated by size exclusion chromatography. The pretreatments resulted in relatively low monosaccharide release, but conditions were reached to obtain most of the xylan-structures in the soluble part. A state of the art commercial enzyme preparation, Cellic CTec2, was tested in hydrolyzing these dilute acid-pretreated feedstocks. The xylose and glucose liberated were fermented by a recombinant Saccharomyces cerevisiae strain. In the simultaneous enzymatic saccharification and fermentation system employed, a concentration of more than 5% (v/v) (0.2 g per g of dry matter) of ethanol was reached.  相似文献   

18.
Cui F  Li Y  Wan C 《Bioresource technology》2011,102(2):1831-1836
Mixed cultures of Lactobacillus rhamnosus and Lactobacillus brevis was studied for improving utilization of both cellulose- and hemicellulose-derived sugars from corn stover for lactic acid production. During simultaneous saccharification and fermentation (SSF) of NaOH-treated corn stover by the mixed cultures, a lactic acid yield of 0.70 g/g was obtained, which was about 18.6% and 29.6% higher than that by single cultures of L. rhamnosus and L. brevis, respectively. Our results indicated that lactic acid yield from NaOH-pretreated corn stover by mixed cultures of L. rhamnosus and L. brevis was comparable to that from pure sugar mixtures (0.73 g/g of glucose/xylose mixture at 3:1 w/w).  相似文献   

19.
For maize silage containing about 20% dry matter, the most suitable silage: grain ratio is 2:1 for daily milk production over 20 kg, and 3:1 for the rest of the lactation and dry period. Dehydrated whole maize pellets, given in combination with fresh alfalfa to dairy cows, promoted good milk yields.A complete ration containing 50% maize cobs or stover for fattening calves resulted in an average daily gain of 1200–1300 g in the age range 7–14 months. An improvement in energy value was attributed to steam pelleting and the consequent changes in the content of crude fibre, acid detergent fibre and lignin in the maize cobs or stover.  相似文献   

20.
This study conducts a life cycle assessment of a simulated dry mill corn ethanol facility in California’s Central Valley retrofitted to also produce ethanol from corn stover, a cellulosic feedstock. The assessment examines three facility designs, all producing corn ethanol and wet distiller’s grains and solubles as a co-product: a baseline facility with no cellulosic retrofit, a facility retrofitted with a small capacity for stover feedstock, and a facility retrofitted for a large capacity of stover feedstock. Corn grain is supplied by rail from the Midwest, while stover is sourced from in-state farms and delivered by truck. Two stover feedstock supply scenarios are considered, testing harvest rates at 25 or 40 % of stover mass. Allocation is required to separate impacts attributable to co-products. Additional scenarios are explored to assess the effect of co-product allocation methods on life cycle assessment results for the two fuel products, corn ethanol and stover ethanol. The assessment tracks greenhouse gas (GHG) emissions, energy consumption, criteria air pollutants, and direct water consumption. The GHG intensity of corn ethanol produced from the three facility designs range between 61.3 and 68.9 g CO2e/MJ, which includes 19.8 g CO2e/MJ from indirect land use change for Midwestern corn grain. The GHG intensity of cellulosic ethanol varies from 44.1 to 109.2 g CO2e/MJ, and 14.6 to 32.1 g CO2e/MJ in the low and high stover capacity cases, respectively. Total energy input ranges between 0.60 and 0.71 MJ/MJ for corn ethanol and 0.13 to 2.29 MJ/MJ for stover ethanol. This variability is the result of the stover supply scenarios (a function of harvest rate) and co-product allocation decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号