首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inferring pH from diatoms: a comparison of old and new calibration methods   总被引:35,自引:20,他引:15  
Two new methods for inferring pH from diatoms are presented. Both are based on the observation that the relationships between diatom taxa and pH are often unimodal. The first method is maximum likelihood calibration based on Gaussian logit response curves of taxa against pH. The second is weighted averaging. In a lake with a particular pH, taxa with an optimum close to the lake pH will be most abundant, so an intuitively reasonable estimate of the lake pH is to take a weighted average of the pH optima of the species present.Optima and tolerances of diatom taxa were estimated from contemporary pH and proportional diatom counts in littoral zone samples from 97 pristine soft water lakes and pools in Western Europe. The optima showed a strong relation with Hustedt's pH preference groups. The two new methods were then compared with existing calibration methods on the basis of differences between inferred and observed pH in a test set of 62 additional samples taken between 1918 and 1983. The methods were ranked in order of performance as follows (between brackets the standard error of inferred pH in pH units); maximum likelihood (0.63) > weighted averaging (0.71) = multiple regression using pH groups (0.71) = the Gasse & Tekaia method (0.71) > Renberg & Hellberg's Index B (0.83) » multiple regression using taxa (2.2). The standard errors are larger than those usually obtained from surface sediment samples. The relatively large standard may be due to seasonal variation and to the effects of other factors such as humus content. The maximum likelihood method is statistically rigorous and can in principle be extended to allow for additional environmental factors. It is computer intensive however. The weighted averaging approach is a good approximation to the maximum likelihood method and is recommended as a practical and robust alternative.  相似文献   

2.
A microspectrophotometric method has been developed for calorimetric pH determination using indicator dyes. Tissue samples as small as five cells were used. Measurements of standard buffered solutions of known pH were within a standard error of less than ± 0.04 pH units. Validity of the technique has previously been established by matching the pH values and absorption spectra of several model systems to that of living cells. A method for spectrophotometric pH determination of single cells is suggested. The pH change seemed to be the major factor in the color change in aging flowers. The epidermal pH, the absorption spectra of living tissue, the anthocyanidins, flavonols, and flavones present in more than 250 plants of many families were determined. These data indicate that pH is only one of numerous parameters determining flavonoid color in the living cell.  相似文献   

3.
An on-line pH monitoring method based on mid-infrared spectroscopy relevant to bioprocesses is presented. This approach is non-invasive and does not require the addition of indicators or dyes, since it relies on the analysis of species of common buffers used in culture media, such as phosphate buffer. Starting with titrations of phosphoric and acetic acid solutions over almost the entire pH range (2-12), it was shown that the infrared spectra of all samples can be expressed as a linear combination of the molar absorbance of the acids and their deprotonated forms. In other words, pH had no direct influence on the molar infrared spectra themselves, but only on deprotonation equilibria. Accurate prediction (standard error of prediction for pH < 0.15 pH units) was achieved by taking into account the non-ideal behavior of the solutions, using the Debye-Hückel theory to estimate the activity coefficients. Batch cultures of E. coli were chosen as a case study to show how this approach can be applied to bioprocess monitoring. The discrepancy between the spectroscopic prediction and the conventional electrochemical probe never exceeded 0.12 pH units, and the technique was fast enough to implement a feedback controller to maintain the pH constant during cultivation.  相似文献   

4.
Monitoring CO2 production in systems, where pH is changing with time is hampered by the chemical behavior and pH-dependent volatility of this compound. In this article, we present the first method where the concentration and production rate of dissolved CO2 can be monitored directly, continuously, and quantitatively under conditions where pH changes rapidly ( approximately 2 units in 15 min). The method corrects membrane inlet mass spectrometry (MIMS) measurements of CO2 for pH dependency using on-line pH analysis and an experimentally established calibration model. It is valid within the pH range of 3.5 to 7, despite pH-dependent calibration constants that vary in a non-linear fashion with more than a factor of 3 in this interval. The method made it possible to determine the carbon dioxide production during Lactococcus lactis fermentations, where pH drops up to 3 units during the fermentation. The accuracy was approximately 5%. We used the method to investigate the effect of initial extracellular pH on carbon dioxide production during anarobic glucose fermentation by non-growing Lactocoocus lactis and demonstrated that the carbon dioxide production rate increases considerably, when the initial pH was increased from 6 to 6.8.  相似文献   

5.
pH mapping in transparent gel using color indicator videodensitometry   总被引:1,自引:0,他引:1  
The colored pH indicator method introduced by Weisenseel et al. (1979) is particularly useful for localizing the zones along roots where acidification/alkalinization occurs. It can also be used to assess the direction and intensity of the proton fluxes. Because the method has not been quantitatively evaluated, however, it is nowadays little used or used in conjunction with other such as potentiometry. In the present study we examine the theoretical basis underlying this method of colorimetric visualization and show its similarity to spectrodensitometry. It thus becomes possible to quantify the luminous information and express it in terms of environmental pH. We describe the method used, emphasizing in particular the conditions required to achieve maximum accuracy of measurement, and an appropriate experimental device. pH distribution around roots can be mapped with a relative error of 0.03 pH units. The experimental device is easy to use and incorporates a computer-controlled video camera, thanks to which al acquisition and calculation procedures can be automated.  相似文献   

6.
The liquid in the free space of leaf cell walls, the apoplast, is in direct contact with the plasma membrane and its nutrient uptake systems. Therefore, the pH of the apoplast is of utmost interest. We have elaborated a non-destructive method by which excised sunflower leaves ( Helianthus annuus cv. Erika) were perfused with fluorescein isothiocyanate-dextran (FITC-dextran) (4 000 Da) via the transpiration stream. We showed that leaf apoplast pH can be measured by using the fluorescence ratio technique together in conjunction with this dye. Evidence is provided that FITC-dextran does not penetrate the plasma membrane over a period of ca 17 h from the beginning of dye perfusion. Dye enrichment in the leaf apoplast did not cause an 'inner filter effect' and thus the fluorescence ratio was only dependent on pH. In vivo calibration yielded a pKa of 5.92, which was virtually identical to the pKa of 5.93 calculated for dye solutions. Hence, FITC-dextran can be detected in complex environments and covers a pH range prevailing in the leaf apoplast.
Based on this method we developed a microscope image technique visualizing pH gradients between various cell types. The pH in the lumen of the xylem vessel was ca 0.3–0.5 units lower than that of the apoplast of surrounding cells. Nitrate present in the leaf apoplast caused an increase in pH, especially in the dark. Under these conditions, in the intercostal area, the apoplast pH around the stomata was ca 0.5–1.0 units higher than that of the surrounding epidermal cells.  相似文献   

7.
The perceived sensitivity of animal cells to hydrodynamic shear has limited agitation and aeration at large-scale. This makes it difficult to ensure adequate mixing of the vessel contents and may lead to inhomogeneities in operational parameters such as temperature, dissolved oxygen concentration, and especially pH. The effect of pH shifts and pH perturbations on the cellular responses, in batch culture, of a GS-NS0 mouse myeloma cell line, expressing a recombinant antibody, was investigated. In addition, the effect of extreme pH on the structure of the purified antibody product was studied using isoelectric focusing. The fermentation pH value was shifted abruptly from pH 7.3 to pH values ranging from 6.5 to 9.0. Culture pH was maintained at this new value for the remainder of the fermentation. All pH shifts of above 0.2 units caused a transient increase in apoptosis. However, cultures shifted to pH values between 7.0 and 8.0 continued to grow and the apoptotic fraction returned to initial levels. Cultures shifted to pH values above pH 8.0 and below pH 7.0 did not recover resulting in culture death. For example, a shift to pH 8.5 caused accumulation of cells in the G(2)/M phase of the cell cycle followed by apoptotic death. After the pH shift, maximum specific growth rate was observed over the range pH 7.3 to 7.5 and maximum viable cell number was seen at pH 7.3. Maximum volumetric antibody production, resulting from increased culture longevity, was seen at pH 7.0. It was also observed that glucose consumption increased with increasing pH. In a separate set of experiments cells were subjected to a single pH perturbation ranging in duration from 0 to 600 minutes. Exposure of cells to a pH value greater than 8.5 for more than 10 minutes caused a decrease in the proportion of viable cells and induced a lag in cell growth. At very low pH (6.5) similar effects were seen, but only for extended perturbations (600 min). However, after recovery from the pH perturbation, growth, product secretion and metabolism all returned to original levels. Incubation of the antibody, at the range of pH values investigated, indicated no alterations in the structure of the antibody as determined by the isoelectric focusing pattern.  相似文献   

8.
A new technique for generatiing extended pH gradients (3–4 pH units) in Immobiline gels for isoelectric separations is described. A five-chamber gradient mixer has been built, based on the ‘Varigard’-type mixers of Peterson and Sober (Anal. Chem. 31, 1959, 857–862). Each chamber contains one of the following Immobilines, in this order: pK values 4.4, 4.6, 6.2, 7.0 and 8.5, titrated in the pH 4–8 interval with non-buffering Immobilines pK 9.3 (in the case of the two acidic Immobilines) and pK 3.6 (in the case of the three basic Immobilines). In this way it is possible to cast, in a highly reproducible way, an immobilized pH gradient in thepH range 4.0 to 7.5, which should be ideal for isoelectric separations in the first dimension of two-dimensional techniques. A computer program is also described which, given the molarities and pK values of the different Immobilines in the chambers of the Varigrad mixer, can generate the theoretical pH profile, together with the buffering capacity (β) and ionic strength (I) courses.  相似文献   

9.
The ability to measure the pH of the apoplast in situ is of special interest as a test of the cell wall acidification theory. Optical sectioning of living seedlings of corn roots using the laser scanning confocal microscope (LSCM) permits us to make pH measurements in living tissue. The pH of the apoplast of corn roots was measured by this method after infiltration with CI-NERF, a pH-sensitive dye, along with Texas Red Dextran 3000, a pH-insensitive dye, as an internal standard. In the elongation zone of corn roots, the mean apoplastic pH was 4.9. Upon gravitropic stimulation, the pH on the convex side of actively bending roots was 4.5. The lowering of the apoplastic pH by 0.4 units appears to be sufficient to account for the increased growth on that side. This technique provides site-specific evidence for the acid growth theory of cell elongation. The LSCM permits measurements of the pH of living tissues, and has a sensitivity of approximately 0.2 pH units.  相似文献   

10.
In this study we have generated a EYFP targeted to the mitochondrial intermembrane space (MIMS-EYFP) to determine for the first time the pH within this compartment. The fragment encoding HAI-tagged EYFP was fused with the C-terminus of glycerol-phosphate dehydrogenase, an integral protein of the inner mitochondrial membrane. Human ECV304 cells transiently transfected with MIMS-EYFP showed the typical mitochondrial network, co-localized with MitoTracker Red. Following the calibration procedure, an estimation of the pH value in the intermembrane space was obtained. This value (6.88+/-0.09) was significantly lower than that determined in the cytosol after transfection with a cytosolic EYFP (7.59+/-0.01). Further, the pH of the mitochondrial matrix, determined with a EYFP targeted to this subcompartment, was 0.9 pH units higher than that in the intermembrane space. In conclusion, MIMS-EYFP represents a novel powerful tool to monitor pH changes in the mitochondrial intermembrane space of live cells.  相似文献   

11.
A new method for preparative protein purification is described, based on the use of Immobiline matrices. After electrofocusing, the protein zone of interest is recovered by electrophoretic transfer to a hydroxyapatite gel, from which it is eluted with 0.2 M phosphate buffer, pH 6.8, with yields for the proteins studied in the range 76-98%. For six different proteins, the focusing step gives a common upper limit of approximately 45 mg protein/ml gel as mean concentration in a focused protein zone. It is demonstrated that in practical preparative work, components with a pI difference of 0.007 pH units can be completely resolved, and that on a 5-mm-thick gel of dimensions 240 X 110 mm, samples containing as much as 400 mg of the major protein component can be applied. Focusing of large amounts of a salt-containing sample is demonstrated with the aid of human serum. A theoretical expression is given relating the concentration distribution and maximum protein concentration within a focused zone to the applied voltage, the pH slope used and the zone width. Based on this expression and the finding of an upper concentration limit for a protein we shown how to optimize the parameters in preparative work with immobilized pH gradients in relation to the separation power needed. Finally, it is shown that, in comparison with conventional preparative electrofocusing in polyacrylamide gels, immobilized pH gradients allow a ten-fold increase in load, whilst still giving a resolution comparable to that of analytical isoelectric focusing.  相似文献   

12.
Acidic virus inactivation is commonly used during production of biotherapeutic products to provide virus safety in case of undetected virus contamination. Accurate pH measurement is required to ensure the product pH reaches a virus-inactivating level (typically 3.5–3.7), and a level post-inactivation that is appropriate for later purification steps (typically 5.5–7.5). During batch low-pH inactivation in discrete tanks, potentiometric glass probes are appropriate for measuring pH. During continuous inactivation for 2–3 weeks in an enclosed product stream, probe calibration drift and lag may lead to poor accuracy, and operational difficulties when compensating for drift. Monitoring the spectral response of compounds (indicators) in the product stream whose spectra are pH-sensitive offers a possible alternative way to measure pH without these drawbacks. Such indicators can already exist in the stream (intrinsic) or can be added (extrinsic). Herein are reported studies evaluating the feasibility of both.Promising ultraviolet screening results with the two extrinsics studied, thiamine and ascorbic acid, led to the addition of both to product stream samples titrated to different potentiometric pH values in the 3.3–4.5 range (a representative range encountered during continuous inactivation), and attempts to model pH using sample ultraviolet spectra. One model, based on variability in six spectral attributes, was able to predict pH of an independent sample set within ±0.07 units at the 95% confidence level. Since a typical inactivating pH tolerance is ±0.1 units, the results show that extrinsic indicators potentially can measure inactivation pH with sufficient accuracy. Suggested future steps and an alternative approach are presented.  相似文献   

13.
We describe a non-invasive technique for determining pH in biomolecular NMR sample using buffer components (formate, tris, piperazine, and imidazole) as internal pH indicators, whose (1)H NMR chemical shifts are sensitive to pH in a range from 2.5 to 9.8. This method is suitable for a wide range of applications where samples are handled intensively during NMR titrations or in high throughput analysis in structural genomics or metabolomics.  相似文献   

14.
The invertebrate fauna has been surveyed for twenty one unlimed generally acidic river systems in Norway. The data consist of 180 samples and 127 invertebrate taxa and associated water chemistry data (pH, calcium, acid neutralizing capacity, total aluminium, and conductivity). Multivariate numerical methods are used to quantify the relationships between aquatic invertebrates and water chemistry. Detrended canonical correspondence analysis (DCCA) shows one dominant axis of variation with high correlations for pH and aluminium. DCCA axis 2 is significantly correlated with calcium. The predictive abilities of invertebrates to pH are explored by means of weighted averaging (WA) regression and calibration and weighted averaging partial-least-squares regression (WA-PLS). The performance of the methods is reported in terms of the root mean square error of prediction (RMSEP) of (observed pH-inferred pH). Bootstrapping and leave-one-out jackknifing are used as cross-validation procedures. The predictive abilities of invertebrates are good (RMSEPboot for WA = 0.309 pH units). Comparison of the invertebrates with diatom studies shows that invertebrates are as good predictors of modern pH as diatoms are. RMSEPjack shows that WA-PLS improves the predictive abilities. Indicator taxa for pH are found by Gaussian regression. Anisoptera, Agrypnia obsoleta, Leptophlebia marginata, Sialis lutaria, and Zygoptera have significant sigmoidal curves where abundances increase with decreasing pH. Cyrnus flavidus shows a significant unimodal response and has an estimated optimum in the acid part of the gradient. Isoperla spp. and Ostracoda show significant sigmoidal responses where abundances increase with increasing pH. Amphinemura borealis, Diura nanseni, Isoperla grammatica, I. obscura, and Siphonoperla burmeisteri show significant unimodal responses and have high pH optima. Many taxa do not have statistically significant unimodal or sigmoidal curves, but are found by WA to be characteristic of either high pH or low pH. These results suggest that a combined use of Gaussian regression and direct gradient analysis is needed to get a full overview of potential indicator taxa.  相似文献   

15.
The preparative aspects of isoelectric focusing (IEF) in immobilized pH gradients (IPG) have been investigated as a function of the following parameters: environmental ionic strength (I), gel geometry and shape of pH gradient. As model proteins, hemoglobin (Hb) A and a minor, glycosylated component (HbA1c), with a delta pI = 0.04 pH units, have been selected. The load capacity increases almost linearly, as a function of progressively higher I values, from 0.5 X up to 2 X molarity of buffering Immobiline (pK 7.0) to abruptly reach a plateau at 3 X concentration of buffering ion. The load capacity also increases almost linearly as a function of gel thickness from 1 to 5 mm, without apparently levelling off. When decreasing the pH interval from 1 pH unit (pH 6.8-7.8) to 1/2 pH unit (pH 7.05-7.55) the amount of protein loaded in the HbA zone could be increased by 40%. In 5 mm thick gels, at 2 X pK 7.0 Immobiline concentration, over a 1/2 pH unit span, up to 350 mg HbA (in a 12.5 X 11 cm gel) could be loaded in a single zone, the load limit of the system being around 45 mg protein/ml gel volume.  相似文献   

16.
It is possible to measure pH values in immobilized pH gradients (IPG) when the polyacrylamide matrix is made to contain an additional, carrier ampholyte-generated pH gradient. After an IPG run, 5 mm gel segments, along the separation axis, are cut and eluted in 300 microliter of 10 mM KCl and the pH read with a standard pH meter. When using ultranarrow pH gradients, larger gel segments (ca. 265 microliter) are eluted in 900 microliter of 100 mM KCl and the pH assessed with a differential pH meter. In the latter case, either internal or external standards are used as a reference, or starting point, to convert delta pH values into an actual pH curve. The reproducibility of the system is better than +/- 0.05 pH units, with a ca. 15% error over a 0.3 pH unit span. In ultranarrow pH gradients, it is imperative to use mixtures of all commercially available carrier ampholytes, so as to smoothen conductivity and buffering capacity gaps. By the present method, it is also possible to convert a wide (2-3 pH unit) carrier ampholyte interval into a narrow (0.2-0.3 pH unit) one.  相似文献   

17.
R. J. Reid  L. D. Field  M. G. Pitman 《Planta》1985,166(3):341-347
31P-Nuclear magnetic resonance spectroscopy was used to measure the cytoplasmic pH (pHc) in barley (Hordeum vulgare L.) root tips. As the external pH was raised from 4–10, pHc was found to increase from 7.44 to 7.75. The sensitivity of pHc to changes in external pH decreased with increasing external pH. Metabolic inhibition by sodium azide caused pHc to fall by 0.3 units. Addition of 10 mM butyrate resulted in a gradual decline in pHc, by approx. 0.3 units over 90 min. At a concentration of 1 mM, butyrate had no effect on pHc even after 2 h. Fusicoccin caused pHc to rise by 0.1–0.2 units. In maize (Zea mays L.) root tips, pHc was shown to have a similar sensitivity to fusicoccin. The results are discussed in relation to the regulation of pHc and the possible role of pHc in determining transmembrane electrical potential differences.Abbreviations and symbols FC Fusicoccin - NMR nuclear magnetic resonance - p.d. membrane electrical potential difference - pHc cytoplasmic pH - P1 inorganic phosphate - chemical shift  相似文献   

18.
A method to control the rhizosphere pH of plants under controlled nutritional conditions is suggested. An earlier developed method for plant growth in soilless culture according to the principle of regeneration and pH control by adjusting the percentage of total N supplied as NH4-N in the maintenance solution was applied to control rhizosphere pH in connection with a recently developed plant-growing technique. Using this technique, thin soil layers (0.2 mm) at different proximity to a root mat can be sliced from a soil column and analyzed.Results show a high predictive values with respect to pH profiles in the soil and demonstrate that nutrition of the rape plants was kept equal when rhizosphere pH decreased by 1.2 units, and was kept constant or was increased by 0.4 units by varying the percentage of total N supplied as NH4-N (15, 6 or 0) in the nutrient solutions via wicks and not via the soil column. The method thus offers new possibilities in rhizosphere studies, as control of pH in the rhizosphere of plants under equal nutritional conditions has been a problem for a long time.  相似文献   

19.
A method for the quantitative assay of nuclease activity in crude cell lysates after isoelectric focusing (IEF) in polyacrylamide slab gels is described. After IEF, an agarose overlay gel containing DNA is placed on the IEF gel and the nuclease activity quantified by the loss of ethidium bromide fluorescence of the DNA. With this method a linear response was obtained for 1 to 10 ng of DNase I. Various methods of pH equilibration after IEF were also evaluated. The use of a high buffer concentration in the overlay gel is recommended to control the pH during the enzyme reaction. An analytical solution for the diffusion of enzymes from the IEF gel to the overlay gel is also presented and an equation that may be used to choose optimum times for transfer of the enzyme from the IEF gel to the overlay gel is given.  相似文献   

20.
A common source of error in pH measurements.   总被引:6,自引:0,他引:6       下载免费PDF全文
Glass-electrode assemblies in which the reference half-cell contains a porous ceramic type of liquid junction are likely to produce misleading pH measurements under normal service conditions. The error arises from substantial liquid-junction potentials, associated with the porous ceramic plug, which vary with the ionic composition of the solution under test. The error is not revealed by conventional two-point calibration procedures, since the majority of standard buffer solutions have a similar total ionic strength, but will nevertheless be present when the unknown solution differs in ionic strength from the standardizing buffers. The size of the error is proportional to the ratio between the salt concentration in the standard buffers and the concentration present in the unknown solution, and varies from one electrode specimen to another. The fault was present in 24 out of 30 electrodes in normal use selected at random from seven laboratories, and the mean error was 0.2pH unit per 10-fold salt-concentration difference between standard and test solutions. It is estimated that errors of this order must be widespread in the recent literature. Older pH determinations are likely to be more reliable, since the original reference electrode design with a free-flowing liquid junction is apparently free from the artefact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号