首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibody specificity is critical for RP protein arrays (RPA). The effects of blocking and detection chemistries on antibody specificity were evaluated for Western blots and RPA. Blocking buffers significantly affected nonspecific banding on Western blots, with corresponding effects on arrays. Tyramide signal amplification (TSA) increased both specific and nonspecific signals on Westerns and arrays, masking the expected gradations in signal intensity. These results suggest that consistent blocking and detection conditions should be used for antibody validation and subsequent RPA experiments.  相似文献   

2.
Evaluation of surface chemistries for antibody microarrays   总被引:1,自引:1,他引:0  
Antibody microarrays are an emerging technology that promises to be a powerful tool for the detection of disease biomarkers. The current technology for protein microarrays has been derived primarily from DNA microarrays and is not fully characterized for use with proteins. For example, there are a myriad of surface chemistries that are commercially available for antibody microarrays, but there are no rigorous studies that compare these different surfaces. Therefore, we have used a sandwich enzyme-linked immunosorbent assay (ELISA) microarray platform to analyze 17 different commercially available slide types. Full standard curves were generated for 23 different assays. We found that this approach provides a rigorous and quantitative system for comparing the different slide types based on spot size and morphology, slide noise, spot background, lower limit of detection, and reproducibility. These studies demonstrate that the properties of the slide surface affect the activity of immobilized antibodies and the quality of data produced. Although many slide types produce useful data, glass slides coated with aldehyde silane, poly-l-lysine, or aminosilane (with or without activation with a crosslinker) consistently produce superior results in the sandwich ELISA microarray analyses we performed.  相似文献   

3.
Advances in nanotechnology have enabled the production and characterization of magnetic particles with nanometer-sized features that can be functionalized with biological recognition elements for numerous applications in biotechnology. In the present study, the synthesis of and interactions between self-assembled monolayers (SAMs) on gold and glass surfaces and functionalized magnetic nanoparticles have been characterized. Immobilization of 10-15 nm streptavidin-functionalized nanoparticles to biotinylated gold and glass surfaces was achieved by the strong interactions between biotin and streptavidin. Fluorescent streptavidin-functionalized nanoparticles, biotinylated surfaces, and combinations of the two were characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and electron and fluorescent microscopy to confirm that little or no functionalization occurred in nonbiotinylated regions of the gold and glass surfaces compared to the biotinylated sites. Together these techniques have potential use in studying the modification and behavior of functionalized nanoparticles on surfaces in biosensing and other applications.  相似文献   

4.
With the advent of protein and antibody microarray technology several different coatings and protocols have been published, which may be broadly divided into two types: gel-coated surfaces and plain non-gel-coated glass or plastic surfaces, some with chemical groups attached. We have screened 11 different array surfaces of both types and compared them with respect to their detection limit, inter- and intrachip variation, and storage characteristics. Five different antibodies were immobilized onto each type of microarray support, with total protein concentrations ranging from 40 fmol to 25 amol per spot. From these results, it was seen that some antibodies were more suited for use on antibody arrays. All measurements were performed in quadruplicate, and the results revealed high signal uniformity and reproducibility of most plain glass and plastic slides. Lower detection limits were obtained with polyacrylamide-coated slides, making them more suitable for the detection of very low concentrations of antigen. All microarray coatings could be stored for a period of 8 weeks; however, improved results were seen after 2 weeks of storage. In conclusion, the results indicate the need to test each antibody to be used on an antibody array and to select the microarray coating based on experimental requirements.  相似文献   

5.
在免疫分析和生物芯片中,抗原-抗体特异性结合被广泛应用,其中抗体的固定化是研发高效诊断和分离工具的关键环节。生物分子工程、材料化学与交联剂化学的进步极大地促进了抗体固定化技术的发展。 抗体可以通过物理吸附、共价偶联和亲和相互作用固定到不同类型的固相表面。 抗体固定化的目标是以一种正确的空间取向将抗体固定到固相表面,在完全保留抗体构象和活性的同时最大化抗原的结合能力,这对固相化抗体的分析性能至关重要。 对固定抗体到固相载体表面的各种最新方法进行了阐述,包括物理吸附法,通过羧基、氨基、巯基、糖基和点击化学的共价结合法以及基于生物亲和作用的固定法,并对固定化抗体的表征方法进行了归纳,最后对抗体固定化方法的发展方向进行了展望。  相似文献   

6.
Quite recently, a few antibodies against bulk material surface have been selected from a human repertoire antibody library, and they are attracting immense interest in the bottom-up integration of nanomaterials. Here, we constructed antibody fragments with binding affinity and specificity for nonbiological inorganic material surfaces by grafting material-binding peptides into loops of the complementarity determining region (CDR) of antibodies. Loops were replaced by peptides with affinity for zinc oxide and silver material surfaces. Selection of CDR loop for replacement was critical to the functionalization of the grafted fragments; the grafting of material-binding peptide into the CDR2 loop functionalized the antibody fragments with the same affinity and selectivity as the peptides used. Structural insight on the scaffold fragment used implies that material-binding peptide should be grafted onto the most exposed CDR loop on scaffold fragment. We show that the CDR-grafting technique leads to a build-up creation of the antibody with affinity for nonbiological materials.  相似文献   

7.
The early applications of microarrays and detection technologies have been centered on DNA-based applications. The application of array technologies to proteomics is now occurring at a rapid rate. Numerous researchers have begun to develop technologies for the creation of microarrays of protein-based screening tools. The stability of antibody molecules when bound to surfaces has made antibody arrays a starting point for proteomic microarray technology. To minimize disadvantages due to size and availability, some researchers have instead opted for antibody fragments, antibody mimics or phage display technology to create libraries for protein chips. Even further removed from antibodies are libraries of aptamers, which are single-stranded oligonucleotides that express high affinity for protein molecules. A variation on the theme of protein chips arrayed with antibody mimics or other protein capture ligand is that of affinity MS where the protein chips are directly placed in a mass spectrometer for detection. Other approaches include the creation of intact protein microarrays directly on glass slides or chips. Although many of the proteins may likely be denatured, successful screening has been demonstrated. The investigation of protein-protein interactions has formed the basis of a technique called yeast two-hybrid. In this method, yeast "bait" proteins can be probed with other yeast "prey" proteins fused to DNA binding domains. Although the current interpretation of protein arrays emphasizes microarray grids of proteins or ligands on glass slides or chips, 2-D gels are technically macroarrays of authentic proteins. In an innovative departure from the traditional concept of protein chips, some researchers are implementing microfluidic printing of arrayed chemistries on individual protein spots blotted onto membranes. Other researchers are using in-jet printing technology to create protein microarrays on chips. The rapid growth of proteomics and the active climate for new technology is driving a new generation of companies and academic efforts that are developing novel protein microarray techniques for the future.  相似文献   

8.
Antibody array‐based technology is a powerful emerging tool in proteomics, but to enable global proteome analysis, antibody array layouts with even higher density has to be developed. To this end, we have further developed the first generation of a nanoarray platform, based on attoliter‐sized vials, attovials, which we have characterized and used for the detection of complement factor C1q in human serum samples. Finally, we demonstrated proof‐of‐concept for individual functionalization of the attovials with a recombinant antibody.  相似文献   

9.
Recombinant antibody fragments binding with high affinity to their target can be obtained either from hybridomas or directly from antibody libraries on filamentous phage. These fragments are devoid of any activity other than antigen binding, and have to be processed and functionalized in order to be suitable for clinical applications. This article presents the authors’ view on the procedures and the features that are important for effective transformation of recombinant antibodies into useful immunotherapeutic agents. The topics presented include phage display methodologies, engineering of high-affinity binding, purification, and functionalization strategies of recombinant antibodies.  相似文献   

10.
Glass has become the standard substrate for the preparation of DNA arrays. Typically, glass is modified using silane chemistries to provide an appropriate functional group for nucleic acid synthesis or oligonucleotide immobilization. We have found substantial issues with the stability of these surfaces as manifested in the unwanted release of oligomers from the surface when incubated in aqueous buffers at moderate temperatures. To address this issue, we have explored the use of carbon-based substrates. Here, we demonstrate in situ synthesis of oligonucleotide probes on carbon-based substrates using light-directed photolithographic phosphoramidite chemistry and evaluate the stabilities of the resultant DNA arrays compared to those fabricated on silanized glass slides. DNA arrays on carbon-based substrates are substantially more stable than arrays prepared on glass. This superior stability enables the use of high-density DNA arrays for applications involving high temperatures, basic conditions, or where serial hybridization and dehybridization is desired.  相似文献   

11.
Screening of biochemical interactions becomes simpler, less expensive, and more accurate when labels, such as fluorescent dyes, radioactive markers, and colorimetric reactions, are not required to quantify detected material. SRU Biosystems has developed a biosensor technology that is manufactured on continuous sheets of plastic film and incorporated into standard microplates and microarray slides to enable label-free assays to be performed with high throughput, high sensitivity, and low cost per assay. The biosensor incorporates a narrow band guided-mode resonance reflectance filter, in which the reflected color is modulated by the attachment/detachment of biochemical material to the surface. The technology offers 4 orders of linear dynamic range and uniformity within a plate, with a coefficient of variation of 2.5%. Using conventional biochemical immobilization surface chemistries, a wide range of assay applications are enabled. Small molecule screening, cell proliferation/cytotoxicity, enzyme activity screening, protein-protein interaction, and cell membrane receptor expression are among the applications demonstrated.  相似文献   

12.
Haab BB 《Proteomics》2003,3(11):2116-2122
Antibody microarrays have great potential for significant value in biological research. Cancer research in particular could benefit from the unique experimental capabilities of this technology. This article examines the current state of antibody microarray technological developments and assay formats, along with a review of the demonstrated applications to cancer research. Work is ongoing in the refinement of various aspects of the protocols and the development of robust methods for routine use. Antibody microarray experimental formats can be broadly categorized into two classes: (1) direct labeling experiments, and (2) dual antibody sandwich assays. In the direct labeling method, the covalent labeling of all proteins in a complex mixture provides a means for detecting bound proteins after incubation on an antibody microarray. If proteins are labeled with a tag, such as biotin, the signal from bound proteins can be amplified. In the sandwich assay, proteins captured on an antibody microarray are detected by a cocktail of detection antibodies, each antibody matched to one of the spotted antibodies. Each format has distinct advantages and disadvantages. Several applications of antibody arrays to cancer research have been reported, including the analysis of proteins in blood serum, resected frozen tumors, cell lines, and on membranes of blood cells. These demonstrations clearly show the utility of antibody microarrays for cancer research and signal the imminent expansion of this platform to many areas of biological research.  相似文献   

13.
We report an approach to the fabrication and selective functionalization of amine-reactive polymer multilayers on the surfaces of 3-D polyurethane-based microwell cell culture arrays. "Reactive" layer-by-layer assembly of multilayers using branched polyethyleneimine (BPEI) and the azlactone-functionalized polymer poly(2-vinyl-4,4'-dimethylazlactone) (PVDMA) yielded film-coated microwell arrays that could be chemically functionalized postfabrication by treatment with different amine-functionalized macromolecules or small molecule primary amines. Treatment of film-coated arrays with the small molecule amine d-glucamine resulted in microwell surfaces that resisted the adhesion and proliferation of mammalian fibroblast cells in vitro. These and other experiments demonstrated that it was possible to functionalize different structural features of these arrays in a spatially resolved manner to create dual-functionalized substrates (e.g., to create arrays having either (i) azlactone-functionalized wells, with regions between the wells functionalized with glucamine or (ii) substrates with spatially resolved regions of two different cationic polymers). In particular, spatial control over glucamine functionalization yielded 3-D substrates that could be used to confine cell attachment and growth to microwells for periods of up to 28 days and support the 3-D culture of arrays of cuboidal cell clusters. These approaches to dual functionalization could prove useful for the long-term culture and maintenance of cell types for which the presentation of specific and chemically well-defined 3-D culture environments is required for control over cell growth, differentiation, and other important behaviors. More generally, our approach provides methods for the straightforward chemical functionalization of otherwise unreactive topographically patterned substrates that could prove to be useful in a range of other fundamental and applied contexts.  相似文献   

14.
This article reports on recent electrical and optical techniques for investigating cellular signaling reactions in artificial and native membranes immobilized on solid supports. The first part describes the formation of planar artificial lipid bilayers on gold electrodes, which reveal giga-ohm electrical resistance and the insertion and characterization of ionotropic receptors therein. These membranes are suited to record a few or even single ion channels by impedance spectroscopy. Such tethered membranes on planar arrays of microelectrodes offer mechanically robust, long-lasting measuring devices to probe the influence of different chemistries on biologically important ionotropic receptors and therefore will have a future impact to probe the function of channel proteins in basic science and in biosensor applications. In a second part, we present complementary approaches to form inside-out native membrane sheets that are immobilized on micrometer-sized beads or across submicrometer-sized holes machined in a planar support. Because the native membrane sheets are plasma membranes detached from live cells, these approaches offer a unique possibility to investigate cellular signaling processes, such as those mediated by ionotropic or G protein-coupled receptors, with original composition of lipids and proteins.  相似文献   

15.
We describe a new material for the display of biomolecular ligands for use in proteomic analysis. We report here on the construction of the first functionalized polymerized diacetylene thin films (PDTFs) for use in displaying immobilized ligands and their application in mass spectral proteomic analysis. Functionalized polymerized thin film surfaces were constructed with diacetylene-containing biotin lipid monomers designed for the capture of proteins (streptavidin) from a complex cellular lysate and detection with mass spectrometry (MS). These materials serve as a prototype for ligand-based spotted arrays amenable to high throughput screening. Functionalized PDTFs can be easily manufactured for customized microarrays and demonstrate high protein specificity and low nonspecific protein adsorption, and the resulting microarrays constructed from these materials are compatible with several different protein analysis platforms. Our results suggest that these materials have broad potential applications for use in mass spectral-based proteomic analysis.  相似文献   

16.
Amphipols are amphipathic polymers that stabilize membrane proteins isolated from their native membrane. They have been functionalized with various chemical groups in the past years for protein labeling and protein immobilization. This large toolbox of functionalized amphipols combined with their interesting physico-chemical properties give opportunities to selectively add multiple functionalities to membrane proteins and to tune them according to the needs. This unique combination of properties makes them one of the most versatile strategies available today for exploiting membrane proteins onto surfaces for various applications in synthetic biology. This review summarizes the properties of functionalized amphipols suitable for synthetic biology approaches.  相似文献   

17.
Abstract Antibody titres against fibronectin-binding protein (FnBP) of Staphylococcus aureus were determined in sera from rabbits immunized with staphylococcal whole cells or purified native fibronectin receptor. An ELISA technique for detection of antibody titres blocking the binding of soluble fibronectin to immobilized FnBP was developed. A recombinant staphylococcal FnBP fused to E. coli β-galactosidase (gal-FnBp) was used as the immobilized antigen in this test. Serum samples from two different rabbits immunized with native fibronectin receptor gave significant blocking titres, whereas the blocking titres of antisera against staphylococcal whole cells were about 4- to 5-fold lower. Using the gal-FnBP fusion protein, the sensitivity for detection of fibronectin by ELISA was also determined. The detection limit is around 5 ng. The findings are discussed with a view to developing an anti-staphylococcal adherence vaccine and quantitating fibronectin in solution.  相似文献   

18.
In this study, the multi-walled carbon nanotubes (MWCNTs) were applied in lateral flow strips (LFS) for semi-quantitative and quantitative assays. Firstly, the solubility of MWCNTs was improved using various surfactants to enhance their biocompatibility for practical application. The dispersed MWCNTs were conjugated with the methamphetamine (MET) antibody in a non-covalent manner and then manufactured into the LFS for the quantitative detection of MET. The MWCNTs-based lateral flow assay (MWCNTs-LFA) exhibited an excellent linear relationship between the values of test line and MET when its concentration ranges from 62.5 to 1500 ng/mL. The sensitivity of the LFS was evaluated by conjugating MWCNTs with HCG antibody and the MWCNTs conjugated method is 10 times more sensitive than the one conjugated with classical colloidal gold nanoparticles. Taken together, our data demonstrate that MWCNTs-LFA is a more sensitive and reliable assay for semi-quantitative and quantitative detection which can be used in forensic analysis.  相似文献   

19.
A structured chemical platform based on chitosan, an amine-rich polysaccharide, is presented as an alternative chemistry to functionalize solid support (in this case, glass slides) for grafting biomolecules. This approach has been adopted for generating arrays using amino-modified oligonucleotides with two different lengths (25-mer and 70-mer) for different purposes. Results using these chitosan-activated surfaces indicate high oligonucleotide loading capacity, good availability to hybridization against targets, and effectiveness in enzyme-mediated single nucleotide polymorphism (SNP) detection procedures by DNA polymerase and DNA ligase enzymes with low background. Universal arrays have been prepared and extensively used with excellent results in different applications. The chitosan-treated surfaces were also evaluated for their performance in a gene expression experiment.  相似文献   

20.
Crystallographic studies of membrane proteins have been steadily increasing despite their unique physical properties that hinder crystal formation. Co-crystallization with antibody fragments has emerged as a promising solution to obtain diffraction quality crystals. Antibody binding to the target membrane protein can yield a homogenous population of the protein. Interantibody interactions can also provide additional crystal contacts, which are minimized in membrane proteins due to micelle formation around the transmembrane segments. Rapid identification of antibody fragments that can recognize native protein structure makes phage display a valuable method for crystallographic studies of membrane proteins. Methods that speed the reliable characterization of phage display selected antibody fragments are needed to make the technology more generally applicable. In this report, a phage display biopanning procedure is described to identify Fragments antigen binding (Fabs) for membrane proteins. It is also demonstrated that Fabs can be rapidly grouped based on relative affinities using enzyme linked immunosorbent assay (ELISA) and unpurified Fabs. This procedure greatly speeds the prioritization of candidate binders to membrane proteins and will aid in subsequent structure determinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号