首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hypoxia inducible factors (HIFs) are important regulators of energy homeostasis and cellular adaptation to low oxygen conditions. Northern elephant seals are naturally adapted to prolonged periods (1–2 months) of food deprivation (fasting) which result in metabolic changes that may activate HIF-1. However, the effects of prolonged fasting on HIFs are not well defined. We obtained the full-length cDNAs of HIF-1α and HIF-2α, and partial cDNA of HIF-3α in northern elephant seal pups. We also measured mRNA and nuclear protein content of HIF-1α, -2α, -3α in muscle and adipose during prolonged fasting (1, 3, 5 & 7 weeks), along with mRNA expression of HIF-mediated genes, LDH and VEGF. HIF-1α, -2α and -3α are 2595, 2852 and 1842 bp and encode proteins of 823, 864 and 586 amino acid residues with conserved domains needed for their function (bHLH and PAS) and regulation (ODD and TAD). HIF-1α and -2α mRNA expression increased 3- to 5-fold after 7 weeks of fasting in adipose and muscle, whereas HIF-3α increased 5-fold after 7 weeks of fasting in adipose. HIF-2α protein expression was detected in nuclear fractions from adipose and muscle, increasing approximately 2-fold, respectively with fasting. Expression of VEGF increased 3-fold after 7 weeks in adipose and muscle, whereas LDH mRNA expression increased 12-fold after 7 weeks in adipose. While the 3 HIFα genes are expressed in muscle and adipose, only HIF-2α protein was detectable in the nucleus suggesting that HIF-2α may contribute more significantly in the up-regulation of genes involved in the metabolic adaptation during fasting in the elephant seal.  相似文献   

2.
Deregulated accumulation of hypoxia-inducible factor-1α (HIF-1α) is a hallmark of many solid tumors. Directly targeting HIF-1α for therapeutics is challenging. Our finding that HIF-1α regulates secretion of heat shock protein-90α (Hsp90α) for cell migration raises the exciting possibility that targeting the secreted Hsp90α from HIF-1α-positive tumors has a better clinical outlook. Using the HIF-1α-positive and metastatic breast cancer cells MDA-MB-231, we show that down-regulation of the deregulated HIF-1α blocks Hsp90α secretion and invasion of the cells. Reintroducing an active, but not an inactive, HIF-1α into endogenous HIF-1α-depleted cells rescues both Hsp90α secretion and invasion. Inhibition of Hsp90α secretion, neutralization of secreted Hsp90α action, or removal of the cell surface LRP-1 receptor for secreted Hsp90α reduces the tumor cell invasion in vitro and lung colonization and tumor formation in nude mice. Furthermore, we localized the tumor-promoting effect to a 115-amino acid region in secreted Hsp90α called F-5. Supplementation with F-5 is sufficient to bypass the blockade of HIF-1α depletion and resumes invasion by the tumor cells under serum-free conditions. Because normal cells do not secrete Hsp90α in the absence of stress, drugs that target F-5 should be more effective and less toxic in treatment of HIF-1α-positive tumors in humans.  相似文献   

3.
4.
5.
Hepatocellular carcinoma (HCC) is characterized by high mortality rates and resistance to conventional treatment. HCC tumors usually develop local hypoxia, which stimulates proliferation of cancer cells and renders them resilient to chemotherapy. Adaptation of tumor cells to the hypoxic conditions depends on the hypoxia-inducible factor 1 (HIF-1). Over-expression of its regulated HIF-1α subunit, an important target of anti-cancer therapy, is observed in many cancers including HCC and is associated with severity of tumor growth and poor patient prognosis. In this report we investigate the effect of the dietary flavonoid kaempferol on activity, expression levels and localization of HIF-1α as well as viability of human hepatoma (Huh7) cancer cells. Treatment of Huh7 cells with kaempferol under hypoxic conditions (1% oxygen) effectively inhibited HIF-1 activity in a dose-dependent manner (IC50 = 5.16 μM). The mechanism of this inhibition did not involve suppression of HIF-1α protein levels but rather its mislocalization into the cytoplasm due to inactivation of p44/42 MAPK by kaempferol (IC50 = 4.75 μM). Exposure of Huh7 cells to 10 μΜ kaempferol caused significant reduction of their viability, which was remarkably more evident under hypoxic conditions. In conclusion, kaempferol, a non-toxic natural food component, inhibits both MAPK and HIF-1 activity at physiologically relevant concentrations (5-10 μM) and suppresses hepatocarcinoma cell survival more efficiently under hypoxia. It has, therefore, potential as a therapeutic or chemopreventive anti-HCC agent.  相似文献   

6.
In this study, hypoxia inducible factor-1α (HIF-1α) and hypoxia inducible factor-1β (HIF-1β) from small abalone Haliotis diversicolor were cloned. The cDNA of H. diversicolor HIF-1α (HdHIF-1α) is 2833 bp encoding a protein of 711aa and H. diversicolor HIF-1β (HdHIF-1β) is 1919 bp encoding a protein of 590aa. Similar to other species' HIF-1, HdHIF-1 has one basic helix–loop–helix (bHLH) domain and two Per-Arnt-Sim (PAS) domains, and HdHIF-1α has a oxygen-dependent degradation domain (ODDD) with two proline hydroxylation motifs and a C-terminal transactivation domain (C-TAD) with an asparagine hydroxylation motif. Under normoxic conditions, HdHIF-1α and HdHIF-1β mRNAs were constitutively present in all examined tissues. Under hypoxia (2.0 mg/L DO at 25 °C) stress, HdHIF-1α expression was up-regulated in gills at 4 h, 24 h and 96 h, and in hemocytes at 24 h and 96 h, while HdHIF-1β remained relatively constant. Under thermal stress (31 °C), HdHIF-1α expression was significantly increased in gills at 4 h, and hemocytes at 0 h and 4 h, while HdHIF-1β expression still remained relatively constant. These results suggested that HIF-1α may play an important role in adaption to poor environment in H. diversicolor.  相似文献   

7.
刘俊  常炜 《生物磁学》2009,(13):2587-2589,2600
缺氧诱导因子-1α(HIF-1α)是一种缺氧诱导的最关键的转录因子,参与细胞的生长、分化和凋亡的调节。在人类实体肿瘤中普遍存在HIF-1α的过表达,并与肿瘤的侵袭、转移、耐药及预后差有关。RNAi干扰技术可敲除目的基因,导致基因功能缺失性变化,已被广泛应用于生命科学研究的各个领域,包括HIF-1α基因功能的研究。各种不同的RNAi技术能有效的特异性地敲除HIF-1α基因的表达,在非肿瘤细胞和肿瘤细胞的HIF-1α基因功能的研究上均有很好的应用,成为研究HIF-1α基因功能的重要的方法之一。  相似文献   

8.
The hypoxia inducible factor 1α (HIF-1α) is overexpressed in solid tumors, driving tumor angiogenesis and survival. However, the mechanisms regulating HIF-1α expression in solid tumors are not fully understood. In this study, we find that microtubule integrity and dynamics are intricately involved in orchestrating HIF-1α translation. HIF-1α messenger RNA (mRNA) traffics on dynamic microtubules when it is actively translated. Microtubule perturbation by taxol (TX) and other microtubule-targeting drugs stalls HIF-1α mRNA transport and releases it from polysomes, suppressing its translation. Immunoprecipitation of the P-body component Argonaute 2 (Ago2) after microtubule disruption shows significant enrichment of HIF-1α mRNAs and HIF-targeting microRNAs (miRNAs). Inhibition of HIF-repressing miRNAs or Ago2 knockdown abrogates TX's ability to suppress HIF-1α translation. Interestingly, microtubule repolymerization after nocodazole washout allows HIF-1α mRNA to reenter active translation, suggesting that microtubule dynamics exert tight yet reversible control over HIF-1α translation. Collectively, we provide evidence for a new mechanism of microtubule-dependent HIF-1α translation with important implications for cell biology.  相似文献   

9.
10.
Aminopeptidase A (APA; EC 3.4.11.7) is a transmembrane metalloprotease with several functions in tumor angiogenesis. To investigate the role of APA in the process of ischemia-induced angiogenesis, we evaluated the cellular angiogenic responses under hypoxic conditions and the process of perfusion recovery in the hindlimb ischemia model of APA-deficient (APA-KO; C57Bl6/J strain) mice.Western blotting of endothelial cells (ECs) isolated from the aorta of APA-KO mice revealed that the accumulation of hypoxia-inducible factor-1α (HIF-1α) protein in response to hypoxic challenge was blunted. Regarding the proteasomal ubiquitination, a proteasome inhibitor MG-132 restored the reduced accumulation of HIF-1α in ECs from APA-KO mice similar to control mice under hypoxic conditions. These were associated with decreased growth factor secretion and capillary formation in APA-KO mice. In the hindlimb ischemia model, perfusion recovery in APA-KO mice was decreased in accordance with a significantly lower capillary density at 2 weeks. Regarding vasculogenesis, no differences were observed in cell populations and distribution patterns between wild type and APA-KO mice in relation to endothelial progenitor cells.Our results suggested that Ischemia-induced angiogenesis is impaired in APA-KO mice partly through decreased HIF-1α stability by proteasomal degradation and subsequent suppression of HIF-1α-driven target protein expression such as growth factors. APA is a functional target for ischemia-induced angiogenesis.  相似文献   

11.
Hypoxia is a common characteristic of many types of solid tumors. Intratumoral hypoxia selects for tumor cells that survive in a low oxygen environment, undergo epithelial–mesenchymal transition, are more motile and invasive, and show gene expression changes driven by hypoxia-inducible factor-1α (HIF-1α) activation. Therefore, targeting HIF-1α is an attractive strategy for disrupting multiple pathways crucial for tumor growth. In the present study, we demonstrated that hypoxia increases the S-glutathionylation of HIF-1α and its protein levels in colon cancer cells. This effect is significantly prevented by decreasing oxidized glutathione as well as glutathione depletion, indicating that S-glutathionylation and the formation of protein-glutathione mixed disulfides is related to HIF-1α protein levels. Moreover, colon cancer cells expressing glutaredoxin 1 are resistant to inducing HIF-1α and expressing hypoxia-responsive genes under hypoxic conditions. Therefore, S-glutathionylation of HIF-1α induced by tumor hypoxia may be a novel therapeutic target for the development of new drugs.  相似文献   

12.
13.
Hypoxia is a common environmental stress. Particularly, the center of rapidly-growing solid tumors is easily exposed to hypoxic conditions. Hypoxia is well known to attenuate the therapeutic response to radio and chemotherapies including tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) protein. HIF-1α is a critical mediator of the hypoxic response. However, little is known about the function of hypoxia-inducible factor-1α (HIF-1α) on hypoxic inhibition of TRAIL-mediated apoptosis. In this study, we investigated whether hypoxic inhibition of TRAIL-mediated apoptosis can be regulated by modulating HIF-1α protein. Hypoxia- and DEF-induced HIF-1α activation inhibited the TRAIL-mediated apoptosis in SK-N-SH, HeLa, A549 and SNU-638 cells. And also, HIF-1α inactivating reagents including DOX increased the sensitivity to TRAIL protein in tumor cells exposed to hypoxia. Furthermore, knock-down of HIF-1α using lentiviral RNA interference sensitized tumor cells to TRAIL-mediated cell death under hypoxic condition. Taken together, these results indicate that HIF-1α inactivation increased TRAIL sensitivity in hypoxia-induced TRAIL-resistant tumor cells and also suggest that HIF-1α inhibitors may have benefits in combination therapy with TRAIL against hypoxic tumor cells.  相似文献   

14.
15.
Mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways are pivotal and intensively studied signaling pathways in hypoxic conditions. However, the roles of MAPK and PI3K in the regulation of hypoxia-induced atrial natriuretic peptide (ANP) secretion are not well understood. The purpose of the present study was to investigate the mechanism by which the MAPK/ERK (extracellular signal-regulated kinase) and PI3K signaling pathways regulate the acute hypoxia-induced ANP secretion in isolated beating rabbit atria. An acute hypoxic perfused beating rabbit atrial model was used. The ANP levels in the atrial perfusates were measured by radioimmunoassay, and the hypoxia-inducible factor-1α (HIF-1α) mRNA and protein levels in the atrial tissue were determined by RT-PCR and Western blot. Acute hypoxia significantly increased ANP secretion and HIF-1α mRNA and protein levels. Hypoxia-induced ANP secretion was markedly attenuated by the HIF-1α inhibitors, rotenone (0.5 μmol/L) and CAY10585 (10 μmol/L), concomitantly with downregulation of the hypoxia-induced HIF-1α mRNA and protein levels. PD098059 (30 μmol/L) and LY294002 (30 μmol/L), inhibitors of MAPK and PI3K, markedly abolished the hypoxia-induced ANP secretion and atrial HIF-1α mRNA and protein levels. The hypoxia-suppressed atrial dynamics were significantly attenuated by PD098059 and LY294002. Acute hypoxia in isolated perfused beating rabbit atria, markedly increased ANP secretion through HIF-1α upregulation, which was regulated by the MAPK/ERK and PI3K pathways. ANP appears to be part of the protective program regulated by HIF-1α in the response to acute hypoxic conditions.  相似文献   

16.
Hypoxia is a common characteristic of many types of solid tumors and is associated with tumor propagation, malignant progression, and resistance to anti-cancer therapy. HIF-1 pathway is one of the survival pathways activated in tumor in response to hypoxia. In hypoxic condition, hypoxia-inducible factor-1α (HIF-1α) is stabilized and translocated into nucleus where it forms heterodimer with HIF-1β and regulates the expression of a plethora of genes involved in different processes, such as cell proliferation, differentiation, apoptosis, vascularization/angiogenesis, tumor invasion and metastasis. Recruitment of co-activator p300 or CBP to HIF-1α is critical to the transactivation activity of HIF-1 dimer, therefore, small molecules which can block the dimerization of HIF-1α and HIF-1β or inhibit the interaction between HIF-1α and p300 can function as inhibitors of HIF-1 and have the potential to be developed as novel therapies for the treatment of human cancers. In this review, recent progress of small molecular inhibitors of protein-protein interactions targeting HIF-1 is summarized, the mechanism of functions of these compounds and their potential usage as anti-cancer agents have also been discussed.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号