首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Currently, results of gel electrophoresis are commonly documented in digital formats by image acquisition instruments. In this study, gel images tuned by a common image processing software package, Photoshop, were assessed to understand the transforming algorithms and their impacts on quantitative analysis. TotalLab 100, an electrophoresis gel image analysis software package, was applied for image quantitation and evaluation. The three most frequently used image tuning functions—adjustments of the brightness, contrast, and grayscale span (level) of images—were investigated using both data generated from a standard grayscale tablet and an actual electrophoresis gel image. The influences of these procedures were analyzed for the grayscale transformation between the input and output images. Although all three procedures differentially improved the visualization of the input image, adjusting the contrast of images disrupted the quantitative information because of its nonlinear transforming algorithm. Under certain conditions, adjusting the brightness or the level of images could preserve the quantitative information because of the linear transforming algorithms. It was found that when the minimum and maximum grayscales of a gel image were recognized, using a commercial software package to maximally stretch the level may significantly improve the quality of a gel image without jeopardizing quantitative analysis.  相似文献   

2.
BackgroundReliable image comparisons, based on fast and accurate deformable registration methods, are recognized as key steps in the diagnosis and follow-up of cancer as well as for radiation therapy planning or surgery. In the particular case of abdominal images, the images to compare often differ widely from each other due to organ deformation, patient motion, movements of gastrointestinal tract or breathing. As a consequence, there is a need for registration methods that can cope with both local and global large and highly non-linear deformations.MethodDeformable registration of medical images traditionally relies on the iterative minimization of a cost function involving a large number of parameters. For complex deformations and large datasets, this process is computationally very demanding, leading to processing times that are incompatible with the clinical routine workflow. Moreover, the highly non-convex nature of these optimization problems leads to a high risk of convergence toward local minima. Recently, deep learning approaches using Convolutional Neural Networks (CNN) have led to major breakthroughs by providing computationally fast unsupervised methods for the registration of 2D and 3D images within seconds. Among all the proposed approaches, the VoxelMorph learning-based framework pioneered to learn in an unsupervised way the complex mapping, parameterized using a CNN, between every couple of 2D or 3D pairs of images and the corresponding deformation field by minimizing a standard intensity-based similarity metrics over the whole learning database. Voxelmorph has so far only been evaluated on brain images. The present study proposes to evaluate this method in the context of inter-subject registration of abdominal CT images, which present a greater challenge in terms of registration than brain images, due to greater anatomical variability and significant organ deformations.ResultsThe performances of VoxelMorph were compared with the current top-performing non-learning-based deformable registration method “Symmetric Normalization” (SyN), implemented in ANTs, on two representative databases: LiTS and 3D-IRCADb-01. Three different experiments were carried out on 2D or 3D data, the atlas-based or pairwise registration, using two different similarity metrics, namely (MSE and CC). Accuracy of the registration was measured by the Dice score, which quantifies the volume overlap for the selected anatomical region.All the three experiments exhibit that the two deformable registration methods significantly outperform the affine registration and that VoxelMorph accuracy is comparable or even better than the reference non-learning based registration method ANTs (SyN), with a drastically reduced computation time.ConclusionBy substituting a time consuming optimization problem, VoxelMorph has made an outstanding achievement in learning-based registration algorithm, where a registration function is trained and thus, able to perform deformable registration almost accurately on abdominal images, while reducing the computation time from minutes to seconds and from seconds to milliseconds in comparison to ANTs (SyN) on a CPU.  相似文献   

3.
4.
Two-dimensional electrophoresis is a major separating technique for proteins in proteomics. Alignment of gel images is critical for intra-laboratory or even more difficult inter-laboratory gel comparisons. In the paper, we propose a novel iterative closest point (ICP) method for 2D-gel electrophoresis image alignment. The paper seeks to introduce an information theoretic measure as one part of distance metric to gel image alignment. We combine intensity information of spots with geometric information of landmarks by applying information potential idea. The proposed method has been applied to both synthetic and real gel images accessible in public 2D-electrophoresis gel protein databases. The high accuracy and robustness of the algorithm indicate that it is promising for gel image alignment.  相似文献   

5.
Traction Force Microscopy (TFM) is a widespread method used to recover cellular tractions from the deformation that they cause in their surrounding substrate. Particle Image Velocimetry (PIV) is commonly used to quantify the substrate’s deformations, due to its simplicity and efficiency. However, PIV relies on a block-matching scheme that easily underestimates the deformations. This is especially relevant in the case of large, locally non-uniform deformations as those usually found in the vicinity of a cell’s adhesions to the substrate. To overcome these limitations, we formulate the calculation of the deformation of the substrate in TFM as a non-rigid image registration process that warps the image of the unstressed material to match the image of the stressed one. In particular, we propose to use a B-spline -based Free Form Deformation (FFD) algorithm that uses a connected deformable mesh to model a wide range of flexible deformations caused by cellular tractions. Our FFD approach is validated in 3D fields using synthetic (simulated) data as well as with experimental data obtained using isolated endothelial cells lying on a deformable, polyacrylamide substrate. Our results show that FFD outperforms PIV providing a deformation field that allows a better recovery of the magnitude and orientation of tractions. Together, these results demonstrate the added value of the FFD algorithm for improving the accuracy of traction recovery.  相似文献   

6.
Two-dimensional (2D) agarose gel electrophoresis is progressively replacing electron microscopy as the technique of choice to map the initiation and termination sites for DNA replication. Two different versions were originally developed to analyze the replication of the yeast 2 microns plasmid. Neutral/Neutral (N/N) 2D agarose gel electrophoresis has subsequently been used to study the replication of other eukaryotic plasmids, viruses and chromosomal DNAs. In some cases, however, the results do not conform to the expected 2D gel patterns. In order to better understand this technique, we employed it to study the replication of the colE1-like plasmid, pBR322. This was the first time replicative intermediates from a unidirectionally replicated plasmid have been analyzed by means of N/N 2D agarose gel electrophoresis. The patterns obtained were significantly different from those obtained in the case of bidirectional replication. We showed that identification of a complete are corresponding to molecules containing an internal bubble is not sufficient to distinguish a symmetrically located bidirectional origin from an asymmetrically located unidirectional origin. We also showed that unidirectionally replicated fragments containing a stalled fork can produce a pattern with an inflection point. Finally, replication appeared to initiate at only some of the potential origins in each multimer of pBR322 DNA.  相似文献   

7.
Image analysis of two-dimensional gel electrophoresis is a key step in proteomic workflow for identifying proteins that change under different experimental conditions. Since there are usually large amount of proteins and variations shown in the gel images, the use of software for analysis of 2D gel images is inevitable. We developed open-source software with graphical user interface for differential analysis of 2D gel images. The user-friendly software, RegStatGel, contains fully automated as well as interactive procedures. It was developed and has been tested under Matlab 7.01. AVAILABILITY: The database is available for free at http://www.mediafire.com/FengLi/2DGelsoftware.  相似文献   

8.
蛋白质组分析技术进展   总被引:10,自引:0,他引:10  
蛋白质组是指某一物种、个体、器官、组织、细胞乃至体液在精确控制其环境条件之下,特定时刻的全部蛋白质表达图谱。继基因组之后,综的研究即将成为分子生物学的研究热点,蛋白质组研究中常用分离分析技术包括样品制备,双向凝胶电泳,毛细管电泳,色谱技术和质谱技术。双向凝胶电泳是在较短时间内分离大量蛋白质组分,提供足够分离空间的比较成熟的方法。各种分离技术的连用和分析过程的自动化将是蛋白质组研究技术的发展方向。  相似文献   

9.
2D electrophoresis is currently the most widespread technique used for performing functional proteomics (i.e., the large-scale analysis of alterations in protein expression levels). Nevertheless, several limitations inherent to this technology have restricted the full potential of this protein differential display methodology for years. This has even led to the abandonment of 2D electrophoresis by several groups that switched to performing gel-free functional proteomics analyses based on liquid chromatography and mass spectrometry. Meanwhile, important recent advances in 2D electrophoresis, such as the introduction of fluorescent 2D difference gel electrophoresis and numerous protein prefractionation techniques, have thoroughly modernized 2D electrophoresis, making it again one of the preferred methods for the analysis of protein expression differences in many laboratories.  相似文献   

10.
2D electrophoresis is currently the most widespread technique used for performing functional proteomics (i.e., the large-scale analysis of alterations in protein expression levels). Nevertheless, several limitations inherent to this technology have restricted the full potential of this protein differential display methodology for years. This has even led to the abandonment of 2D electrophoresis by several groups that switched to performing gel-free functional proteomics analyses based on liquid chromatography and mass spectrometry. Meanwhile, important recent advances in 2D electrophoresis, such as the introduction of fluorescent 2D difference gel electrophoresis and numerous protein prefractionation techniques, have thoroughly modernized 2D electrophoresis, making it again one of the preferred methods for the analysis of protein expression differences in many laboratories.  相似文献   

11.
2D polyacrylamide gel electrophoresis has been the traditional workhorse of proteomics, allowing for the resolution of several thousand proteins in a single gel. Difference gel electrophoresis is an emerging technology that allows for accurate quantification with statistical confidence while controlling for nonbiologic variation, and also increases the dynamic range and sensitivity of traditional 2D polyacrylamide gel electrophoresis. With inclusion of an internal standard formed from equal amounts of every sample in an experiment, difference gel electrophoresis technology also allows for repetitive measurements and multivariable analyses to be quantitatively analyzed in one co-ordinated experiment, yielding statistically-significant changes in protein expression related to many disease states. This technique promises to be an important tool in clinical proteomics and the study of the mechanism of disease, investigating diagnostic biomarkers and pinpointing novel therapeutic targets.  相似文献   

12.
2D polyacrylamide gel electrophoresis has been the traditional workhorse of proteomics, allowing for the resolution of several thousand proteins in a single gel. Difference gel electrophoresis is an emerging technology that allows for accurate quantification with statistical confidence while controlling for nonbiologic variation, and also increases the dynamic range and sensitivity of traditional 2D polyacrylamide gel electrophoresis. With inclusion of an internal standard formed from equal amounts of every sample in an experiment, difference gel electrophoresis technology also allows for repetitive measurements and multivariable analyses to be quantitatively analyzed in one co-ordinated experiment, yielding statistically-significant changes in protein expression related to many disease states. This technique promises to be an important tool in clinical proteomics and the study of the mechanism of disease, investigating diagnostic biomarkers and pinpointing novel therapeutic targets.  相似文献   

13.
A number of biomechanical models have been proposed to improve nonrigid registration techniques for multimodal breast image alignment. A deformable breast model may also be useful for overcoming difficulties in interpreting 2D X-ray projections (mammograms) of 3D volumes (breast tissues). If a deformable model could accurately predict the shape changes that breasts undergo during mammography, then the model could serve to localize suspicious masses (visible in mammograms) in the unloaded state, or in any other deformed state required for further investigations (such as biopsy or other medical imaging modalities). In this paper, we present a validation study that was conducted in order to develop a biomechanical model based on the well-established theory of continuum mechanics (finite elasticity theory with contact mechanics) and demonstrate its use for this application. Experimental studies using gel phantoms were conducted to test the accuracy in predicting mammographic-like deformations. The material properties of the gel phantom were estimated using a nonlinear optimization process, which minimized the errors between the experimental and the model-predicted surface data by adjusting the parameter associated with the neo-Hookean constitutive relation. Two compressions (the equivalent of cranio-caudal and medio-lateral mammograms) were performed on the phantom, and the corresponding deformations were recorded using a MRI scanner. Finite element simulations were performed to mimic the experiments using the estimated material properties with appropriate boundary conditions. The simulation results matched the experimental recordings of the deformed phantom, with a sub-millimeter root-mean-square error for each compression state. Having now validated our finite element model of breast compression, the next stage is to apply the model to clinical images.  相似文献   

14.
15.
The comparison of two-dimensional (2-D) gel images from different samples is an established method used to study differences in protein expression. Conventional methods rely on comparing images from at least 2 different gels. Due to the high variation between gels, detection and quantification of protein differences can be problematic. Two-dimensional difference gel electrophoresis (Ettan trade mark DIGE) is an emerging technique for comparative proteomics, which improves the reproducibility and reliability of differential protein expression analysis between samples. In the application of DIGE different samples are labelled with mass and charge matched spectrally resolvable fluorescent dyes and are then separated on the same 2-D gel. Using an Escherichia coli lysate "spiked" with varying amounts of four different known proteins, we have tested a novel experimental design that exploits the sample multiplexing capabilities of DIGE, by including a standard sample in each gel. The standard sample comprises equal amounts of each sample to be compared and was found to improve the accuracy of protein quantification between samples from different gels allowing accurate detection of small differences in protein levels between samples.  相似文献   

16.
Veeser S  Dunn MJ  Yang GZ 《Proteomics》2001,1(7):856-870
In proteomic research, two-dimensional electrophoresis (2-D) is an important tool for investigating differential patterns of qualitative and quantitative protein expression. The strength of the technique is due to its unrivalled power of being able to separate simultaneously thousands of proteins. The key to the comparison of 2-D protein profiles, however, lies in the use of a fast and robust image matching process which is essential to the subsequent quantification procedure. To satisfy the growing demand for a robust and fully automatic method of matching 2-D gel protein separation profiles, we describe in this paper a novel registration technique based on image intensity distribution rather than selected features. The method uses a multiresolution representation of the gel profiles and exploits the fact that coarse approximations to the optimal matching can be extracted efficiently from low-resolution images. This permits the removal of misalignments at different scales in a systematic manner and the strength of the new method has been confirmed by a double blind trial of 111 2-D gel pairs. The proposed method requires neither landmarks nor an a priori image alignment, and takes about five seconds for processing a typical gel pair on a standard personal computer.  相似文献   

17.
Chen WQ  Kang SU  Lubec G 《Nature protocols》2006,1(3):1446-1452
Protein profiling in the high-throughput mode is a most useful technique that allows formation of reference databases for cells and tissues and performance of comparative proteomics. In the proposed protocol protein extraction from tissues is followed by 2D gel electrophoresis (2DE) with subsequent in-gel digestion and identification of soluble proteins by two individual mass spectrometric techniques, tandem matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and nano-liquid chromatography (nano-LC)-MS/MS. The proposed combined use of these two MS approaches leads to a very high identification rate of well-separated protein spots from a gel. In the first step 2DE separates high-abundance proteins (those visualized by nonsensitive Coomassie blue staining) that are subsequently picked, digested and aliquoted for MS applications. Protein samples not identified by MALDI-MS or MS/MS (77% of all spots) are finally unambiguously identified by nano-LC-MS/MS (total identification rate 94%). This protocol can be completed in 6 weeks.  相似文献   

18.
Three techniques for visualization of alkaline phosphatase after polyacrylamide-gel electrophoresis are compared. These are diazo-dye simultaneous coupling with the substrate sodium naphthyl phosphate and 5-chloro-2-toluene diazonium chloride; formazan precipitation with the substrate 5-bromo-4-chloro-3-indolyl phosphate and 3-[4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide; and silver staining with the substrate sodium glycerophosphate. Each staining technique was tested with gradient-pore and homogeneous-pore acrylamide-gel electrophoresis. The main factors assessed are sensitivity; separation of the human serum alkaline phosphatase isoenzymes of the liver, bone, and intestinal types; and differences in substrate affinity, as well as the complexity of each technique. Using the three techniques only minor differences in substrate affinity are evident. There is some nonspecific staining with the diazo-coupling technique but not with the formazan and silver staining techniques. The differences, in the mobility of the liver, bone, and intestinal isoenzymes achieved by homogeneous-pore gel electrophoresis are sufficient to allow them to be clearly distinguished. However, only very small differences in mobility are found with gradient-pore gel electrophoresis, but the sharper bands in this medium allow much smaller amounts of activity to be detected. As little as 160 microU of enzyme can be visualized by the diazo technique. Silver staining gives an approximately fourfold increase in sensitivity over the formazan technique, which in turn gives a fourfold increase over the diazo technique. An important aspect of the silver staining technique is the potential of increasing sensitivity much further by improvements in the photographic physical development stage.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Staphylococcus aureus plasmids are the main factor in the spreading of antibacterial resistance among bacterial strains that has emerged on a worldwide scale. Plasmids recovered from 12 clinical and food isolates of S. aureus were treated with 10 mM free lanthanide Nd3+ ions (non-enzymatic cleavage agent) in Hepes buffer (pH 7.5) at 70 °C. Topological forms of plasmids—closed circular (ccc), open circular (oc), and linear (lin)—produced by cleavage at different times were separated using pulsed-field agarose gel electrophoresis. The method is proposed to detect and differentiate several plasmids in the same bacterial strain according to their size.  相似文献   

20.
Fingerprinting techniques provide access to understanding the ecology of uncultured microbial consortia. However, the application of current techniques such as terminal restriction fragment length polymorphism (T-RFLP) and denaturing gradient gel electrophoresis (DGGE) has been hindered due to their limitations in characterizing complex microbial communities. This is due to that different populations possibly share the same terminal restriction fragments (T-RFs) and DNA fragments may co-migrate on DGGE gels. To overcome these limitations, a new approach was developed to separate terminal restriction fragments (T-RFs) of 16S rRNA genes on a two-dimensional gel (T-RFs-2D). T-RFs-2D involves restriction digestion of terminal fluorescence-labelled PCR amplified 16S rRNA gene products and their high-resolution separation via a two-dimensional (2D) gel electrophoresis based on the T-RF fragment size (1(st) D) and its sequence composition on the denaturing gradient gel (2(nd) D). The sequence information of interested T-RFs on 2D gels can be obtained through serial poly(A) tailing reaction, PCR amplification and subsequent DNA sequencing. By employing the T-RFs-2D method, bacteria with MspI digested T-RF size of 436 (±1) bp and 514 (±1) bp were identified to be a Lysobacter sp. and a Dehalococcoides sp. in a polychlorinated biphenyl (PCB) dechlorinating culture. With the high resolution of 2D separation, T-RFs-2D separated 63 DNA fragments in a complex river-sediment microbial community, while traditional DGGE detected only 41 DNA fragments in the same sample. In all, T-RFs-2D has its advantage in obtaining sequence information of interested T-RFs and also in characterization of complex microbial communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号