首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fruit ripening in Prunus persica involves a number of physiological changes, being one of the most significant the mesocarp softening in melting varieties. In order to get a better understanding of the molecular processes involved in this phenomenon, the protein accumulation patterns in firm and soft fruit of three peach and two nectarine melting flesh varieties were assessed using 2D gel analysis. A General Linear Model (GLM) two-way analysis of variance determined that 164 of the 621 protein spots analyzed displayed a differential accumulation associated with the softening process. Among them, only 14 proteins changed their accumulation in all the varieties assessed, including proteins mostly involved in carbohydrates and cell wall metabolism as well as fruit senescence. The analysis among varieties showed that 195 and 189 spots changed within the firm and soft fruit conditions, respectively. Despite the changes in relative abundance in the spot proteins, the proteome is conserved among varieties and during the transition from firm to soft fruit. Only two spots proteins exhibited a qualitative change in all the conditions assessed. These results are in agreement with the notion that Prunus persica commercial varieties have a narrow genetic background.  相似文献   

2.
Phosphatidylcholine (PC) is the major membrane-forming phospholipid in eukaryotes and is estimated to be present in about 15% of the domain Bacteria. Usually, PC can be synthesized in bacteria by either of two pathways, the phospholipid N-methylation (Pmt) pathway or the phosphatidylcholine synthase (Pcs) pathway. The three subsequent enzymatic methylations of phosphatidylethanolamine are performed by a single phospholipid N-methyltransferase in some bacteria whereas other bacteria possess multiple phospholipid N-methyltransferases each one performing one or several distinct methylation steps. Phosphatidylcholine synthase condenses choline directly with CDP-diacylglycerol to form CMP and PC. Like in eukaryotes, bacterial PC also functions as a biosynthetic intermediate during the formation of other biomolecules such as choline, diacylglycerol, or diacylglycerol-based phosphorus-free membrane lipids. Bacterial PC may serve as a specific recognition molecule but it affects the physicochemical properties of bacterial membranes as well. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.  相似文献   

3.
The TaqMan probes that have been long and effectively used in real-time polymerase chain reaction (PCR) may also be used in DNA melting analysis. We studied some factors affecting efficiency of the approach such as (i) number of asymmetric PCR cycles preceding DNA melting analysis, (ii) choice of fluorophores for the multiplex DNA melting analysis, and (iii) choice of sense or antisense TaqMan probes for optimal resolution of wild-type and mutant alleles. We also determined ΔTm (i.e., the temperature shift of a heteroduplex relative to the corresponding homoduplex) as a means of preliminary identification of mutation type. In experiments with serial dilution of mutant KRAS DNA with wild-type DNA, the limit of detection of mutant alleles was 1.5–3.0%. Using DNA from both tumor and formalin-fixed paraffin-embedded tissues, we demonstrated a high efficiency of TaqMan probes in mono- and multiplex mutation scanning of KRAS, NRAS (codons 12, 13, and 61), and BRAF (codon 600) genes. This cost-effective method, which can be applied to practically any mutation hot spot in the human genome, combines simplicity, ease of execution, and high sensitivity—all of the qualities required for clinical genotyping.  相似文献   

4.
The melting of base pairs is a ubiquitous feature of RNA structural transitions, which are widely used to sense and respond to cellular stimuli. A recent study employing solution nuclear magnetic resonance (NMR) imino proton exchange spectroscopy provides a rare base-pair-specific view of duplex melting in the Salmonella FourU RNA thermosensor, which regulates gene expression in response to changes in temperature at the translational level by undergoing a melting transition. The authors observe “microscopic” enthalpy–entropy compensation—often seen “macroscopically” across a series of related molecular species—across base pairs within the same RNA. This yields variations in base-pair stabilities that are an order of magnitude smaller than corresponding variations in enthalpy and entropy. A surprising yet convincing link is established between the slopes of enthalpy–entropy correlations and RNA melting points determined by circular dichroism (CD), which argues that unfolding occurs when base-pair stabilities are equalized. A single AG-to-CG mutation, which enhances the macroscopic hairpin thermostability and folding cooperativity and renders the RNA thermometer inactive in vivo, spreads its effect microscopically throughout all base pairs in the RNA, including ones far removed from the site of mutation. The authors suggest that an extended network of hydration underlies this long-range communication. This study suggests that the deconstruction of macroscopic RNA unfolding in terms of microscopic unfolding events will require careful consideration of water interactions.  相似文献   

5.
Elymus nutans Griseb. as an important forage grass and gene pools for improving cereal crops, widely distributes in west China. However, little is known about its genetic and geographical patterns. Inter-simple sequence repeat (ISSR) markers were applied to assess genetic diversity and geographical divergence among 63 E. nutans accessions from west China. The cluster analysis separated the accessions into several groups with geographical origins. The molecular variance analysis (AMOVA) showed that the proportion of variance explained by within- and among-geographical group diversity was 43.2% and 56.8%, respectively. Based on pairwise genetic distances (ΦST) between geographical groups, the relationships were congruent with the cluster of accessions. The distinct geographical divergence of E. nutans was revealed between Qinghai-Tibet Plateau and Xinjiang. The ecogeographical conditions such as climate and mountain ranges and elevation behaved as the crucial factors for genetic divergence. Furthermore, the study also indicated that Qinghai-Tibet Plateau might be the diversity differentiation center of E. nutans. The result will facilitate the breeding program and germplasm collection and conservation.  相似文献   

6.
A study was conducted to evaluate the performance of the ALOA (chromogenic media) in combination with immunomagnetic separation (IMS) for the detection of Listeria monocytogenes in ready-to-eat food products. IMS-ALOA method was found to be equivalent to Health Canada's reference culture method as well as comparable to BAX-PCR method in terms of the sensitivity of the methods for the detection of L. monocytogenes in ready-to-eat foods such as turkey roast, beef roast, mixed vegetable salads, potato and egg salad, soft cheese and smoked salmon. The IMS-ALOA method gave 100% sensitivity in the inclusivity tests with 42 pure L. monocytogenes strains. Exclusivity testing with five other species of Listeria genus and 29 pure non-L. monocytogenes strains from 21 different genera showed 97% specificity. The method was able to detect L. monocytogenes at levels near or below 1 cfu/25 g regulatory limit in ready-to-eat food matrices after 24 h enrichment, with a turnaround time of 3 days compared to 7-8 days for culture method. IMS-ALOA method is a valuable alternate test method for the screening of L. monocytogenes in a variety of foods especially ready-to-eat foods.  相似文献   

7.
The barnacle Balanus glandula was introduced in Argentina in the 1970s, and today it dominates the high intertidal level in most Argentinean rocky shores. The aim of this work was to evaluate the effect of the type of substrata and intertidal height on a population of Balanus glandula by conducting field surveys and one-year field experiments in which we combined different substrata (hardness: hard and soft, and texture: smooth and rough) at two intertidal heights (mid and high). In natural populations, the highest density of adults and recruits occurred on soft-rough substratum and in the high intertidal. The different textures were important only on the soft substrata and high intertidal, and the density of barnacles of the soft-rough substrata was higher than soft and smooth ones. The most suitable experimental substratum was the soft-rough of the high intertidal, which had the highest recruitment, survival and final density of barnacles at the end of the experiment. In contrast, the hard and smooth of the high and middle intertidal were the least suitable in all cases. Although the recruitment of B. glandula occurred throughout the year, it was higher in the high intertidal, and it showed a recruitment peak in the winter and a second in the summer. While most studies on this barnacle investigated the effects of granite or other volcanic hard substrata, our study also focused on soft substrata. The effects of soft substrata are particularly important because soft sedimentary rocks characterise the southern Atlantic coast of South America and the presence of soft rocks appears to optimize the success of Balanus glandula.  相似文献   

8.
Whether hard sweeps or soft sweeps dominate adaptation has been a matter of much debate. Recently, we developed haplotype homozygosity statistics that (i) can detect both hard and soft sweeps with similar power and (ii) can classify the detected sweeps as hard or soft. The application of our method to population genomic data from a natural population of Drosophila melanogaster (DGRP) allowed us to rediscover three known cases of adaptation at the loci Ace, Cyp6g1, and CHKov1 known to be driven by soft sweeps, and detected additional candidate loci for recent and strong sweeps. Surprisingly, all of the top 50 candidates showed patterns much more consistent with soft rather than hard sweeps. Recently, Harris et al. 2018 criticized this work, suggesting that all the candidate loci detected by our haplotype statistics, including the positive controls, are unlikely to be sweeps at all and that instead these haplotype patterns can be more easily explained by complex neutral demographic models. They also claim that these neutral non-sweeps are likely to be hard instead of soft sweeps. Here, we reanalyze the DGRP data using a range of complex admixture demographic models and reconfirm our original published results suggesting that the majority of recent and strong sweeps in D. melanogaster are first likely to be true sweeps, and second, that they do appear to be soft. Furthermore, we discuss ways to take this work forward given that most demographic models employed in such analyses are necessarily too simple to capture the full demographic complexity, while more realistic models are unlikely to be inferred correctly because they require a large number of free parameters.  相似文献   

9.

Background

Understanding the molecular mechanism through which proteins are functional at extreme high and low temperatures is one of the key issues in structural biology. To investigate this phenomenon, we have focused on two instructive truncated hemoglobins from Thermobifida fusca (Tf-trHbO) and Mycobacterium tuberculosis (Mt-trHbO); although the two proteins are structurally nearly identical, only the former is stable at high temperatures.

Methods

We used molecular dynamics simulations at different temperatures as well as thermal melting profile measurements of both wild type proteins and two mutants designed to interchange the amino acid residue, either Pro or Gly, at E3 position.

Results

The results show that the presence of a Pro at the E3 position is able to increase (by 8°) or decrease (by 4°) the melting temperature of Mt-trHbO and Tf-trHbO, respectively. We observed that the ProE3 alters the structure of the CD loop, making it more flexible.

Conclusions

This gain in flexibility allows the protein to concentrate its fluctuations in this single loop and avoid unfolding. The alternate conformations of the CD loop also favor the formation of more salt-bridge interactions, together augmenting the protein's thermostability.

General significance

These results indicate a clear structural and dynamical role of a key residue for thermal stability in truncated hemoglobins.  相似文献   

10.
The performance of the reaction-field method of electrostatics is tested in molecular dynamics simulations of protein human interleukin-4 and a short DNA fragment in explicit solvent. Two truncation schemes are considered: one based on the position of atomic charges in water molecules and the other on the position of groups of charges. The group-based truncation leads to the melting of the DNA double helix. In contrast, the atom-based truncation maintains the helical structure intact. Similarly for the protein, the group-based truncation leads to an unfolding at pH 2 while the atom-based truncation produces stable trajectories at low and normal pH, in agreement with experiment. Artificial repulsion between charged residues associated with the group-based truncation is identified as the microscopic reason behind unfolding of the protein. Implications of different truncation schemes in reaction-field simulations of biomolecules are discussed.  相似文献   

11.
Lin Yang 《Carbohydrate research》2010,345(12):1713-14526
The repeating GalpNAc-α-(1→4)-GalpNAc unit is part of a series of essential structures that can be found in many important biomolecules such as the glycoproteins and the O-antigenic polysaccharides of clinically important bacterial strains. In this paper, we describe an exclusive α-selective glycosylation reaction, using a 4,6-di-O-tert-butyldimethylsilyl-N-acetyloxazolidinone-protected thioglycoside as the glycosyl donor, under pre-activation conditions, with only half amount of the promoter, providing the product GalpNAc-α-(1→4)-GalpNAc in high isolated yield. This reaction can be also applied to increasing the length of the repeating structure, which is of significant use in further synthesis of branched or linear oligosaccharides.  相似文献   

12.
By serving as hosts for native vectors, introduced species can surpass native hosts in their role as major reservoirs of local pathogens. During a 4-year longitudinal study, we investigated factors that affected infestation by ixodid ticks on both introduced Siberian chipmunks Tamias sibiricus barberi and native bank voles Myodes glareolus in a suburban forest (Forêt de Sénart, Ile-de-France). Ticks were counted on adult bank voles and on adult and young chipmunks using regular monthly trapping sessions, and questing ticks were quantified by dragging. At the summer peak of questing Ixodes ricinus availability, the average tick load was 27-69 times greater on adult chipmunks than on adult voles, while average biomass per hectare of chipmunks and voles were similar. In adult chipmunks, individual effects significantly explained 31% and 24% of the total variance of tick larvae and nymph burdens, respectively. Male adult chipmunks harboured significantly more larvae and nymphs than adult females, and than juveniles born in spring and in summer. The higher tick loads, and more specifically the ratio of nymphs over larvae, observed in chipmunks may be caused by a higher predisposition - both in terms of susceptibility and exposure - to questing ticks. Tick burdens were also related to habitat and seasonal variation in age- and sex-related space use by both rodents. Introduced chipmunks may thus have an important role in the dynamics of local vector-borne pathogens compared with native reservoir hosts such as bank voles.  相似文献   

13.
Analysis of the macromolecular crowding effects in polymer solutions show that the excluded volume effect is not the only factor affecting the behavior of biomolecules in a crowded environment. The observed inconsistencies are commonly explained by the so-called soft interactions, such as electrostatic, hydrophobic, and van der Waals interactions, between the crowding agent and the protein, in addition to the hard nonspecific steric interactions. We suggest that the changes in the solvent properties of aqueous media induced by the crowding agents may be the root of these “soft” interactions. To check this hypothesis, the solvatochromic comparison method was used to determine the solvent dipolarity/polarizability, hydrogen-bond donor acidity, and hydrogen-bond acceptor basicity of aqueous solutions of different polymers (dextran, poly(ethylene glycol), Ficoll, Ucon, and polyvinylpyrrolidone) with the polymer concentration up to 40% typically used as crowding agents. Polymer-induced changes in these features were found to be polymer type and concentration specific, and, in case of polyethylene glycol (PEG), molecular mass specific. Similarly sized polymers PEG and Ucon producing different changes in the solvent properties of water in their solutions induced morphologically different α-synuclein aggregates. It is shown that the crowding effects of some polymers on protein refolding and stability reported in the literature can be quantitatively described in terms of the established solvent features of the media in these polymers solutions. These results indicate that the crowding agents do induce changes in solvent properties of aqueous media in crowded environment. Therefore, these changes should be taken into account for crowding effect analysis.  相似文献   

14.
McCully ME  Beck DA  Daggett V 《Biochemistry》2008,47(27):7079-7089
The principle of microscopic reversibility states that at equilibrium the number of molecules entering a state by a given path must equal those exiting the state via the same path under identical conditions or, in structural terms, that the conformations along the two pathways are the same. There has been some indirect evidence indicating that protein folding is such a process, but there have been few conclusive findings. In this study, we performed molecular dynamics simulations of an ultrafast unfolding and folding protein at its melting temperature to observe, on an atom-by-atom basis, the pathways the protein followed as it unfolded and folded within a continuous trajectory. In a total of 0.67 micros of simulation in water, we found six transient denaturing events near the melting temperature (323 and 330 K) and an additional refolding event following a previously identified unfolding event at a high temperature (373 K). In each case, unfolding and refolding transition state ensembles were identified, and they agreed well with experiment on the basis of a comparison of S and Phi values. On the basis of several structural properties, these 13 transition state ensembles agreed very well with each other and with four previously identified transition states from high-temperature denaturing simulations. Thus, not only were the unfolding and refolding transition states part of the same ensemble, but in five of the seven cases, the pathway the protein took as it unfolded was nearly identical to the subsequent refolding pathway. These events provide compelling evidence that protein folding is a microscopically reversible process. In the other two cases, the folding and unfolding transition states were remarkably similar to each other but the paths deviated.  相似文献   

15.
In this review we discuss the use of X-ray and neutron diffraction methods for investigating the temperature- and pressure-dependent structure and phase behaviour of lipid and model biomembrane systems. Hydrostatic pressure has been used as a physical parameter for studying the stability and energetics of lipid mesophases, but also because high pressure is an important feature of certain natural membrane environments and because the high pressure phase behaviour of biomolecules is of importance for several biotechnological processes. Using the pressure jump relaxation technique in combination with time-resolved synchrotron X-ray diffraction, the kinetics of different lipid phase transformations was investigated. The techniques can also be applied to the study of other soft matter and biomolecular phase transformations, such as surfactant phase transitions and protein un/refolding reactions. Several examples are given. In particular, we present data on the pressure-induced unfolding and refolding of small proteins, such as Snase. The data are compared with the corresponding results obtained using other trigger mechanisms and are discussed in the light of recent theoretical approaches.  相似文献   

16.
《Biophysical journal》2020,118(5):1076-1089
Mechanical processes are involved at many stages of the development of living cells, and often external forces applied to a biomolecule result in its unfolding. Although our knowledge of the unfolding mechanisms and the magnitude of the forces involved has evolved, the role that water molecules play in the mechanical unfolding of biomolecules has not yet been fully elucidated. To this end, we investigated with steered molecular dynamics simulations the mechanical unfolding of dystrophin’s spectrin repeat 1 and related the changes in the protein’s structure to the ordering of the surrounding water molecules. Our results indicate that upon mechanically induced unfolding of the protein, the solvent molecules become more ordered and increase their average number of hydrogen bonds. In addition, the unfolded structures originating from mechanical pulling expose an increasing amount of the hydrophobic residues to the solvent molecules, and the uncoiled regions adapt a convex surface with a small radius of curvature. As a result, the solvent molecules reorganize around the protein’s small protrusions in structurally ordered waters that are characteristic of the so-called “small-molecule regime,” which allows water to maintain a high hydrogen bond count at the expense of an increased structural order. We also determined that the response of water to structural changes in the protein is localized to the specific regions of the protein that undergo unfolding. These results indicate that water plays an important role in the mechanically induced unfolding of biomolecules. Our findings may prove relevant to the ever-growing interest in understanding macromolecular crowding in living cells and their effects on protein folding, and suggest that the hydration layer may be exploited as a means for short-range allosteric communication.  相似文献   

17.
Mussels (Mytilus edulis L.) are unusual because they thrive in both rocky shore and soft-bottom habitats. Despite their ecological and economic importance, little is known about their spatial structure. Mussels do not generally recruit to bare soft substrate because larvae and postlarvae cannot attach to a bottom of small sediment particles. They attach to hard objects on the sediment surface (especially other mussels), so soft-bottom mussel beds may be spatially organized in ways that are fundamentally different from those on rocky shores. The purpose of our study was to characterize the scales of spatial variability for several mussel abundance parameters in soft-bottom, intertidal M. edulis beds in coastal Maine. We used a random factor nested-ANOVA design of 200 cm2 Cores within 1 m2 Quadrats within 6 m Transects within Positions within bed Sites along 70 km (euclidean distance) of the Maine coast. Based on the literature and our field observations, we hypothesized that Sites and Positions account for most of the spatial variance in soft-botttom mussel beds. We rejected this hypothesis. Sites and Positions were not important in explaining variation in total mussel density, density of new recruits, or density of larger mussels. Although most of the variance in surface silt-clay fraction did occur at these levels, most mussel variation occurred at smaller spatial scales, specifically at the Quadrat scale for new recruits and total mussels and at the Transect scale for larger mussels. Variance in mussel parameters was not closely linked to the silt-clay fraction of surface sediment or to Site rankings of wind exposure and tidal flow. Variance in total mussel density was due primarily to variance in recruitment. No single scale explained more than about half the mussel variance, and no single scale was best at explaining all the mussel parameters. Greater knowledge about mussel bed spatial variability would be useful because it can help direct scale-dependent sampling regimes, field experiments, and coastal management practices.  相似文献   

18.
Monitoring the fluorescence of proteins, particularly the fluorescence of intrinsic tryptophan residues, is a popular method often used in the analysis of unfolding transitions (induced by temperature, chemical denaturant, and pH) in proteins. The tryptophan fluorescence provides several suitable parameters, such as steady‐state fluorescence intensity, apparent quantum yield, mean fluorescence lifetime, position of emission maximum that are often utilized for the observation of the conformational/unfolding transitions of proteins. In addition, the fluorescence intensities ratio at different wavelengths (usually at 330 nm and 350 nm) is becoming an increasingly popular parameter for the evaluation of thermal transitions. We show that, under certain conditions, the use of this parameter for the analysis of unfolding transitions leads to the incorrect determination of thermodynamic parameters characterizing unfolding transitions in proteins (e.g., melting temperature) and, hence, can compromise the hit identification during high‐throughput drug screening campaigns.  相似文献   

19.
Yarrowia lipolytica is a dimorphic, non-pathogenic, ascomycetous yeast species with distinctive physiological features and biochemical characteristics that are significant in environment-related matters. Strains naturally present in soils, sea water, sediments and waste waters have inherent abilities to degrade hydrocarbons such as alkanes (short and medium chain) and aromatic compounds (biphenyl and dibenzofuran). With the application of slow release fertilizers, design of immobilization techniques and development of microbial consortia, scale-up studies and in situ applications have been possible. In general, hydrocarbon uptake in this yeast is mediated by attachment to large droplets (via hydrophobic cell surfaces) or is aided by surfactants and emulsifiers. Subsequently, the internalized hydrocarbons are degraded by relevant enzymes innately present in the yeast. Some wild-type or recombinant strains also detoxify nitroaromatic (2,4,6-trinitrotoluene), halogenated (chlorinated and brominated hydrocarbons) and organophosphate (methyl parathion) compounds. The yeast can tolerate some metals and detoxify them via different biomolecules. The biomass (unmodified, in combination with sludge, magnetically-modified and in the biofilm form) has been employed in the biosorption of hexavalent chromium ions from aqueous solutions. Yeast cells have also been applied in protocols related to nanoparticle synthesis. The treatment of oily and solid wastes with this yeast reduces chemical oxygen demand or value-added products (single cell oil, single cell protein, surfactants, organic acids and polyalcohols) are obtained. On account of all these features, the microorganism has established a place for itself and is of considerable value in environment-related applications.  相似文献   

20.
We investigated whether food type influences development of the pharyngeal crushing apparatus of black carp (Mylopharyngodon piceus, Cyprinidae). Fish fed a hard diet had average standard lengths and weights larger than those fed a soft diet; these observations in part could be related to differences in nutritional value of the two food types. The lower pharyngeal bones, which bear molariform teeth were examined using three dimensional computed tomography (CT) scans. After adjusting for differences in the standard length of the fish, the total volume and exterior surface areas of the pharyngeal teeth were greater in fish fed hard diets than in those fed soft diets.Total weights of the pharyngeal arches were less in the fish fed a soft diet than in those fed a hard diet. These results indicated that food type affects development of the pharyngeal crushing mill of black carp and therefore if black carp are produced for snail control, a hard diet should be provided from an as early time as possible in the production cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号