首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hemolysin (HlyA) from Escherichia coli containing the hlyCABD operon separated from the nonhemolytic pro-HlyA upon two-dimensional (2-D) polyacrylamide gel electrophoresis. The migration distance indicated a net loss of two positive charges in HlyA as a result of the HlyC-mediated activation (modification). HlyA activated in vitro in the presence of [U-14C]palmitoyl-acyl carrier protein comigrated with in vivo-activated hemolysin on 2-D gels and was specifically labelled, in agreement with the assumption that the activation is accomplished in vitro and in vivo by covalent fatty acid acylation. The in vivo-modified amino acid residues were identified by peptide mapping and 2-D polyacrylamide gel electrophoresis of mutant and truncated HlyA derivatives, synthesized in E. coli in the presence and absence of HlyC. These analyses indicated that the internal residues Lys-564 and Lys-690 of HlyA, which have recently been shown by others to be fatty acid acylated by HlyC in vitro, are also the only modification sites in vivo. HlyA activated in E. coli was quantitatively fatty acid acylated at both sites, and the double modification was required for wild-type hemolytic activity. Single modifications in mutant and truncated HlyA derivatives suggested that both lysine residues are independently fatty acid acylated by a mechanism requiring additional sequences or structures flanking the corresponding acylation site. The intact repeat domain of HlyA was not required for the activation. The pore-forming activities of pro-HlyA and singly modified HlyA mutants in planar lipid bilayer membranes suggested that the activation is not essential for transmembrane pore formation but rather required for efficient binding of the toxin to target membranes.  相似文献   

3.
The apparently unique fatty acylation mechanism that underlies activation (maturation) of Escherichia coli haemolysin and related toxins is further clarified by investigation of the interaction of protoxin with the specific acyltransferase HlyC. Using deleted protoxin variants and protoxin peptides as substrates in an in vitro maturation reaction dependent upon HlyC and acyl-acyl carrier protein, two independent HlyC recognition domains were identified on the 1024-residue protoxin, proA, and they were shown to span the two target lysine residues K564 (KI) and K690 (KII) that are fatty acylated. Each domain required 15–30 amino acids for basal recognition and 50–80 amino acids for wild-type acylation. The two domains (FAI and FAII) competed with each other in cis and in trans for HlyC. The affinity of FAI for HlyC is approximately four times greater than that of FAII resulting in an overall 80% acylation at KI and 20% acylation at KII in both whole toxin and peptide derivatives. No other proA sequences were required for toxin maturation, and excess Ca2+ prevented acylation of both lysines. The lack of primary sequence identity between FAI and FAll domains in proA and among corresponding sites on related protoxins currently precludes an explanation of the basis of HlyC recognition by proA.  相似文献   

4.
The hemolysin toxin (HlyA) is secreted across both the cytoplasmic and outer membranes of pathogenic Escherichia coli and forms membrane pores in cells of the host immune system, causing cell dysfunction and death. The processes underlying the interaction of HlyA with the bacterial and mammalian cell membranes are remarkable. Secretion of HlyA occurs without a periplasmic intermediate and is directed by an uncleaved C-terminal targetting signal and the HlyB and HlyD translocator proteins, the former being a member of a transporter superfamily central to import and export of a wide range of substrates by prokaryotic and eukaryotic cells. The separate process by which HlyA is targetted to mammalian cell membranes is dependent upon fatty acylation of a non-toxic precursor, proHlyA. This is achieved by a novel mechanism directed by the activator protein HlyC, which binds to an internal proHlyA recognition sequence and provides specificity for the transfer of fatty acid from cellular acyl carrier protein.  相似文献   

5.
Internal fatty acylation of proteins is a recognized means of modifying biological behavior. Escherichia coli hemolysin A (HlyA), a toxic protein, is transcribed as a nontoxic protein and made toxic by internal acylation of two lysine residue epsilon-amino groups; HlyC catalyzes the acyl transfer from acyl-acyl carrier protein (ACP), the obligate acyl donor. Conserved residues among the respective homologous C proteins that activate 13 different RTX (repeats in toxin) toxins of which HlyA is the prototype likely include some residues that are important in catalysis. Possible roles of two conserved tyrosines and two conserved arginines were investigated by noting the effects of chemical modifiers and site-directed mutagenesis. TNM modification of HlyC at pH 8.0 led to extensive inhibition that was prevented by the presence of the substrate myristoyl-ACP but not by the product, ACPSH. NAI had no effect. Y70G and Y150G greatly diminished enzyme activity, whereas mutations Y70F and Y150F exhibited wild-type activity. Modification of arginine residues with PG markedly lowered acyltransferase activity with moderate protection by both myristoyl-ACP and ACPSH. Under optimum conditions, four separate mutations of the two conserved arginine residues (R24A, R24K, R87A, and R87K) had little effect on acyltransferase activity.  相似文献   

6.
HlyC, hemolysin-activating lysine-acyltransferase, catalyses the acylation (from acyl-acyl carrier protein [ACP]) of Escherichia coli prohemolysin (proHlyA) on the epsilon-amino groups of specific lysine residues, 564 and 690 of the 1024 amino acid primary structure, to form hemolysin (HlyA). Isothermal titration calorimetry was used to measure the thermodynamic properties of the protein acylation of proHlyA-derived structures, altered by substantial deletions and separation of the acylation sites into two different peptides and site directed mutation analyses of acylation sites. Acylation of proHlyA-derived proteins catalyzed by HlyC was overall an exothermic reaction driven by a negative enthalpy. The reaction, whose kinetics are compatible to a ping-pong mechanism, is composed of two partial reactions. The first, the formation of an acyl-HlyC intermediate, was entropically driven, most likely by noncovalent complex formation between acyl-ACP and HlyC; enthalpy-driven acyl transfer followed, resulting in acyl-HlyC and ACPSH product formation. The second partial reaction was an energetically unfavorable acyl transfer from acyl-enzyme intermediate to the final acyl acceptor, a proHlyA derivative. Overall the acylation of proHlyA-derived proteins catalyzed by HlyC was driven by the energetics of the acyl enzyme intermediate reaction. Of the two acylation sites, intactness of the site equivalent to proHlyA K564 was more important for acylation reaction thermodynamic stability.  相似文献   

7.
alpha-Hemolysin (HlyA) is a secreted protein virulence factor observed in certain uropathogenic strains of Escherichia coli. The active, mature form of HlyA is produced by posttranslational modification of the protoxin that is mediated by acyl carrier protein and an acyltransferase, HlyC. We have now shown using mass spectrometry that these modifications, when observed in protein isolated in vivo, consist of acylation at the epsilon-amino groups of two internal lysine residues, at positions 564 and 690, with saturated 14- (68%), 15- (26%), and 17- (6%) carbon amide-linked side chains. Thus, HlyA activated in vivo consists of a heterogeneous family of up to nine different covalent structures, and the substrate specificity of the HlyC acyltransferase appears to differ from that of the closely related CyaC acyltransferase expressed by Bordetella pertussis.  相似文献   

8.
Mutational analysis of the carboxy-terminal region of Escherichia coli HlyC was performed by site-directed mutagenesis. Replacement of residue Val-127 or Lys-129 reduced the activity of HlyC to about 30 or 60%, respectively, of that of the wild type, while replacement of Gly-128 reduced the activity to less than 1% of the wild-type level. Complete inactivation of HlyC was caused by a double mutation, replacement of Gly-128 with valine and of Lys-129 with isoleucine. Analysis of culture supernatants from mutants with reduced hemolytic activity by two-dimensional gel electrophoresis revealed the production and simultaneous secretion of nonacylated, monoacylated, and fully acylated HlyA forms, demonstrating impairment of the acylation reaction, possibly due to a decreased affinity of HlyC for the individual HlyA acylation sites.  相似文献   

9.
HlyC, hemolysin-activating lysine acyltransferase, catalyzes the acylation (from acyl-ACP) of Escherichia coli prohemolysin (proHlyA) on the epsilon-amino groups of specific lysine residues, Lys564 and Lys690 of the 1024-amino acid primary structure, to form hemolysin (HlyA). The amino acid sequences flanking the two acylation sites are not homologous except that each has a glycine residue immediately preceding the lysine which is acylated; there are, however, numerous GK sequences throughout proHlyA that are not acylation sites. The substrate specificity of acylation was examined. ProHlyA-derived structures, altered by substantial deletions and separation of the acylation sites into two different peptides and site-directed mutation analyses of acylation sites, often served as internal protein acylation substrates, and the kinetics of the acylations were measured. The two sites of acylation of proHlyA functioned independently of one another with HlyC; there did not appear to be a common HlyC binding site or processivity of the enzyme between the sites. Acyl-HlyC was likely the enzyme form that interacted with the final acylation substrate. In a variety of constructs, the two acylation sites had similar K(m) values, but their V(max) values and catalytic efficiencies as substrates differed. Internal protein acylation was inhibited by specific small peptides mimicking the primary structure of each acylation site except that the crucial lysines were replaced with arginines; similar small peptides containing the crucial lysine, however, were not acylated.  相似文献   

10.
Abstract

Uropathogenic E. coli (UPEC), especially associated with severe urinary tract infections (UTI) pathologies, harbors an important virulence factor known as α-hemolysin (110?kDa). Hemolytic activity of α-hemolysin (HlyA) requires modification (acylation) of two lysine residues of HlyA by HlyC, part of operon hlyCABD. Most of the previous studies had used whole operon hlyCABD and gene tolC cloning for the production of active α-hemolysin. Studies involving α-hemolysin are limited due to the cumbersome and manual method of purification for this toxin. Here, we report a simple method for production of both active and inactive recombinant α-hemolysin by cloning only hlyA and hlyC genes of operon hlyCABD. Presence of both active and inactive α-hemolysin would be advantageous for functional characterization. After translation, the yield of the purified α-hemolysin was 1?mg/200?ml. Functionality of the recombinant α-hemolysin protein was confirmed using hemolytic assay. This is the first report of the production of active and inactive recombinant α-hemolysin for functional studies.  相似文献   

11.
α-Hemolysin (HlyA) is an exotoxin secreted by some pathogenic strains of Escherichia coli that causes lysis of several mammalian cells, including erythrocytes of different species. HlyA is synthesized as a protoxin, pro-HlyA, which is activated by acylation at two internal lysines Lys-563 and Lys-689. It has been proposed that pore formation is the mechanism of cytolytic activity for this toxin, as shown in experiments with whole cells, planar lipid membranes, and liposomes, but these experiments have yielded conflicting results about the structure of the pore. In this study, HlyA cysteine replacement mutant proteins of amino acids have been labeled with Alexa-488 and Alexa-546. Fluorescence resonance energy transfer measurements, employing labeled toxin bound to sheep ghost erythrocytes, have demonstrated that HlyA oligomerizes on erythrocyte membranes. As the cytotoxic activity is absolutely dependent on acylation, we have studied the role of acylation in the oligomerization, demonstrating that fatty acids are essential in this process. On the other hand, fluorescence resonance energy transfer and the hemolytic activity decrease when the erythrocyte ghosts are cholesterol-depleted, hence indicating the role of membrane microdomains in the clustering of HlyA. Simultaneously, HlyA was found in detergent-resistant membranes. Pro-HlyA has also been found in detergent-resistant membranes, thus demonstrating that the importance of acyl chains in toxin oligomerization is the promotion of protein-protein interaction. These results change the concept of the main role assigned to acyl chain in the targeting of proteins to membrane microdomains.Escherichia coli α-hemolysin, HlyA,4 is an exotoxin that elicits a number of responses from mammalian target cells and also alters the membrane permeability of host cells, causing lysis and death (1, 2). Synthesis, maturation, and secretion of E. coli HlyA are determined by the hlyCABD operon (3). The gene A product is a 110-kDa polypeptide corresponding to protoxin (Pro-HlyA), which is matured in bacterial cytosol to the active form (HlyA) by HlyC-directed acylation. This post-translational modification involves a covalent amide linkage of fatty acids at two internal lysine residues (Lys-563 and Lys-689) for activation (4). HlyA activated in vivo consists of a heterogeneous family of up to nine different covalent structures (two acylation sites and three possible modifying groups in each site, C14:0 (68%), C15:0 (26%) and C17:0 (6%) (5)). Although these fatty acids are not required for the binding of the toxin to membranes, they are essential for the hemolytic process, inducing a molten globule conformation and promoting the irreversibility of the binding (6, 7).It has been proposed that pore formation is the mechanism of cytolytic activity for this toxin, as shown in experiments with whole cells, planar lipid membranes, and liposomes. However, these experiments have yielded conflicting results. Although a group of researchers is in favor of a monomer as the active species of the toxin in membranes, other groups postulate that an oligomerization process is involved. Based on experiments with lipid bilayers, Menestrina et al. (8) have suggested that one single HlyA molecule is responsible for the formation of the channel. HlyA has also been recovered from deoxycholate-solubilized erythrocyte membranes as a monomer, indicating either that oligomerization is not required for pore formation or that oligomers are dissociated in the detergent (1).On the other hand, Benz et al. (9) have found that small variations of toxin concentration have had a considerable effect on the specific membrane conductance. An increase in HlyA concentration, by a factor of 5, results in about 40–100-fold higher membrane conductance. This means that several HlyA molecules could be involved in channel formation (9). Besides, they have found that the active channel-forming oligomer and inactive monomer are in an association-dissociation equilibrium (10). In addition, the complementation of inactive deleted mutant proteins of HlyA with the corresponding wild type toxin produces hemolytic activity, suggesting that two or more toxin molecules aggregate before pore formation (11). All of the evidence suggests the formation of an oligomer.Experiments employing erythrocytes and model membranes have shown that the lesion created by HlyA is perhaps a more complicated event than the creation of a simple, static protein-lined pore. We have recently found that addition of nanomolar concentrations of toxin to planar lipid membranes have resulted in a decrease in membrane lifetime up to 3 orders of magnitude in a voltage-dependent manner, a typical behavior of proteolipidic pores (12). Moayeri and Welch (13) have previously demonstrated that osmotic protection of erythrocytes by sugars of different sizes is a function of toxin concentration and assay time. It appears that HlyA induces heterogeneous erythrocyte lesions that increase in size over time and that the rate of the putative growth in the size of HlyA-mediated lesions is temperature-dependent (13).On the other hand, it has been recognized that a variety of pathogens and toxins interacts with microdomains in the plasma membrane. These microdomains are enriched in cholesterol and sphingolipids and probably exist in a liquid-ordered phase, in which lipid acyl chains are extended and ordered (14). Many proteins are targeted to these membrane microdomains by their favorable association with ordered lipids. Interestingly, these proteins are linked to saturated acyl chains, which partition well into these domains (15).In this context, and in view of the fact that acyl chains covalently bound to proteins are determinant of specific protein-protein interactions, this research presents a study of HlyA oligomerization on sheep erythrocytes, as well as the implication of fatty acids and cholesterol-enriched microdomains in this process.  相似文献   

12.
Coexpression of pairs of nonhaemolytic H1yA mutants in the recombination-deficient (recA) strain Escherichia coli HB101 resulted in a partial reconstitution of haemolytic activity, indicating that the mutation in one H1yA molecule can be complemented by the corresponding wild-type sequence in the other mutant HlyA molecule and vice versa. This suggests that two or more HlyA molecules aggregate prior to pore formation. Partial reconstitution of the haemolytic activity was obtained by the combined expression of a nonhaemolytic HlyA derivative containing a deletion of five repeat units in the repeat domain and several nonhaemolytic HlyA mutants affected in the pore-forming hydrophobic region. The simultaneous expression of two inactive mutant HlyA proteins affected in the region at which HlyA is covalently modified by HlyC and the repeat domain, respectively, resulted in a haemolytic phenotype on blood agar plates comparable to that of wild-type haemolysin. However, complementation was not possible between pairs of HlyA molecules containing site-directed mutations in the hydrophobic region and the modification region, respectively. In addition, no complementation was observed between HlyA mutants with specific mutations at different sites of the same functional domain, i.e. within the hydrophobic region, the modification region or the repeat domain. The aggregation of the HlyA molecules appears to take place after secretion, since no extracellular haemolytic activity was detected when a truncated but active HlyA lacking the C-terminal secretion sequence was expressed together with a non-haemolytic but transport-competent HlyA mutant containing a deletion in the repeat domain.  相似文献   

13.
Production of a single cysteine substitution mutant, S177C, allowed Escherichia coli hemolysin (HlyA) to be radioactively labeled with tritiated N-ethylmaleimide without affecting biological activity. It thus became possible to study the binding characteristics of HlyA as well as of toxin mutants in which one or both acylation sites were deleted. All toxins bound to erythrocytes and granulocytes in a nonsaturable manner. Only wild-type toxin and the lytic monoacylated mutant stimulated production of superoxide anions in granulocytes. An oxidative burst coincided with elevation of intracellular Ca(2+), which was likely because of passive influx of Ca(2+) through the toxin pores. Competition experiments showed that binding to the cells was receptor-independent, and preloading of cells with a nonlytic HlyA mutant did not abrogate the respiratory burst provoked by a subsequent application of wild-type HlyA. In contrast to a previous report, expression or activation of the beta(2) integrin lymphocyte function-associated antigen-1 did not affect binding of HlyA. We conclude that HlyA binds nonspecifically to target cells and a receptor is involved neither in causing hemolysis nor in triggering cellular reactions.  相似文献   

14.
α-Hemolysin (HlyA) is a protein toxin, a member of the pore-forming Repeat in Toxin (RTX) family, secreted by some pathogenic strands of Escherichia coli. The mechanism of action of this toxin seems to involve three stages that ultimately lead to cell lysis: binding, insertion, and oligomerization of the toxin within the membrane. Since the influence of phase segregation on HlyA binding and insertion in lipid membranes is not clearly understood, we explored at the meso- and nanoscale—both in situ and in real-time—the interaction of HlyA with lipid monolayers and bilayers. Our results demonstrate that HlyA could insert into monolayers of dioleoylphosphatidylcholine/sphingomyelin/cholesterol (DOPC/16:0SM/Cho) and DOPC/24:1SM/Cho. The time course for HlyA insertion was similar in both lipidic mixtures. HlyA insertion into DOPC/16:0SM/Cho monolayers, visualized by Brewster-angle microscopy (BAM), suggest an integration of the toxin into both the liquid-ordered and liquid-expanded phases. Atomic-force-microscopy imaging reported that phase boundaries favor the initial binding of the toxin, whereas after a longer time period the HlyA becomes localized into the liquid-disordered (Ld) phases of supported planar bilayers composed of DOPC/16:0SM/Cho. Our AFM images, however, showed that the HlyA interaction does not appear to match the general strategy described for other invasive proteins. We discuss these results in terms of the mechanism of action of HlyA.  相似文献   

15.
A transposon mutant of Escherichia coli 5K was isolated which reduced 10- to 50-fold the secreted extracellular haemolytic activity of cells carrying the complete hlyCABD operon while leaving unaffected the intracellular haemolytic activity and the levels of intracellular and extracellular haemolysin protein, HlyA. The transposon insertion was identified within the rfaP gene (required for attachment of phosphate-containing substituents to the lipopolysaccharide inner core), and extracellular haemolytic activity was restored in trans by the intact rfaP gene. The toss in cytolytic activity of the secreted HlyA protein was not related to the HlyC-directed acylation of the protoxin. Activity of the secreted toxin was restored by chaotropic agents and during rate-zonal centrifugation the mutant-secreted HlyA migrated as a larger species than the wild type. The results indicate that the rfaP mutation affects the aggregation behaviour of the active toxin during or following the signal peptide-independent secretion process.  相似文献   

16.
Herlax V  Bakas L 《Biochemistry》2007,46(17):5177-5184
Alpha-hemolysin (HlyA) is a pore-forming toxin secreted by pathogenic strains of Escherichia coli. The toxin is synthesized as a protoxin, ProHlyA, which is matured in the cytosol to the active form by acylation at two internal lysines, K563 and K689 (HlyA). It is widely known that the presence of fatty acids is crucial for the hemolytic and cytotoxic effects of the toxin. However, no detailed physicochemical characterization of the structural changes produced by fatty acids in the soluble protein prior to membrane binding has been carried out to date. The effects of chemical denaturants, the ANS binding parameters (Kd and n) and the sensitivity to proteases were compared between the acylated and unacylated protein forms HlyA and ProHlyA. Our results are consistent with a molten globular form of the acylated protein. Moreover, because molten globule proteins are intrinsically disordered proteins, using disorder prediction analyses, we show that HlyA contains 9 regions composed of 10-30 natively disordered amino acids. We propose that this conformation induced by covalently bound fatty acids might provide HlyA with the ability to bind to a variety of molecules during its action mechanism.  相似文献   

17.
Hemolysin (HlyA) is an extracellular protein secreted by uropathogenic strains of Escherichia coli. The mature HlyA is able to bind to mammalian target cell membranes including those of the immune system, causing lysis. The lytic activity is absolutely dependent upon the Hlyc-dependent acylation of Prohemolysin. In this paper we show, through Trp fluorescence studies and denaturation in Guanidine hydrochloride, that the acylation is responsible for the loose conformation of the active protein, necessary to transform it from soluble to membrane-bound form. Previous studies showed that toxin binding to the bilayers occurs in, at least two ways, a reversible adsorption and irreversible insertion. We demonstrated that the irreversibility is due to the acyl chains in the HlyA, as shown by the protein transfer from multilamellar liposomes composed of palmitoyl-oleoyl-phosphatidylcholine (POPC) to large unilamellar vesicles containing POPC-doxyl as protein fluorescence quencher.  相似文献   

18.
We have carried out a genetic analysis of Escherichia coli HlyB using in vitro(hydroxylamine) mutagenesis and regionally directed mutagenesis. From random mutagenesis, three mutants, temperature sensitive (Ts) for secretion, were isolated and the DNA sequenced: Glyl0Arg close to the N-terminus, Gly408Asp in a highly conserved small periplasmic loop region PIV, and Pro624Leu in another highly conserved region, within the ATP-binding region. Despite the Ts character of the Gly10 substitution, a derivative of HlyB, in which the first 25 amino acids were replaced by 21 amino acids of the λ Cro protein, was still active in secretion of HlyA. This indicates that this region of HlyB is dispensable for function. Interestingly, the Gly408Asp substitution was toxic at high temperature and this is the first reported example of a conditional lethal mutation in HlyB. We have isolated 4 additional mutations in PIV by directed mutagenesis, giving a total of 5 out of 12 residues substituted in this region, with 4 mutations rendering HlyB defective in secretion. The Pro624 mutation, close to the Walker B-site for ATP binding in the cytoplasmic domain is identical to a mutation in HisP that leads to uncoupling of ATP hydrolysis from the transport of histidine. The expression of a fully functional haemolysin translocation system comprising HlyC,A,B and D increases the sensitivity of E. coli to vancomycin 2.5-fold, compared with cells expressing HlyB and HlyD alone. Thus, active translocation of HlyA renders the cells hyperpermeable to the drug. Mutations in hlyB affecting secretion could be assigned to two classes: those that restore the level of vancomycin resistance to that of E. coli not secreting HlyA and those that still confer hypersensitivity to the drug in the presence of HlyA. We propose that mutations that promote vancomycin resistance will include mutations affecting initial recognition of the secretion signal and therefore activation of a functional transport channel. Mutations that do not alter HlyA-dependent vancomycin sensitivity may, in contrast, affect later steps in the transport process.  相似文献   

19.
Escherichia coli α-hemolysin (HlyA) is a pore-forming protein of 110 kDa belonging to the family of RTX toxins. A hydrophobic region between the amino acid residues 238 and 410 in the N-terminal half of HlyA has previously been suggested to form hydrophobic and/or amphipathic α-helices and has been shown to be important for hemolytic activity and pore formation in biological and artificial membranes. The structure of the HlyA transmembrane channel is, however, largely unknown. For further investigation of the channel structure, we deleted in HlyA different stretches of amino acids that could form amphipathic β-strands according to secondary structure predictions (residues 71–110, 158–167, 180–203, and 264–286). These deletions resulted in HlyA mutants with strongly reduced hemolytic activity. Lipid bilayer measurements demonstrated that HlyAΔ71–110 and HlyAΔ264–286 formed channels with much smaller single-channel conductance than wildtype HlyA, whereas their channel-forming activity was virtually as high as that of the wildtype toxin. HlyAΔ158–167 and HlyAΔ180–203 were unable to form defined channels in lipid bilayers. Calculations based on the single-channel data indicated that the channels generated by HlyAΔ71–110 and HlyAΔ264–286 had a smaller size (diameter about 1.4 to 1.8 nm) than wildtype HlyA channels (diameter about 2.0 to 2.6 nm), suggesting that in these mutants part of the channel-forming domain was removed. Osmotic protection experiments with erythrocytes confirmed that HlyA, HlyAΔ71–110, and HlyAΔ264–286 form defined transmembrane pores and suggested channel diameters that largely agreed with those estimated from the single-channel data. Taken together, these results suggest that the channel-forming domain of HlyA might contain β-strands, possibly in addition to α-helical structures.  相似文献   

20.
Summary The haemolysin protein (HlyA) of Escherichia coli contains 11 tandemly repeated sequences consisting of 9 amino acids each between amino acids 739 and 849 of HlyA. We removed, by oligonucleotide-directed mutagenesis, different single repeats and combinations of several repeats. The resulting mutant proteins were perfectly stable in E. coli and were secreted with the same efficiency as the wild-type HlyA. HlyA proteins which had lost a single repeat only were still haemolytically active (in the presence of HlyC) but required elevated levels of Ca2+ for activity, as compared to the wild-type haemolysin. Removal of three or more repeats led to the complete loss of the haemolytic activity even in the presence of high Ca2+ concentrations. The mutant haemolysins were unable to compete with the wild-type haemolysin for binding to erythrocytes at low Ca2+ concentrations but could still generate ion-permeable channels in artificial lipid bilayer membranes formed of plant asolectin, even in the complete absence of Ca2+. These data indicate that the repeat domain of haemolysin is responsible for Ca2+-dependent binding of haemolysin to the erythrocyte membrane. A model for the possible functional role of Ca2+ in haemolysis is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号