首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We aimed to study the change in mitochondrial oxidative phosphorylation efficiency occurring at the early stage of septic shock in an experimental model. Thirty-six male Wistar rats were divided into two groups. In the first group, a cecal ligation and puncture (CLP) was carried out to induce septic shock for 5 h. The second group includes sham-operated rats and constitutes the control group. Blood gas analysis, alanine amino transferase, and lactic acid dosages were assayed 5 h after surgery. Liver mitochondria were isolated for in vitro functional characterization, including mitochondrial respiratory parameters, oxidative phosphorylation efficiency, oxi-radical production, membrane potential, and cytochrome c oxidase activity and content. Liver interleukin 1β (IL-1β) and tumor necrosis α mRNA levels were determined. Septic shock induced a severe hypotension occurring 180 min after CLP in association with a metabolic acidosis, an increase in plasma alanine amino transferase, liver IL-1β gene expression, and mitochondrial reactive oxygen species production. The rates of mitochondrial oxygen consumption and the activity and content of cytochrome c oxidase were significantly decreased while no alterations in the oxidative phosphorylation efficiency and inner membrane integrity were found. These results show that contrary to what was expected, liver mitochondria felt to adjust their oxidative phosphorylation efficiency in response to the decrease in the mitochondrial oxidative activity induced by CLP. This loss of mitochondrial bioenergetics plasticity might be related to mitochondrial oxidative stress and liver cytokines production.  相似文献   

2.
The effect of emestrin, a new macrocyclic epidithiodioxopiperazine mycotoxin from severalEmericella species, on mitochondrial reactions was studied using isolated rat liver mitochondria to gain insight into the molecular mechanism for itsin vivo toxicity to rat and mouse. Emestrin was found to inhibit ATP synthesis in mitochondria causing an uncoupling of oxidative phosphorylation and a depression of respiration in isolated mitochondria. In addition to these effects on mitochondrial respiration, emestrin elicited a dratsic structural alteration (swelling) of mitochondria as observed in thein vivo system. The mitochondrial swelling was significantly enhanced by the subsequent addition of calcium ion. Emestrin B, in which dithio group is replaced by trithio group, exerted an uncoupling effect on oxidative phosphorylation without accompanying such depressive effect on state 3 respiration as observed for emestrin.  相似文献   

3.
Even though sheep embryo cryopreservation is a commonly used procedure the survival and pregnancy outcomes can vary greatly. This study investigated whether cryopreservation was causing subtle changes in ultrastructure, mitochondrial activity or cytoskeletal integrity. Sheep embryos were either slow cooled in 1.5 M EG (n = 22), or vitrified in 20% EG + 20% DMSO with 0.5 M sucrose in Open Pulled Straws (OPS) (n = 24). One hour after warming the cryopreserved embryos differed from control embryos in that they had no mitochondrial activity combined with cytoskeletal disorganization and large vesicles. Vitrified embryos also showed many points of cytoskeleton disruption. Ultrastructural alterations resulting from actin filaments disorganization were observed in both cryopreserved groups. This includes areas presenting no cytoplasmic organelles, Golgi complex located far from the nucleus and a decrease of specialized intercellular junctions. Additionally, large vesicles were observed in vitrified morulae and early blastocysts. The alterations after cryopreservation were proportional to embryo quality as assessed using the stereomicroscope. Even in the absence of mitochondrial activity, grade I and II cryopreserved embryos contained mitochondria with normal ultrastructure. Embryos classified as grade I or II in the stereomicroscope revealed mild ultrastructural alterations, meaning that this tool is efficient to evaluate embryos after cryopreservation.  相似文献   

4.
5.
6.
This study examines the role of c- jun N-terminal kinase (JNK) in mitochondrial signaling and bioenergetics in primary cortical neurons and isolated rat brain mitochondria. Exposure of neurons to either anisomycin (an activator of JNK/p38 mitogen-activated protein kinases) or H2O2 resulted in activation (phosphorylation) of JNK (mostly p46JNK1) and its translocation to mitochondria. Experiments with mitochondria isolated from either rat brain or primary cortical neurons and incubated with proteinase K revealed that phosphorylated JNK was associated with the outer mitochondrial membrane; this association resulted in the phosphorylation of the E subunit of pyruvate dehydrogenase, a key enzyme that catalyzes the oxidative decarboxylation of pyruvate and that links two major metabolic pathways: glycolysis and the tricarboxylic acid cycle. JNK-mediated phosphorylation of pyruvate dehydrogenase was not observed in experiments carried out with mitoplasts, thus suggesting the requirement of intact, functional mitochondria for this effect. JNK-mediated phosphorylation of pyruvate dehydrogenase was associated with a decline in its activity and, consequently, a shift to anaerobic pyruvate metabolism: the latter was confirmed by increased accumulation of lactic acid and decreased overall energy production (ATP levels). Pyruvate dehydrogenase appears to be a specific phosphorylation target for JNK, for other kinases, such as protein kinase A and protein kinase C did not elicit pyruvate dehydrogenase phosphorylation and did not decrease the activity of the complex. These results suggest that JNK mediates a signaling pathway that regulates metabolic functions in mitochondria as part of a network that coordinates cytosolic and mitochondrial processes relevant for cell function.  相似文献   

7.
Meat-type chickens show high feed efficiency and have a very rapid growth rate compared with laying-type chickens. To clarify whether the type-specific difference in feed conversion efficiency is involved in mitochondrial bioenergetics, modular kinetic analysis was applied to oxidative phosphorylation in skeletal muscle mitochondria of both type chickens. Mitochondria from skeletal muscle of meat-type chickens showed greater substrate oxidation and phosphorylating activities, and less proton leak than those of the laying-type, resulting in a higher efficiency of oxidative phosphorylation. Gene expression and protein content of uncoupling protein (avUCP) but not adenine nucleotide translocase (avANT) gene expression were lower in skeletal muscle mitochondria of meat-type chickens than the laying-type. The current results regarding a higher efficiency of oxidative phosphorylation and UCP content may partially support the high feed efficiency of meat-type chickens.  相似文献   

8.
Few, if any, studies have examined the effect of vitamin E deficiency on brain mitochondrial oxidative phosphorylation. The latter was studied using brain mitochondria isolated from control and vitamin E-deficient rats (13 months of deficiency) after exposure to iron, an inducer of oxidative stress. Mitochondria were treated with iron (2 to 50 microM) added as ferrous ammonium sulfate. Rates of state 3 and state 4 respiration, respiratory control ratios, and ADP/O ratios were not affected by vitamin E deficiency alone. However, iron uncoupled oxidative phosphorylation in vitamin E-deficient mitochondria, but not in controls. In vitamin E-deficient mitochondria, iron decreased ADP/O ratios and markedly stimulated state 4 respiration; iron had only a modest effect on these parameters in control mitochondria. Thus, vitamin E may have an important role in sustaining oxidative phosphorylation. Low concentrations of iron (2 to 5 microM) oxidized mitochondrial tocopherol that exists in two pools. The release of iron in brain may impair oxidative phosphorylation, which would be exacerbated by vitamin E deficiency. The results are important for understanding the pathogenesis of human brain disorders known to be associated with abnormalities in mitochondrial function as well as iron homeostasis (e.g., Parkinson's disease).  相似文献   

9.
A variety of mitochondria-targeted small molecules have been invented to manipulate mitochondrial redox activities and improve function in certain disease states. 3-Hydroxypropyl-triphenylphosphonium-conjugated imidazole-substituted oleic acid (TPP-IOA) was developed as a specific inhibitor of cytochrome c peroxidase activity that inhibits apoptosis by preventing cardiolipin oxidation and cytochrome c release to the cytosol. Here we evaluate the effects of TPP-IOA on oxidative phosphorylation in isolated mitochondria and on mitochondrial function in live cells. We demonstrate that, at concentrations similar to those required to achieve inhibition of cytochrome c peroxidase activity, TPP-IOA perturbs oxidative phosphorylation in isolated mitochondria. In live SH-SY5Y cells, TPP-IOA partially collapsed mitochondrial membrane potential, caused extensive fragmentation of the mitochondrial network, and decreased apparent mitochondrial abundance within 3 h of exposure. Many cultured cell lines rely primarily on aerobic glycolysis, potentially making them less sensitive to small molecules disrupting oxidative phosphorylation. We therefore determined the anti-apoptotic efficacy of TPP-IOA in SH-SY5Y cells growing in glucose or in galactose, the latter of which increases reliance on oxidative phosphorylation for ATP supply. The anti-apoptotic activity of TPP-IOA that was observed in glucose media was not seen in galactose media. It therefore appears that, at concentrations required to inhibit cytochrome c peroxidase activity, TPP-IOA perturbs oxidative phosphorylation. In light of these data it is predicted that potential future therapeutic applications of TPP-IOA will be restricted to highly glycolytic cell types with limited reliance on oxidative phosphorylation.  相似文献   

10.
Cerebrosides and psychosine disrupt mitochondrial functions   总被引:2,自引:0,他引:2  
Glucocerebroside and galactocerebroside increased the respiratory rate of liver and brain mitochondria by 33-400% and produced an average 30% decrease in oxidative phosphorylation. Psychosine stimulated mitochondrial respiration 66-700%. At concentrations over 100 micrograms/mg mitochondrial protein, oxidative phosphorylation was completely inhibited. Atractyloside did not prevent the respiratory stimulation. Ca2+ transport was blocked and addition of ATP could not overcome this inhibition. The possible deleterious effect of glycosphingolipids on the conformation of the mitochondrial membrane and cellular bioenergetics is discussed in relation to the toxicity of accumulating glycosphingolipids in Gaucher and Krabbe diseases.  相似文献   

11.
The mitochondrial lipidome influences ETC (electron transport chain) and cellular bioenergetic efficiency. Brain tumours are largely dependent on glycolysis for energy due to defects in mitochondria and oxidative phosphorylation. In the present study, we used shotgun lipidomics to compare the lipidome in highly purified mitochondria isolated from normal brain, from brain tumour tissue, from cultured tumour cells and from non-tumorigenic astrocytes. The tumours included the CT-2A astrocytoma and an EPEN (ependymoblastoma), both syngeneic with the C57BL/6J (B6) mouse strain. The mitochondrial lipidome in cultured CT-2A and EPEN tumour cells were compared with those in cultured astrocytes and in solid tumours grown in vivo. Major differences were found between normal tissue and tumour tissue and between in vivo and in vitro growth environments for the content or composition of ethanolamine glycerophospholipids, phosphatidylglycerol and cardiolipin. The mitochondrial lipid abnormalities in solid tumours and in cultured cells were associated with reductions in multiple ETC activities, especially Complex I. The in vitro growth environment produced lipid and ETC abnormalities in cultured non-tumorigenic astrocytes that were similar to those associated with tumorigenicity. It appears that the culture environment obscures the boundaries of the Crabtree and the Warburg effects. These results indicate that in vitro growth environments can produce abnormalities in mitochondrial lipids and ETC activities, thus contributing to a dependency on glycolysis for ATP production.  相似文献   

12.
This study demonstrates that in vitro incubation of isolated rat brain mitochondria with recombinant human α-synuclein leads to dose-dependent loss of mitochondrial transmembrane potential and phosphorylation capacity. However, α-synuclein does not seem to have any significant effect on the activities of respiratory chain complexes under similar conditions of incubation suggesting that the former may impair mitochondrial bioenergetics by direct effect on mitochondrial membranes. Moreover, the recombinant wild type α-synuclein and different mutant forms (A30P, A53T and E46K) have essentially similar effects on rat brain isolated mitochondria. The results are significant in view of the fact that α-synucleinopathy is involved in the pathogenesis of Parkinson’s disease.  相似文献   

13.
《BBA》2022,1863(2):148518
The kinetics and efficiency of mitochondrial oxidative phosphorylation (OxPhos) can depend on the choice of respiratory substrates. Furthermore, potential differences in this substrate dependency among different tissues are not well-understood. Here, we determined the effects of different substrates on the kinetics and efficiency of OxPhos in isolated mitochondria from the heart and kidney cortex and outer medulla (OM) of Sprague-Dawley rats. The substrates were pyruvate+malate, glutamate+malate, palmitoyl-carnitine+malate, alpha-ketoglutarate+malate, and succinate±rotenone at saturating concentrations. The kinetics of OxPhos were interrogated by measuring mitochondrial bioenergetics under different ADP perturbations. Results show that the kinetics and efficiency of OxPhos are highly dependent on the substrates used, and this dependency is distinctly different between heart and kidney. Heart mitochondria showed higher respiratory rates and OxPhos efficiencies for all substrates in comparison to kidney mitochondria. Cortex mitochondria respiratory rates were higher than OM mitochondria, but OM mitochondria OxPhos efficiencies were higher than cortex mitochondria. State 3 respiration was low in heart mitochondria with succinate but increased significantly in the presence of rotenone, unlike kidney mitochondria. Similar differences were observed in mitochondrial membrane potential. Differences in H2O2 emission in the presence of succinate±rotenone were observed in heart mitochondria and to a lesser extent in OM mitochondria, but not in cortex mitochondria. Bioenergetics and H2O2 emission data with succinate±rotenone indicate that oxaloacetate accumulation and reverse electron transfer may play a more prominent regulatory role in heart mitochondria than kidney mitochondria. These studies provide novel quantitative data demonstrating that the choice of respiratory substrates affects mitochondrial responses in a tissue-specific manner.  相似文献   

14.
This study was aimed to analyse and compare the bioenergetics and oxidative status of mitochondria isolated from liver, heart and brain of ovariectomized rat females treated with 17β-estradiol (E2) and/or tamoxifen (TAM). E2 and/or TAM did not alter significantly the respiratory chain of the three types of mitochondria. However, TAM significantly decreased the phosphorylation efficiency of liver mitochondria while E2 significantly decreased the phosphorylation efficiency of heart mitochondria. E2 also significantly decreased the capacity of heart and liver mitochondria to accumulate Ca(2+) this effect being attenuated in liver mitochondria isolated from E2+TAM-treated rat females. TAM treatment increased the ratio of glutathione to glutathione disulfide (GSH/GSSG) of liver mitochondria. Brain mitochondria from TAM- and E2+TAM-treated females showed a significantly lower GSH/GSSG ratio. However, heart mitochondria from TAM- and E2+TAM-treated females presented a significant decrease in GSSG and an increase in GSH/GSSG ratio. Thiobarbituric acid reactive substances levels were significantly decreased in liver mitochondria isolated from E2+TAM-treated females. Finally, E2 and/or TAM treatment significantly decreased the levels of hydrogen peroxide produced by brain mitochondria energized with glutamate/malate. These results indicate that E2 and/or TAM have tissue-specific effects suggesting that TAM and hormonal replacement therapies may have some side effects that should be carefully considered.  相似文献   

15.
"Respiratory control", a typical feature of well coupled mitochondria, was found to be higher in rat brain homogenate than in isolated mitochondria. This observation points to the possibility of studying the coupling between respiration and ADP phosphorylation, as well as mitochondrial metabolism, directly in homogenates and not in isolated mitochondria, using very small samples of brain tissue.  相似文献   

16.
Feng Y  Lu Y  Lin X  Gao Y  Zhao Q  Li W  Wang R 《Life sciences》2008,82(13-14):752-763
The protection of brain mitochondria from oxidative stress is an important therapeutic strategy against ischemia-reperfusion injury and neurodegenerative disorders. Isolated brain mitochondria subjected to a 5 min period of anoxia followed by 5 min reoxygenation mirrored the effect of oxidative stress in the brain. The present study attempts to evaluate the protective effects of endomorphin 1 (EM1), endomorphin 2 (EM2), and morphine (Mor) in an in vitro mouse brain mitochondria anoxia-reoxygenation model. Endomorphins (EM1/2) and Mor were added to mitochondria prior to anoxia or reoxygenation. EM1/2 and Mor markedly improved mitochondrial respiratory activity with a decrease in state 4 and increases in state 3, respiratory control ratio (RCR) and the oxidative phosphorylation efficiency (ADP/O ratio), suggesting that they may play a protective role in mitochondria. These drugs inhibited alterations in mitochondrial membrane fluidity, lipoperoxidation, and cardiolipin (CL) release, which indicates protection of the mitochondrial membranes from oxidative damage. The protective effects of these drugs were concentration-dependent. Furthermore, these drugs blocked the enhanced release of cytochrome c (Cyt c), and consequently inhibited the cell apoptosis induced by the release of Cyt c. Our results suggest that EM1/2 and Mor effectively protect brain mitochondria against oxidative stresses induced by in vitro anoxia-reoxygenation and may play an important role in the prevention of deleterious effects during brain ischemia-reperfusion and neurodegenerative diseases.  相似文献   

17.
Reactive oxygen species (ROS) are known to be involved in the pathogenesis of traumatic brain injury (TBI). Previous studies have shown that the susceptibility of mice to TBI-induced formation of cortical lesion is determined by the expression levels of copper-zinc and manganese superoxide dismutase (CuZnSOD and MnSOD, respectively). However, the underlying biochemical mechanisms are not understood. In this study, we measured the efficiency of mitochondrial respiration in mouse brains with altered expression of these two enzymes. While controlled cortical impact injury (CCII) with a deformation depth of 2 mm caused a drastic decrease in NAD-linked bioenergetic capacity in brain mitochondria of wild-type mice, the functional decrease was not observed in brains of littermate transgenic mice overexpressing CuZnSOD or MnSOD. In addition, a 1 mm CCII greatly compromised brain mitochondrial function in mice deficient in CuZnSOD or MnSOD, but not wild-type mice. Inclusion of the calcium-chelating agent, EGTA, in the assay solution could completely prevent dysfunction of oxidative phosphorylation in all mitochondrial samples, suggesting that the observed impairment of mitochondrial function was a result of calcium overloading. In conclusion, our results imply that mitochondrial dysfunction induced by superoxide anion radical contributes to lesion formation in mouse brain following physical trauma.  相似文献   

18.
The Trans-activator protein (Tat) of human immunodeficiency virus (HIV) is a pleiotropic protein involved in different aspects of AIDS pathogenesis. As a number of viral proteins Tat is suspected to disturb mitochondrial function. We prepared pure synthetic full-length Tat by native chemical ligation (NCL), and Tat peptides, to evaluate their direct effects on isolated mitochondria. Submicromolar doses of synthetic Tat cause a rapid dissipation of the mitochondrial transmembrane potential (ΔΨm) as well as cytochrome c release in mitochondria isolated from mouse liver, heart, and brain. Accordingly, Tat decreases substrate oxidation by mitochondria isolated from these tissues, with oxygen uptake being initially restored by adding cytochrome c. The anion-channel inhibitor 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS) protects isolated mitochondria against Tat-induced mitochondrial membrane permeabilization (MMP), whereas ruthenium red, a ryanodine receptor blocker, does not. Pharmacologic inhibitors of the permeability transition pore, Bax/Bak inhibitors, and recombinant Bcl-2 and Bcl-XL proteins do not reduce Tat-induced MMP. We finally observed that Tat inhibits cytochrome c oxidase (COX) activity in disrupted mitochondria isolated from liver, heart, and brain of both mouse and human samples, making it the first described viral protein to be a potential COX inhibitor.  相似文献   

19.
20.
Diapausing embryos of the annual killifish Austrofundulus limnaeus have the highest reported anoxia tolerance of any vertebrate and previous studies indicate modified mitochondrial physiology likely supports anoxic metabolism. Functional mitochondria isolated from diapausing and developing embryos of the annual killifish exhibited VO2, respiratory control ratios (RCR), and P:O ratios consistent with those obtained from other ectothermic vertebrate species. Reduced oxygen consumption associated with dormancy in whole animal respiration rates are correlated with maximal respiration rates of mitochondria isolated from diapausing versus developing embryos. P:O ratios for developing embryos were similar to those obtained from adult liver, but were diminished in mitochondria from diapausing embryos suggesting decreased oxidative efficiency. Proton leak in adult liver corresponded with that of developing embryos but was elevated in mitochondria isolated from diapausing embryos. In metabolically suppressed diapause II embryos, over 95% of the mitochondrial oxygen consumption is accounted for by proton leak across the inner mitochondrial membrane. Decreased activity of mitochondrial respiratory chain complexes correlates with diminished oxidative capacity of isolated mitochondria, especially during diapause. Respiratory complexes exhibited suppressed activity in mitochondria with the ATP synthase exhibiting the greatest inhibition during diapause II. Mitochondria isolated from diapause II embryos are not poised to produce ATP, but rather to shuttle carbon and electrons through the Kreb’s cycle while minimizing the generation of a proton motive force. This particular mitochondrial physiology is likely a mechanism to avoid production of reactive oxygen species during large-scale changes in flux through oxidative phosphorylation pathways associated with metabolic transitions into and out of dormancy and anoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号