首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent advances in MALDI MS/MS instrumentation allow a high degree of automation in the efficient detection of peptide fragment ions that can be used for protein identification. However, the performance of the technique is dependent on the MALDI sample preparation. We present a simple and robust two-layer sample preparation method tailored for sensitive and reproducible generation of MALDI MS/MS data. This method produces a strong and uniform crystal layer which allows acquisition of high quality MS/MS spectra over the entire sample surface area. Furthermore, due to its crystal strength, the matrix/sample layer can be washed extensively on target, enabling direct analysis of samples containing impurities, such as salts and surfactants. This method is demonstrated to be very useful in routine analysis of in-gel tryptic digests of silver-stained protein gel spots, without the need of desalting steps or hunting for "hot" spots. As an example, seven threonine-phosphorylated proteins involved in signal transduction in response to growth factor stimulation within the lipid raft fractions of the IMR5 neuroblastoma cells have been identified using differential gel display, in-gel digestion and MALDI MS/MS with the new two-layer sample preparation method. Some of these proteins have the functions of maintaining raft structure or cell signaling.  相似文献   

2.
At present, carbon nano-materials are being utilized in various procedures, especially in laser desorption/ionization-mass spectrometry (LDI-MS) for analyzing a range of analytes, which include peptides, proteins, metabolites, and polymers. Matrix-oriented LDI-MS techniques are very well established, with weak organic acids as energy-absorbing substances. Carbon materials, such as nano-tubes and fullerenes are being successfully applied in the small-mass range, where routine matrices have strong background signals. In addition, the role of carbon nano-materials is very well established in the fractionation and purification fields. Modified diamond powder and surfaces are utilized in binding peptides and proteins from complex biological fluids and analyzed by matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS). Polylysine-coated diamond is used for solid-phase extraction to pre-concentrate DNA oligonucleotides. Graphite is useful for desalting, pre-concentration, and as energy-absorbing material (matrix) in desorption/ionization. Carbon nano-tubes in their different derivatized forms are used as matrix materials for the analysis of a range of analytes, such as carbohydrates, amino acids, peptides, proteins, and some environmental samples by LDI-MS. Fullerenes are modified in different ways to bind serum entities analyzed through MALDI/TOF-MS and are subsequently utilized in their identifications. In addition, the fullerenes are a promising matrix in LDI-MS, but improvements are needed.  相似文献   

3.
At present, carbon nano-materials are being utilized in various procedures, especially in laser desorption/ionization-mass spectrometry (LDI-MS) for analyzing a range of analytes, which include peptides, proteins, metabolites, and polymers. Matrix-oriented LDI-MS techniques are very well established, with weak organic acids as energy-absorbing substances. Carbon materials, such as nano-tubes and fullerenes are being successfully applied in the small-mass range, where routine matrices have strong background signals. In addition, the role of carbon nano-materials is very well established in the fractionation and purification fields. Modified diamond powder and surfaces are utilized in binding peptides and proteins from complex biological fluids and analyzed by matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS). Polylysine-coated diamond is used for solid-phase extraction to pre-concentrate DNA oligonucleotides. Graphite is useful for desalting, pre-concentration, and as energy-absorbing material (matrix) in desorption/ionization. Carbon nano-tubes in their different derivatized forms are used as matrix materials for the analysis of a range of analytes, such as carbohydrates, amino acids, peptides, proteins, and some environmental samples by LDI-MS. Fullerenes are modified in different ways to bind serum entities analyzed through MALDI/TOF-MS and are subsequently utilized in their identifications. In addition, the fullerenes are a promising matrix in LDI-MS, but improvements are needed.  相似文献   

4.
Three different hydrophobins (Vmh1, Vmh2, and Vmh3) were isolated from monokaryotic and dikaryotic vegetative cultures of the edible fungus Pleurotus ostreatus. Their corresponding genes have a number of introns different from those of other P. ostreatus hydrophobins previously described. Two genes (vmh1 and vmh2) were expressed only at the vegetative stage, whereas vmh3 expression was also found in the fruit bodies. Furthermore, the expression of the three hydrophobins varied significantly with culture time and nutritional conditions. The three genes were mapped in the genomic linkage map of P. ostreatus, and evidence is presented for the allelic nature of vmh2 and POH3 and for the different locations of the genes coding for the glycosylated hydrophobins Vmh3 and POH2. The glycosylated nature of Vmh3 and its expression during vegetative growth and in fruit bodies suggest that it should play a role in development similar to that proposed for SC3 in Schizophyllum commune.  相似文献   

5.
Commercially available desalting techniques, necessary for downstream MALDI-TOF analysis of proteins, are often costly or time consuming for large-scale analysis. Here, we present techniques to elute proteins from various affinity resins, free from salt and ready for MALDI mass spectrometry. We showed that 0.1% TFA in 50% acetonitrile or 40% ethanol can be used as salt-free eluents for His-tagged proteins from variety of polyhistidine-affinity resins, while washing of resin beads twice with double-distilled water prior to the elution effectively desalted and recovered wide-range-molecular size proteins than commercially available desalting devices. Modified desalting and elution techniques were also applied for Flag- and Myc-tag affinity resins. The technique was further applied in co-precipitation assay, where the maximum recovery of wide-range molecular size proteins is crucial. Further, results showed that simple washing of the beads with double distilled water followed by elution with acetonitrile effectively desalted and recovered 150 kDa factor H protein of the sheep and its binding partner ~30 kDa BbCRASP-1 in co-precipitation assay. In summary, simple modifications in the desalting and elution strategy save time, labor and cost of the protein preparation for MALDI mass spectrometry; and large-scale protein purifications or co-precipitations can be performed with ease.  相似文献   

6.
The identification of proteins involved in tumour progression or which permit enhanced or novel therapeutic targeting is essential for cancer research. Direct MALDI analysis of tissue sections is rapidly demonstrating its potential for protein imaging and profiling in the investigation of a range of disease states including cancer. MALDI‐mass spectrometry imaging (MALDI‐MSI) has been used here for direct visualisation and in situ characterisation of proteins in breast tumour tissue section samples. Frozen MCF7 breast tumour xenograft and human formalin‐fixed paraffin‐embedded breast cancer tissue sections were used. An improved protocol for on‐tissue trypsin digestion is described incorporating the use of a detergent, which increases the yield of tryptic peptides for both fresh frozen and formalin‐fixed paraffin‐embedded tumour tissue sections. A novel approach combining MALDI‐MSI and ion mobility separation MALDI‐tandem mass spectrometry imaging for improving the detection of low‐abundance proteins that are difficult to detect by direct MALDI‐MSI analysis is described. In situ protein identification was carried out directly from the tissue section by MALDI‐MSI. Numerous protein signals were detected and some proteins including histone H3, H4 and Grp75 that were abundant in the tumour region were identified.  相似文献   

7.
MALDI-TOF MS is currently becoming the method of choice for rapid identification of bacterial species in routine diagnostics. Yet, this method suffers from the inability to differentiate reliably between some closely related bacterial species including those of the Acinetobacter calcoaceticus–Acinetobacter baumannii (ACB) complex, namely A. baumannii and Acinetobacter nosocomialis. In the present study, we evaluated a protocol which was different from that used in the Bruker Daltonics identification system (MALDI BioTyper) to improve species identification using a taxonomically precisely defined set of 105 strains representing the four validly named species of the ACB complex. The novel protocol is based on the change in matrix composition from alpha-cyano-4-hydroxycinnamic acid (saturated solution in water:acetonitrile:trifluoroacetic acid, 47.5:50:2.5, v/v) to ferulic acid (12.5 mg ml−1 solution in water:acetonitrile:formic acid 50:33:17, v/v), while the other steps of sample processing remain unchanged. Compared to the standard protocol, the novel one extended the range of detected compounds towards higher molecular weight, produced signals with better mass resolution, and allowed the detection of species-specific signals. As a result, differentiation of A. nosocomialis and A. baumannii strains by cluster analysis was improved and 13 A. nosocomialis strains, assigned erroneously or ambiguously by using the standard protocol, were correctly identified.  相似文献   

8.
In recent years, MALDI imaging mass spectrometry (MALDI-IMS) has developed as a promising tool to investigate the spatial distribution of biomolecules in intact tissue specimens. Ion densities of various molecules can be displayed as heat maps while preserving anatomical structures. In this short review, an overview of different biomolecules that can be analyzed by MALDI-IMS is given. Many reviews have covered imaging of lipids, small metabolites, whole proteins and enzymatically digested proteins in the past. However, little is known about imaging of endogenous peptides, for example, in the rat brain, and this will therefore be highlighted in this review. Furthermore, sample preparation of frozen or formalin-fixed, paraffin-embedded (FFPE) tissue is crucial for imaging experiments. Therefore, some aspects of sample preparation will be addressed, including washing and desalting, the choice of MALDI matrix and its deposition. Apart from mapping endogenous peptides, their reliable identification in situ still remains challenging and will be discussed as well.  相似文献   

9.
Labeled proteins are extensively used in molecular biology and environmental science. The determination of the composition and label ratio is very important for monitoring the efficiency of their separation and purification. In this paper a novel method based on matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry was developed for this purpose. The results obtained for three commercial labeled proteins showed that they are mixtures of different conjugates. In some cases, the label ratio obtained by UV spectrometry and MALDI mass spectrometry was strikingly different. For fluorescent labels such as fluorescein isothiocyanate, MALDI mass spectrometry determines the number of covalently bound labels, whereas UV absorption yields both bound and adsorbed labels. For biotinylated proteins, label ratios obtained by the 4-hydroxyazabenzene-2'-carboxylic acid (HABA)-avidin method were found to be much smaller those determined by MALDI mass spectrometry. The HABA-avidin method may therefore not be suitable for the determination of biotin label ratios.  相似文献   

10.
Bacteria of the genera Bacillus and Clostridium form highly resistant spores, which in the case of some pathogens act as the infectious agents. An exosporium forms the outermost layer of some spores; it plays roles in protection, adhesion, dissemination, host targeting in pathogens and germination control. The exosporium of the Bacillus cereus group, including the anthrax pathogen, contains a 2D‐crystalline basal layer, overlaid by a hairy nap. BclA and related proteins form the hairy nap, and require ExsFA (BxpB) for their localization on the basal layer. Until now, the identity of the main structural protein components of the basal layer was unknown. We demonstrate here that ExsY forms one of the essential components. Through heterologous expression in Escherichia coli, we also demonstrate that ExsY can self‐assemble into ordered 2D arrays that mimic the structure of the exosporium basal layer. Self‐assembly is likely to play an important role in the construction of the exosporium. The ExsY array is stable to heat and chemical denaturants, forming a robust layer that would contribute to overall spore resistance. Our structural analysis also provides novel insight into the location of other molecular components anchored onto the exosporium, such as BclA and ExsFA.  相似文献   

11.
We have recently improved the automation of an in-gel digestion system, DigestPro 96, using in situ alkylation of proteins with acrylamide, conducted during one-dimensional (1D) SDS-PAGE. The improved method included the processes of destaining, dehydration, trypsin digestion, and extraction but excluded the reduction and alkylation steps following staining of proteins with CBB. The extracted peptide mixtures were directly loaded onto a micro C18 LC column of the mass spectrometer. The resultant spectra were processed with “Mascot” search engine to estimate the sequence coverage of the bovine serum albumin (BSA). The original method, designed for Laemmli 1D SDS gel applications, consisted of reduction and post-alkylation with iodoacetamide, which produced carboxyamidemethyl (CAM; –S–CH2CONH2) derivatives. The original method also included a desalting step essential for mass spectrometry, especially matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. We compared the original and improved methods using BSA (3 pmol loaded to the gel, one third of digested peptide mixture injected into LC-MS). The original method yielded both CAM and propionicamide (PAM; –S–CH2CH2CONH2) derivatives. The source of PAM derivatives is the unpolymerized acrylamide formed during electrophoresis. The sequence coverage of CAM derivatives of BSA by the original method was 10% with desalting and 19% without desalting. The sequence coverage of PAM derivative by the improved method was 32%. Our results clearly show the advantage of our improved automated in-gel digestion method for in situ PAM alkylated protein with respect to peptide recovery, compared with the original method with CAM post-alkylation.  相似文献   

12.
Jia W  Wu H  Lu H  Li N  Zhang Y  Cai R  Yang P 《Proteomics》2007,7(15):2497-2506
A novel protocol of rapid and automatic on-plate desalting (OPD) and peptide concentration for 2-DE-MALDI-MS has been developed by the approach of templating the hydrophobic polymer solution over Kapton-etched mask. For the template technique, small hydrophobic polymer [linear poly(methyl methacrylate) (PMMA), PMMA derivatized with fullerene-C60 (PMMA-C60), linear polystyrene (PSt), or PSt derivatized with fullerene-C60 (PSt-C60)] spots (990 microm od) are patterned at the centers of stainless MALDI plate wells (1400 microm id). Tryptic-peptide solution with no predesalting was dropped onto the central hydrophobic spots, resulting in a concentration of proteolytic peptides on the hydrophobic polymer surface with a reduced spot size. The dried peptide layer was then covered subsequently with over-volume matrix solution, causing the removal of redissolved salts from the spot center to the spot edge by means of a natural "outward flow." The proposed OPD protocol exhibited a dramatic enhancement in S/N up to 850 for 14 fmol BSA digests in the coexistence of 100 mM salts, compared with barely detectable peaks in ordinary way. This analysis has shown that the success rate of identification was increased by two-fold for low abundance proteins in the human liver tissue with no need for the conventional ZipPlate desalting strategy.  相似文献   

13.
Hepatitis B virus core antigen (HBc) has recently been used as carriers to develop recombinant vaccines. However, not virus-like particles (VLPs) but inactive inclusion bodies are often formed for the chimeric proteins when expressed in Escherichia coli. A novel method for in vitro assembly of chimeric HBc-MAGE3 II from inclusion bodies to VLPs was established in this study. The method utilized 2-methyl-2, 4-pentanediol (MPD), an amphipathic di-alcohol, to dissociate sodium dodecyl sulfate (SDS) from the solubilized chimeric protein to initiate VLP assembly. The HBc-MAGE3 II could assemble into VLPs only when the molar ratio of SDS/protein subunit was less than 0.14. After removing SDS/MPD by desalting and further purification, VLPs with similar morphology to the natural virus were obtained. This method could be used for preparation of other VLPs expressed as inclusion bodies.  相似文献   

14.
The identification and characterization of a protein overexpressed in insoluble inclusion bodies in Escherichia coli are the first crucial and time-limiting steps in recombinant protein expression. Here, a straightforward approach to the analysis of recombinant proteins in inclusion bodies is presented. Inclusion bodies were dissolved in 8M urea and analyzed by matrix-assisted laser desorption ionization (MALDI)-time of flight mass spectrometry without prior desalting. Mass determination was achieved by direct spotting of the samples onto the MALDI target and serial dilution in the matrix. The masses of four different proteins, expressed in inclusion bodies, were determined with a mass accuracy better than 0.1%. Furthermore, protein modifications, such as N-terminal processing of single amino acids or artificial cyanylation caused by incubation of the inclusion bodies with urea at elevated temperatures, could be detected. Similarly, tryptic digests were directly analyzed in 2M urea to obtain peptide mass fingerprints for identification and more detailed information on the primary protein structure and secondary modifications. Due to the presence of ammonia in the urea-containing buffers, no Na(+) adducts were observed in the peptide mass fingerprint analysis. Taken together, the rapid and robust procedures presented here greatly facilitate the analysis of recombinant proteins.  相似文献   

15.
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is a powerful tool for the visualization of proteins in tissues and has demonstrated considerable diagnostic and prognostic value. One main challenge is that the molecular identity of such potential biomarkers mostly remains unknown. We introduce a generic method that removes this issue by systematically identifying the proteins embedded in the MALDI matrix using a combination of bottom-up and top-down proteomics. The analyses of ten human tissues lead to the identification of 1400 abundant and soluble proteins constituting the set of proteins detectable by MALDI IMS including >90% of all IMS biomarkers reported in the literature. Top-down analysis of the matrix proteome identified 124 mostly N- and C-terminally fragmented proteins indicating considerable protein processing activity in tissues. All protein identification data from this study as well as the IMS literature has been deposited into MaTisse, a new publically available database, which we anticipate will become a valuable resource for the IMS community.Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS)1 is an emerging technique that can be described as a multi-color molecular microscope as it allows visualizing the distribution of many molecules as mass to charge (m/z) signals in parallel in situ (1). Originally described some 15 years ago (2) the method has been successfully adapted to different analyte classes including small molecule drugs (3), metabolites (4), lipids (5), proteins (6), and peptides (7) using e.g. formalin fixed paraffin embedded (FFPE) as well as fresh frozen tissue (8). Because the tissue stays intact in the process, MALDI IMS is compatible with histochemistry (9) as well as immunohistochemistry and thus adds an additional dimension of molecular information to classical microscopy based tissue analysis (10). Imaging of proteins is appealing as it conceptually allows determining the localization and abundance of proteoforms (11) that naturally occur in the tissue under investigation including modifications such as phosphorylation, acetylation, or ubiquitination, protease mediated cleavage or truncation (12). Therefore a proteinous m/z species detected by MALDI IMS can be viewed as an in situ molecular probe of a particular biological process. In turn, m/z abundance patterns that discriminate different physiological or pathological conditions might be used as diagnostic or even prognostic markers (13, 14). In recent years, MALDI IMS of proteins has been successfully applied to different cancer types from the brain (15), breast (16, 17), kidney (18), prostate (19), and skin (20). Furthermore, the technique has been applied in the context of colon inflammation (21), embryonic development (22), Alzheimer''s disease (23), and amyotrophic lateral sclerosis (24). With a few notable exceptions (13, 14, 1618, 20, 2430), the identity of the proteins constituting the observed characteristic m/z patters has generally remained elusive. This not only precludes the validation of the putative biomarkers by, for example, immunohistochemistry, but also the elucidation of the biological processes that might underlie the observed phenotype.Here, we introduce a straightforward extraction and identification method for proteins embedded in the MALDI matrix layer that represent the molecular species amenable to MALDI IMS. Using a bottom-up proteomics approach including tryptic digestion and liquid chromatography tandem mass spectrometry (LC-MS/MS), we first created an inventory list of proteins derived from this layer, which we term the MALDI matrix proteome. Although the bottom-up approach breaks the link between the identified proteins and the m/z species detected in MALDI IMS, the list of identified proteins serves as the pool of proteins from which all potential biomarkers are most likely derived. Indeed we detected >90% of all human MALDI IMS biomarkers reported in the literature by analyzing just ten human tissues. In addition, the results demonstrate that the same inventory can be used as a focused database for direct top-down sequencing and identification of proteins extracted from the MALDI matrix layer. The proposed method is generic and can be applied to any MALDI IMS study, which is why we believe that one of the major challenges in identifying MALDI IMS biomarkers has now been overcome. In addition, we provide a list of all proteins and peptides identified in the MALDI matrices and tissues studied here as well as a comprehensive list of m/z species identified in the literature dealing with MALDI imaging of humans and rodents. This information has been compiled in MaTisse (http://www.wzw.tum.de/bioanalytik/matisse), a new publically available and searchable database, which we believe will become a valuable tool for the MALDI imaging community.  相似文献   

16.
Endogenous forms of the protein B23 were for the first time isolated from HeLa cell nuclei and their structural states were analyzed. It was demonstrated that incubation of HeLa cell nuclei in 10 mM Tris-HCl buffer (pH 7.4) led, not only to their swelling, but also to the release of several nuclear proteins, including the protein B23. PAGE of the supernatant fraction allowed nine major stained protein bands to be detected; the bands were identified by MALDI mass spectrometry (matrix-assisted laser desorption and ionization). The proteins in the range of 35–40 kDa were identified as nucleophosmin, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1. Analysis of the N- and C-terminal amino acid sequences showed the presence of the isoforms B23.1 and B23.2, GAPDH, and the isoform hnRNP B1 and made it possible to describe the C-and N-terminal processing patterns and demonstrate the presence of isoform B23.2 at a protein level.  相似文献   

17.
A well-accepted method for identification of microorganisms uses matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) coupled to analysis software which identifies and classifies the organism according to its ribosomal protein spectral profile. The method, called MALDI biotyping, is widely used in clinical diagnostics and has partly replaced conventional microbiological techniques such as biochemical identification due to its shorter time to result (minutes for MALDI biotyping versus hours or days for classical phenotypic or genotypic identification). Besides its utility for identifying bacteria, MS-based identification has been shown to be applicable also to yeasts and molds. A limitation to this method, however, is that accurate identification is most reliably achieved on the species level on the basis of reference mass spectra, making further phylogenetic classification unreliable. Here, it is shown that combining tryptic digestion of the acid/organic solvent extracted (classical biotyping preparation) and resolubilized proteins, nano-liquid chromatography (nano-LC), and subsequent identification of the peptides by MALDI-tandem TOF (MALDI-TOF/TOF) mass spectrometry increases the discrimination power to the level of subspecies. As a proof of concept, using this targeted proteomics workflow, we have identified subspecies-specific biomarker peptides for three Salmonella subspecies, resulting in an extension of the mass range and type of proteins investigated compared to classical MALDI biotyping. This method therefore offers rapid and cost-effective identification and classification of microorganisms at a deeper taxonomic level.  相似文献   

18.
We identified an efficient protocol for extracting proteins from whole earthworm, Eisenia fetida, for 2‐DE. Sample preparation is a critical step in a 2‐DE proteome approach and is absolutely essential for obtaining good results. Six protein extraction protocols based on different protein precipitation agents were tested and evaluated using 2‐DE. The methods generated remarkably different 2‐DE protein spot patterns. We conclude that trichloroacetic acid (TCA)‐A eliminates interfering compounds, thus allowing for the efficient resolubilization of proteins. TCA‐A gives good distinction, more bands in 1‐DE gels, and the most number of protein spots in 2‐DE gels. It is also rapid, provides the higher protein yield, and has the less number of steps. To demonstrate the quality of the extracted proteins, we cut several protein spots that were common to four methods from 2‐DE gels, analyzed them using MALDI‐TOF/TOF MS, and tentatively identified them. The classic TCA‐A method proved to be most useful as a standard method of extracting proteins from E. fetida.  相似文献   

19.
The first example of a matrix-assisted laser desorption/ionization (MALDI) process producing multiply charged mass spectra nearly identical to those observed with electrospray ionization (ESI) is presented. MALDI is noted for its ability to produce singly charged ions, but in the experiments described here multiply charged ions are produced by laser ablation of analyte incorporated into a common MALDI matrix, 2,5-dihydroxybenzoic acid, using standard solvent-based sample preparation protocols. Laser ablation is known to produce matrix clusters in MALDI provided a threshold energy is achieved. We propose that these clusters (liquid droplets) are highly charged, and under conditions that produce sufficient matrix evaporation, ions are field-evaporated from the droplets similarly to ESI. Because of the multiple charging, advanced mass spectrometers with limited mass-to-charge range can be used for protein characterization. Thus, using an Orbitrap mass spectrometer, low femtomole quantities of proteins produce full-range mass spectra at 100,000 mass resolution with <5-ppm mass accuracy and with 1-s acquisition. Furthermore, the first example of protein fragmentation using electron transfer dissociation with MALDI is presented.Two primary differences between ESI and MALDI methods are the sample environment (solution versus solid) and the observable charge state(s) (multiply versus singly charged). The multiply charged ions observed in ESI mass spectrometry (MS) enhance the yields of fragment ions, a key benefit in structure characterization, and allow analysis of high molecular weight compounds on mass spectrometers with a limited mass-to-charge (m/z) range. In contrast, MALDI MS is ideal for the analysis of heterogeneous samples because it often requires less sample, and spectra of singly charged ions are easier to interpret. We report here the astonishing observation of highly charged molecular ions by laser ablation of a solid matrix/analyte mixture typically used in MALDI MS analyses. The distribution and abundances of the observed ions are similar to those obtained by ESI. Importantly, the MALDI mechanism that produces singly charged ions can be “turned on” at the operator''s will by changing only the matrix or matrix preparation conditions; this capability is not available with any other ionization method. These findings show for the first time that singly charged ions as well as multiply charged ions are available in MALDI. Besides having important mechanistic implications relating to MALDI and ESI, our findings have enormous practical analytical utility.ESI and MALDI combined with MS revolutionized the study of biological materials and earned the Nobel Prize in Chemistry for their ability to ionize proteins for analysis using MS. However, after two decades of extensive studies, the mechanism for ion formation in MALDI remains controversial (18). At the heart of these debates lies the predominance of singly charged ions in MALDI mass spectra; the exception being very high mass compounds. A mechanism for the formation of multiply charged ions in MALDI has previously been proposed (1) based on molecular modeling studies (9, 10) and glimpses of multiply charged ions have been observed in lower molecular weight compounds (1114). The formation of these multiply charged ions has been attributed to sample preparation, high laser fluence, a metal-free sample stage, use of an IR laser, and atmospheric pressure (AP)1 conditions. Multiply charged ions were also recently observed by laser ablation of a liquid surface in the presence of a high electric field (15). The inability in that experiment to observe ions from a solid MALDI matrix/analyte sample or in the absence of an electric field suggests an ionization process involving liquid droplets in a high field similar to ESI (16) or other liquid based, field-induced ionization methods (17, 18).Here, we show analytically useful ESI-like MALDI mass spectra obtained using standard MALDI conditions but using a nontraditional source (19) mounted in place of the standard atmospheric pressure ionization source on a mass spectrometer most commonly used with ESI. The utility of this MALDI MS method for extending the mass range of mass spectrometers as well as the capability of peptide/protein sequencing using electron transfer dissociation (ETD) (20) is demonstrated. Because highly charged ions have not previously been observed with any MALDI ion source configuration, we briefly discuss the fundamental concepts that lead to their production. Key aspects of laserspray ionization (LSI) are laser ablation using a UV laser aligned in transmission geometry (TG) (2123), field-free (FF) at AP (24), using a heated AP to vacuum ion transfer capillary. In order to emphasize the MALDI sample preparation but distinguish laserspray from conventional AP-MALDI, the new ionization method will hereafter be referred to as FF-TG AP-MALDI.  相似文献   

20.
Effectively determining masses of proteins is critical to many biological studies (e.g. for structural biology investigations). Accurate mass determination allows one to evaluate the correctness of protein primary sequences, the presence of mutations and/or post-translational modifications, the possible protein degradation, the sample homogeneity, and the degree of isotope incorporation in case of labelling (e.g. 13C labelling).Electrospray ionisation (ESI) mass spectrometry (MS) is widely used for mass determination of denatured proteins, but its efficiency is affected by the composition of the sample buffer. In particular, the presence of salts, detergents, and contaminants severely undermines the effectiveness of protein analysis by ESI-MS. Matrix-assisted laser desorption/ionization (MALDI) MS is an attractive alternative, due to its salt tolerance and the simplicity of data acquisition and interpretation. Moreover, the mass determination of large heterogeneous proteins (bigger than 100 kDa) is easier by MALDI-MS due to the absence of overlapping high charge state distributions which are present in ESI spectra.Here we present an accessible approach for analysing proteins larger than 100 kDa by MALDI-time of flight (TOF). We illustrate the advantages of using a mixture of two matrices (i.e. 2,5-dihydroxybenzoic acid and α-cyano-4-hydroxycinnamic acid) and the utility of the thin layer method as approach for sample deposition. We also discuss the critical role of the matrix and solvent purity, of the standards used for calibration, of the laser energy, and of the acquisition time. Overall, we provide information necessary to a novice for analysing intact proteins larger than 100 kDa by MALDI-MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号