首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetoliposomes, consisting of liposomes and magnetic nanoparticles (MNPs), have been tailored as very promising delivery vehicles in biotechnology and biomedicine applications. In this paper, liposomes with hydrophobic MNPs were prepared. The hydrophobic MNPs were successfully embedded in the lipid bilayer, which was proved by the results obtained from transmission electron microscope, atomic force microscope, differential scanning calorimetry and steady state fluorescence measurements. Moreover, systematic researches were carried out to investigate the effects of hydrophobic MNPs concentration on the morphology and microstructure of liposomes. The results show that the lipid bilayer was saturated with the hydrophobic MNPs when the mass ratio of MNPs to lipid reached 0.002.  相似文献   

2.
We present colloidal nanocomposites formed by incorporating magnetite Fe3O4 nanoparticles (MNPs) with lysozyme amyloid fibrils (LAFs). Preparation of two types of solutions, with and without addition of salt, was carried out to elucidate the structure of MNPs-incorporated fibrillary nanocomposites and to study the effect of the presence of salt on the stability of the nanocomposites. The structural morphology of the LAFs and their interaction with MNPs were analyzed by atomic force microscopy and small-angle x-ray scattering measurements. The results indicate that conformational properties of the fibrils are dependent on the concentration of protein, and the precise ratio of the concentration of the protein and MNPs is crucially important for the stability of the fibrillary nanocomposites. Our results confirm that despite the change in fibrillary morphology induced by the varying concentration of the protein, the adsorption of MNPs on the surface of LAF is morphologically independent. Moreover, most importantly, the samples containing salt have excellent stability for up to 1 year of shelf-life.  相似文献   

3.
A rapid and sensitive chemiluminescence immunoassay (CLIA) based on magnetic nanoparticles (MNPs) was developed to detect aflatoxin B1 (AFB1), which is a potent carcinogen in nature. We prepared monodisperse MNPs (300 nm in diameter) according to the solvothermal synthesis reaction and the MNPs were coated with silica by the Stöber method. Triethox was used as a one‐step carboxylation reagent, and 3‐aminopropyltriethoxysilane (APTES) an amination reagent, to modify the MNPs. We prepared two types of solid phase antigens using the above synthesized functionalized MNPs coupled with the later prepared AFB1‐oxime active ester and the purchased BSA–AFB1 respectively. 2′,6′‐dimethylcarbonylphenyl‐10‐sulfopropylacridinium‐9‐carboxylate 4′‐N‐hydroxysuccinimide (4′‐NHS) ester (NSP–DMAE–NHS), as a novel luminescent reagent, was used to label anti‐AFB1 antibodies. The two CLIA calibration curves based on the two types of solid phase antigens were obtained and compared. The acquired limit of detection (LOD) was about 0.001 ng/mL for the two functionalized MNPs‐based immunoassays, and the half maximal inhibitory concentration (IC50) was 0.51 ng/mL for the MNPs–AFB1‐based method and 0.72 ng/mL for the MNPs–BSA–AFB1‐based method.  相似文献   

4.
Increasing concerns about biosafety of nanoparticles (NPs) has raised the need for detailed knowledge of NP interactions with biological molecules especially proteins. Herein, the concentration-dependent effect of magnetic NPs (MNPs) on bovine serum albumin and hen egg white lysozyme was explored. The X-ray diffraction patterns, zeta potential, and dynamic light scattering measurements together with scanning electron microscopy images were employed to characterize MNPs synthesized through coprecipitation method. Then, we studied the behavior of two model proteins with different surface charges and structural properties on interaction with Fe3O4. A thorough investigation of protein–MNP interaction by the help of intrinsic fluorescence at different experimental conditions revealed that affinity of proteins for MNPs is strongly affected by the similarity of protein and MNP surface charges. MNPs exerted structure-making kosmotropic effect on both proteins under a concentration threshold; however, binding strength was found to determine the extent of stabilizing effect as well as magnitude of the concentration threshold. Circular dichroism spectra showed that proteins with less resistance to conformational deformations are more prone to secondary structure changes upon adsorption on MNPs. By screening thermal aggregation of proteins in the presence of Fe3O4, it was also found that like chemical stability, thermal stability is influenced to a higher extent in more strongly bound proteins. Overall, this report not only provides an integrated picture of protein–MNP interaction but also sheds light on the molecular mechanism underling this process.  相似文献   

5.
Drug delivery through the vagina is a novel and effective approach for treating embryonic diseases. Magnetic nanoparticles (MNPs) currently are used as drug delivery systems. The safety of MNPs for use with embryonic tissues remains unclear. We used pregnant mice to investigate the possible toxicity of MNPs toward neonatal liver at three embryonic ages using histochemical and immunohistochemical techniques. MNPs were instilled through the vaginas of pregnant mice at days 12 (E12), 15 (E15) and 17 (E17) after fertilization. We found MNPs in the neonatal liver parenchyma after delivery of the pups on day 20. We observed that MNPs caused mild apoptosis of hepatocytes, cytoplasmic vacuolation and lymphocytic infiltration in the neonatal liver after treatment at E15 compared to instillation at E12 and E17. We observed also that MNPs increased the production of caspase proteins and tumor necrosis factor receptor 2 proteins, which are indicators of apoptosis, in the neonatal liver after instillation of MNPs at E15 compared to instillation at E12 and E17. MNPs also increased the number of collagen fibers and the amounts of connective tissue growth factors in the neonatal liver parenchyma after instillation at E15 compared to instillation at E12 and E17. The general carbohydrates in the neonatal liver were decreased in a time-dependent manner after instillation at E17, E15 and E12 owing to the presence of MNPs in the parenchyma. Overall, we determined that MNPs were mildly toxic to neonatal liver.  相似文献   

6.

Background

Magnetic nanoparticles (MNPs) have been widely used in biomedical applications. Proper control of the duration of MNPs in circulation promises to improve further their applications, in particularly drug delivery. It is known that the uptake of tissue-associated MNPs is mainly carried out by macrophages. Yet, the molecular mechanism to control MNPs internalization in macrophages remains to be elusive. Missing-in-metastasis (MIM) is a scaffolding protein that is highly expressed in macrophages and regulates receptor-mediated endocytosis. We hypothesize that uptake of MNPs may also involve the function of MIM.

Methods

We investigated the effect of MIM expression on the intracellular trafficking of MNPs by transmission electronic microscopy, flow cytometry, o-phenanthroline photometric analysis, Perl's staining, immunofluorescence microscopy and co-immunoprecipitation. To explore the molecular events in MIM-mediated MNPs uptake, we examined the effect of MNPs on the interaction of MIM with clathrin, Rab5 and Rab7.

Results

Uptake of MNPs was significantly enhanced in cells overexpressing MIM. Upon exposure to MNPs, MIM was associated with clathrin light chain in endocytic vesicles and Rab7, a protein that regulates late endosomes. However, MNPs caused dissociation of MIM with Rab5, an early endosome-associated protein.

Conclusions

MIM regulates internalization of MNPs via promoting their trafficking from plasma membrane to late endosomes.

General significance

Our data unveiled a novel pathway which MNPs internalization and intracellular trafficking in macrophages. This new pathway may allow us to control the uptake of MNPs within cells by targeting MIM, thereby improving their medical applications.  相似文献   

7.
Silica-encapsulated magnetic nanoparticles (MNPs) were prepared via microemulsion method. The products were characterized by high resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectrum (EDS). MNPs with no observed cytotoxic activity against human lung carcinoma cell and brine shrimp lethality were used as suitable support for glucose oxidase (GOD) immobilization. Binding of GOD onto the support was confirmed by the FTIR spectra. The amount of immobilized GODs was 95 mg/g. Storage stability study showed that the immobilized GOD retained 98% of its initial activity after 45 days and 90% of the activity was also remained after 12 repeated uses. Considerable enhancements in thermal stabilities were observed for the immobilized GOD at elevated temperatures up to 80°C and the activity of immobilized enzyme was less sensitive to pH changes in solution.  相似文献   

8.
We described the development of functionalized magnetic nanoparticles (MNPs) with PEG-modification, a phospholipids micelle coating, and their use in manipulating histidine-tagged proteins. Highly monodisperse MNPs were synthesized in an organic solvent and could be phase-transferred into an aqueous solution by encapsulating the nanoparticles with a phospholipids micelle. The phospholipids micelle coating rendered the nanoparticles highly water-soluble, and the functional groups of the phospholipids coating allowed for the bioconjugation of various moieties, such as fluorescent molecules and engineered proteins. Functionalized phospholipids, such as nitrilotriacetic acid (NTA)-phospholipids, caused the MNPs to bind and allowed for manipulation of histidine-tagged proteins. Due to their high surface/volume ratio, the MNPs showed better performance (about 100 times higher) in immobilizing engineered proteins than conventional micrometer-sized beads. This demonstrates that MNPs coated with phospholipids micelle can be a versatile platform for the effective manipulation of various kinds of engineered proteins, which is very important in the field of proteomics. It is expected that a combination of MNPs with optical fluorescent molecules can find applications in bimodal (magnetic and optical) molecular imaging nanoprobes.  相似文献   

9.

Background

Magnetite nanoparticles (MNPs) have been widely used as contrast agents and have promising approaches in cancer treatment. In the present study we used Ehrlich solid carcinoma (ESC) bearing mice as a model to investigate MNPs antitumor activity, their effect on expression of p53 and p16 genes as an indicator for apoptotic induction in tumor tissues.

Method

MNPs coated with ascorbic acid (size: 25.0±5.0 nm) were synthesized by co-precipitation method and characterized. Ehrlich mice model were treated with MNPs using 60 mg/Kg day by day for 14 injections; intratumorally (IT) or intraperitoneally (IP). Tumor size, pathological changes and iron content in tumor and normal muscle tissues were assessed. We also assessed changes in expression levels of p53 and p16 genes in addition to p53 protein level by immunohistochemistry.

Results

Our results revealed that tumor growth was significantly reduced by IT and IP MNPs injection compared to untreated tumor. A significant increase in p53 and p16 mRNA expression was detected in Ehrlich solid tumors of IT and IP treated groups compared to untreated Ehrlich solid tumor. This increase was accompanied with increase in p53 protein expression. It is worth mentioning that no significant difference in expression of p53 and p16 could be detected between IT ESC and control group.

Conclusion

MNPs might be more effective in breast cancer treatment if injected intratumorally to be directed to the tumor tissues.  相似文献   

10.
酶是高效的生物催化剂,在生物技术领域有广泛的应用。然而,不可再生催化的高成本和酶的有效成分分离回收,是实现大规模工业化应用需要解决的关键问题。磁性纳米粒子(magnetic nanoparticles,MNPs)具有优异的磁回收性质。通过设计和制备功能化MNPs作为固定化酶的多功能载体,是解决这一问题的有效途径之一,可为酶的工业化大规模应用提供条件。近年来,功能化磁性纳米粒子在酶的固定化领域基于载体性质、固定化方法和应用有广泛研究。文中重点介绍了近年来各种功能化磁性纳米载体,特别是Fe3O4纳米粒子,在固定化酶中的应用。根据功能化试剂的差异分类,实例讨论了不同功能化修饰的磁性纳米载体对酶的固定化,包括硅烷修饰的磁性纳米载体、有机聚合物修饰的磁性纳米载体、介孔材料修饰的磁性纳米载体以及金属-有机骨架材料(metal-organic framework,MOF)修饰的磁性纳米载体。同时,结合可持续工业催化的发展要求,对磁性复合载体固定化酶的发展前景进行了展望。  相似文献   

11.
Iron oxide magnetic nanoparticles (MNPs) alone are suitable for a broad spectrum of applications, but the low stability and heterogeneous size distribution in aqueous medium represent major setbacks. These setbacks can however be reduced or diminished through the coating of MNPs with various polymers, especially biopolymers such as polysaccharides. Polysaccharides are biocompatible, non-toxic and renewable; in addition, they possess chemical groups that permit further functionalization of the MNPs. Multifunctional entities can be created through decoration with specific molecules e.g. proteins, peptides, drugs, antibodies, biomimetic ligands, transfection agents, cells, and other ligands. This development opens a whole range of applications for iron oxide nanoparticles. In this review the properties of magnetic structures composed of MNPs and several polysaccharides (Agarose, Alginate, Carrageenan, Chitosan, Dextran, Heparin, Gum Arabic, Pullulan and Starch) will be discussed, in view of their recent and future biomedical and biotechnological applications.  相似文献   

12.
The synthesis of multilayered magnetic nanoparticles (MNPs) for use as a support in solid-phase peptide synthesis (SPPS) is described. Silanization of magnetite (Fe3O4) nanoparticles with 3-(trimethoxysilyl)propyl methacrylate introduced polymerizable groups on the surface. Polymerization with allylamine, trimethylolpropane trimethacrylate, and trimethylolpropane ethoxylate (14/3 EO/OH) triacrylate provided a polymeric coating and amino groups to serve as starting points for the synthesis. After coupling of an internal reference amino acid and a cleavable linker, the coated MNPs were applied as the solid phase during synthesis of Leu-enkephalinamide and acyl carrier protein (65-74) by Fmoc chemistry. A “high-load” version of the MNP support (0.32 mmol/g) was prepared by four consecutive cycles of Fmoc-Lys(Fmoc)-OH coupling and Fmoc deprotection. Successful synthesis of Leu-enkephalin was demonstrated on the “high-load” MNPs. Chemical stability studies proved the particles to be stable under SPPS conditions and magnetization measurements showed that the magnetic properties of the particles were maintained throughout derivatizations and SPPS. The MNPs were further characterized by high-resolution transmission electron microscopy, inductively coupled plasma atomic emission spectrometry, elemental analysis, and nitrogen gas adsorption measurements.  相似文献   

13.
Magnetic iron oxide nanoparticles are a well-explored class of nanomaterials known for their high magnetization and biocompatibility. They have been used in various biomedical applications such as drug delivery, biosensors, hyperthermia, and magnetic resonance imaging (MRI) contrast agent. It is necessary to surface modify the nanoparticles with a biocompatible moiety to prevent their agglomeration and enable them to target to the defined area. Dendrimers have attracted considerable attention due to their small size, monodispersed, well-defined globular shape, and a relative ease incorporation of targeting ligands. In this study, superparamagnetic iron oxide nanoparticles were synthesized via a coprecipitation method. The magnetic nanoparticles (MNPs) had been modified with (3-aminopropyl) triethoxysilane, and then polyamidoamine functionalized MNPs had been synthesized cycling. Various characterization techniques had been used to reveal the morphology, size, and structure of the nanoparticles such as scanning electron microscopy, transmission electron microscope, X-ray diffraction analysis, and vibrating sample magnetometer, Fourier-transform infrared spectroscopy and zeta potential measurements. In addition, the cytotoxicity property of G3–dendrimer functionalized MNPs were evaluated using 3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide assay which confirmed the biocompatibility of the nanocomposites. Dendrimer functionalized MNPs are able to act as contrast agents for MRI and magnetic fluid hyperthermia mediators. A superior heat generation was achieved for the given concentration according to the hyperthermia results. MRI results show that the synthesized nanocomposites are a favorable option for MRI contrast agent. We believe that these dendrimer functionalized MNPs have the potential of integrating therapeutic and diagnostic functions in a single carrier.  相似文献   

14.
Spherical phospholipid bilayers, vesicles, were formed with respect to phase of each layer via a double emulsion technique. At the outer layer of the vesicles, phospholipase D catalyzed for the conversion of phosphatidylcholine (PC) to phosphatidic acid (PA). The reaction caused by phospholipase D (PLD) induced a curvature change in the vesicles, which eventually led them to rupture. Response time from the PLD injection to the rupture was monitored for the phase of each layer by using fluorescence intensity changes of pH-sensitive dye encapsulated in the vesicles. It was found that low ionic strength and asymmetric phase retarded response time. The retardation seems to be related to the stability of the vesicles, which is due to the interaction between the lipid molecules. In the liquid phases of the outer lipid layers, the unexpected slow response time may be attributed either to the fast lateral diffusion, which relieves the curvature change of the vesicles, or to the low concentration of PCs, which are less for the reaction compared to the solid phase of the outer lipid layer, rather than the stability.  相似文献   

15.
We report the statistical optimization of the immobilization of alkaline α-amylase [E.C. 3.2.1.1] from Bacillus alcalophilus onto nano-sized supermagnetic ironoxide nanoparticles (MNPs) for augmenting the cost effective industrial application of MNP-bound α-amylase. Both Plackett-Burman factorial design and response surface methodology (RSM) were employed to screen the influence of different parameters and the central effect of response on the α-amylase-iron oxide MNP binding process. The high coefficient of determination (R2) and analysis of variance (ANOVA) of the quadratic model indicated the competence of the proposed model. The size of the MNPs was confirmed by X-ray diffraction and scanning electron microscope analyses in which Fourier transform infrared spectroscopy suggested immobilization of the enzyme on iron-oxide MNPs. A significant improvement (∼ 26-fold) in specific activity, thermal and storage stability, and reusability of α-amylase after binding with iron-oxide MNP reinforced the improved biotechnological potential of the α-amylase iron-oxide MNP bioconjugate compared to free α-amylase. These results open new avenues for applying this MNP immobilized enzyme in different industrial sectors, notably in the paper and brewing industries.  相似文献   

16.
A kind of solid substrate, glassy carbon (GC) electrode, was selected to support self-assembled lipid layer membranes. On the surface of GC electrode, we made layers of dimyristoylphosphatidylcholine (DMPG, a kind of lipid). From electrochemical impedance experiments, we demonstrated that the lipid layers on the GC electrode were bilayer lipid membranes. We immobilized horseradish peroxidase (HRP) into the supported bilayer lipid membranes (s-BLM) to develop a kind of mediator-free biosensor for H2O2. The biosensor exhibited fine electrochemical response, stability and reproducibility due to the presence of the s-BLM. As a model of biological membrane, s-BLM could supply a biological environment for enzyme and maintain its activity. So s-BLM is an ideal choice to immobilize enzyme for constructing the mediator-free biosensor based on GC electrode.  相似文献   

17.
Interest in utilizing magnetic nanoparticles (MNP) for biomedical applications has increased considerably over the past two decades. This excitement has been driven in large part by the success of MNPs as contrast agents in magnetic resonance imaging. The recent investigative trend with respect to cancer has continued down a diagnostic path, but has also turned toward concurrent therapy, giving rise to the distinction of MNPs as potential "theranostics". Here we review both the key technical principles of MNPs and ongoing advancement toward a cancer theranostic MNP. Recent progress in diagnostics, hyperthermia treatments, and drug delivery are all considered. We conclude by identifying current barriers to clinical translation of MNPs and offer considerations for their future development.  相似文献   

18.
To fulfill the increasing need for large-scale genetic research, we have developed a new solid-phase single base extension (SBE) protocol on magnetic nanoparticles (MNPs) for multiplex SNP detection using adapter polymerase chain reaction (PCR) products as templates. Extension primers were covalently immobilized on the MNPs, and allele-specific extension took place along the stretch of target DNA for one-color ddNTP incorporation. The MNPs with fluorophores were spotted on a glass slide to fabricate a “bead array” to discriminate their genotypes. Eight SNP loci of three DNA samples were interrogated, and the experiment demonstrated that it is an efficient method for large-scale SNP genotyping.  相似文献   

19.
Among the large series of marine natural products (MNPs), sulfur-containing MNPs have emerged as potential therapeutic agents for the treatment of a range of diseases. Herein, we reviewed 95 new sulfur-containing MNPs isolated during the period between 2021 and March 2023. In addition, we discuss that the widely used strategies and the emerging technologies including natural product-based antibody drug conjugates (ADCs), small-molecule-based proteolysis targeting chimeras (PROTACs), nanotechnology-based drug carriers, artificial intelligence (AI)-driven drug discovery have been used for improving the efficiency and success rate of NP-based drug development. We also provide perspectives regarding the challenges and opportunities in sulfur-containing MNPs based drug discovery and development and future research directions.  相似文献   

20.
We developed a biocompatible and highly efficient approach for functionalization of bacterial cell wall with magnetic nanoparticles (MNPs). Three Acinetobacter baylyi ADP1 chromosomally based bioreporters, which were genetically engineered to express bioluminescence in response to salicylate, toluene/xylene and alkanes, were functionalized with 18 ± 3 nm iron oxide MNPs to acquire magnetic function. The efficiency of MNPs functionalization of Acinetobacter bioreporters was 99.96 ± 0.01%. The MNPs‐functionalized bioreporters (MFBs) can be remotely controlled and collected by an external magnetic field. The MFBs were all viable and functional as good as the native cells in terms of sensitivity, specificity and quantitative response. More importantly, we demonstrated that salicylate sensing MFBs can be applied to sediments and garden soils, and semi‐quantitatively detect salicylate in those samples by discriminably recovering MFBs with a permanent magnet. The magnetically functionalized cells are especially useful to complex environments in which the indigenous cells, particles and impurities may interfere with direct measurement of bioreporter cells and conventional filtration is not applicable to distinguish and harvest bioreporters. The approach described here provides a powerful tool to remotely control and selectively manipulate MNPs‐functionalized cells in water and soils. It would have a potential in the application of environmental microbiology, such as bioremediation enhancement and environment monitoring and assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号