首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method for the rapid analysis of inorganic pyrophosphate (PPi) which utilizes the enzyme ATP sulfurylase is described. All components of the assay system are commercially available and inexpensive. The assay is linear over the range of 0.5–50.0 nmol of PPi and is not affected by inorganic phosphate. ATP and PPi can both be analyzed using this method.  相似文献   

2.
A generally applicable, inexpensive, and sensitive method for the determination of inorganic pyrophosphate (PPi) was developed. PPi was quantitatively separable from solution even in nanomolar concentrations by filtration through a membrane filter in the presence of CaCl2 and KF. The separated PPi was dissolved by immersing the filter in 0.5 n H2SO4. Inorganic phosphate (Pi) was removed by precipitating it as a phosphomolybdate-triethylamine complex and the PPi was measured as a green pyrophosphomolybdate in the presence of 2-mercaptoethanol. Nucleotides and phosphate esters do not react. PPi can be accurately assayed even when there is a 104-fold excess of Pi. Trimetaphosphate, tripolyphosphate, and tetrapolyphosphate also give this green color, but the rate of the color formation is 50 times slower than that with PPi. Thus this interference of the polyphosphates can be eliminated or the polyphosphates can be assayed simultaneously with the PPi in the same sample.  相似文献   

3.
Acetate kinase, a member of the acetate and sugar kinase-Hsp70-actin (ASKHA) enzyme superfamily1-5, is responsible for the reversible phosphorylation of acetate to acetyl phosphate utilizing ATP as a substrate. Acetate kinases are ubiquitous in the Bacteria, found in one genus of Archaea, and are also present in microbes of the Eukarya6. The most well characterized acetate kinase is that from the methane-producing archaeon Methanosarcina thermophila7-14. An acetate kinase which can only utilize PPi but not ATP in the acetyl phosphate-forming direction has been isolated from Entamoeba histolytica, the causative agent of amoebic dysentery, and has thus far only been found in this genus15,16.In the direction of acetyl phosphate formation, acetate kinase activity is typically measured using the hydroxamate assay, first described by Lipmann17-20, a coupled assay in which conversion of ATP to ADP is coupled to oxidation of NADH to NAD+ by the enzymes pyruvate kinase and lactate dehydrogenase21,22, or an assay measuring release of inorganic phosphate after reaction of the acetyl phosphate product with hydroxylamine23. Activity in the opposite, acetate-forming direction is measured by coupling ATP formation from ADP to the reduction of NADP+ to NADPH by the enzymes hexokinase and glucose 6-phosphate dehydrogenase24.Here we describe a method for the detection of acetate kinase activity in the direction of acetate formation that does not require coupling enzymes, but is instead based on direct determination of acetyl phosphate consumption. After the enzymatic reaction, remaining acetyl phosphate is converted to a ferric hydroxamate complex that can be measured spectrophotometrically, as for the hydroxamate assay. Thus, unlike the standard coupled assay for this direction that is dependent on the production of ATP from ADP, this direct assay can be used for acetate kinases that produce ATP or PPi.  相似文献   

4.
The manufacturing processes of many electronic and medical products demand the use of high-quality water. Hence the water supply systems for these processes are required to be examined regularly for the presence of microorganisms and microbial biofilms. Among commonly used bacteria detection approaches, the ATP luminescence assay is a rapid, sensitive, and easy to perform method. The aim of this study is to investigate whether ATP regeneration from inorganic pyrophosphate, a product of the ATP luminescence assay, can stabilize the bioluminescence signals in ATP detection. ADPglc pyrophosphorylase (AGPPase), which catalyzes the synthesis of ATP from PPi in the presence of ADPglc, was selected because the system yields much lower luminescence background than the commercially available ATP sulfurylase/adenosine 5′-phosphosulfate (APS) system which was broadly used in pyrosequencing technology. The AGPPase-based assay could be used to measure both PPi and ATP quantitatively and shows 1.5- to 4.0-fold slight increases in a 10-min assay. The method could also be used to stabilize the luminescence signals in detection of Escherichia coli, Pseudomonas aeruginosa, and Bacillus cereus in either broth or biofilm. These findings suggest that the AGPPase-based ATP regeneration system will find many practical applications such as detection of bacterial biofilm in water pipelines.  相似文献   

5.
In studying conditions for obtaining photosynthetically functional chloroplasts from mesophyll protoplasts of sunflower and wheat, a strong requirement for chelation was found. The concentration of chelator, either EDTA or pyrophosphate (PPi), required for maximum activation depended on the pH, the concentration of orthophosphate (Pi) in the assay, and the chelator used. Studies with EDTA indicate that including the chelator in the isolation, resuspension, and assay media, in the absence of divalent cations, was most effective. Increased concentration of EDTA from 1 to 10 mm broadened the pH response curve for photosynthesis, inasmuch as a higher concentration of chelator was required for activation of photosynthesis at lower pH.Either EDTA, PPi, or citrate could activate photosynthesis of sunflower chloroplasts isolated and assayed at pH 8.4. At pH 7.6, PPi and EDTA were equally effective at low Pi concentrations but PPi was particularly effective in shortening the induction period at high concentrations of Pi (2.5 mm) in the assay medium. Including 1 mm 3-phosphoglycerate in the assay medium with or without Pi could not replace the need for chelation. However, 3-phosphoglycerate + EDTA in the assay medium with 0.5 mm Pi, pH 7.6, gave a short induction period and rates of photosynthesis similar to those with 10 mm PPi. The results suggest that PPi can have a dual effect at the lower pH through chelation and inhibition of the phosphate transporter.Photosynthesis by sunflower chloroplasts isolated and assayed at pH 8.4 with 0.2 mm EDTA (+ 0.5 mm Pi in the assays) was severely inhibited by 2 mM CaCl2, MgCl2, or MnCl2. Wheat chloroplasts isolated and assayed at pH 8.4 without chelation, and assayed with 0.2 mm Pi, had low rates of photosynthesis (25 μmol O2 evolved mg?1 chlorophyll h?1) which were strongly inhibited by 2 to 4 mm MgCl2, MnCl2, or CaCl2. With inclusion of EDTA and Pi at optimum levels, isolated chloroplasts of sunflower and wheat have high rates of photosynthesis and PPi or divalent cations are not of benefit.  相似文献   

6.
Diel vertical migration by Heterosigma akashiwo (Hada) Hada (Raphidophyceae) was monitored in a 1.5 in tall microcosm. Vertical stratification, with low salinity and low orthophosphate (Pi) concentration in the upper layer and high salinity and high Pi concentration in the lower layer, was simulated in the tank, analogous to summer stratification in the Seto Inland Sea. The phosphate metabolism of H. akashiwo during this vertical migration was studied using 31P-NMR spectroscopy. At night this species migrated to the lower phosphate-rich layer and took up inorganic phosphate (Pi) which then was accumulated as polyphosphate (PPi) by an increase in the chain length of PPi During the daytime this species migrated to the phosphate-depleted surface water and utilized the accumulated PPi for photophosphorylation by decreasing the chain length of PPi During the first night after the phosphorus was introduced to the previously impoverished waters, the cells took up inorganic phosphate, accumulating the new phosphorus nutrient internally as Pi But the cells did not convert Pi to PPi presumably due to their lack of ATP. After the second day of the experiment, conversion of Pi to PPi at night was much more rapid than on the first day, presumably due to increased ATP availability. Then the cycle continued, with uptake of Pi and conversion to PPi at night at the bottom and its utilization during the day at the surface. These data suggest that the role of PPi in the metabolism of this species appears to be as a phosphate pool which regulates the level of Pi and ATP in the cell. Diel vertical migration allows this red tide species to shuttle between the phosphate-rich lower layer and the photic upper layer in stratified waters. 31P-NMR is shown to be a valuable tool in studying the phosphorus metabolism in migrating organisms.  相似文献   

7.
It was found that CDP-choline was formed with good yield from 5′-CMP and choline phosphate or choline chloride by yeast cells. The effects of pyrophosphate (PPi) on the formation of UDPG, GDPM and CDP-choline from respective nucleoside monophosphate by yeast cells were studied. By the addition of PPi to the reaction mixture, the phosphorylation of G-6-P from glucose was inhibited and then the phosphorylation of nucleoside monophosphates was restrained. Such inhibition was reversed by the decomposition of PPi by inorganic pyrophosphatase of yeast cells. The addition of PPi after the formation of nucleotide derivatives caused the accumulation of UTP and GTP and molar yields from nucleotide as substrate was about 80%. But that of CTP was a little in the reaction system of CDP-choline synthesis. Further, this method seems to be suitable for the accumulation of sugar-1-phosphates.  相似文献   

8.
Bacteria monitoring is essential for many industrial manufacturing processes, particularly those involving in food, biopharmaceuticals, and semiconductor production. Firefly luciferase ATP luminescence assay is a rapid and simple bacteria detection method. However, the detection limit of this assay for Escherichia coli is approximately 104 colony-forming units (CFU), which is insufficient for many applications. This study aims to improve the assay sensitivity by simultaneous conversion of PPi and AMP, two products of the luciferase reaction, back to ATP to form two chain-reaction loops. Because each consumed ATP continuously produces two new ATP molecules, this approach can achieve exponential amplification of ATP. Two consecutive enzyme reactions were employed to regenerate AMP into ATP: adenylate kinase converting AMP into ADP using UTP as the energy source, and acetate kinase catalyzing acetyl phosphate and ADP into ATP. The PPi-recycling loop was completed using ATP sulfurylase and adenosine 5′ phosphosulfate. The modification maintains good quantification linearity in the ATP luminescence assay and greatly increases its bacteria detection sensitivity. This improved method can detect bacteria concentrations of fewer than 10 CFU. This exponential ATP amplification assay will benefit bacteria monitoring in public health and manufacturing processes that require high-quality water.  相似文献   

9.
The catabolism of ATP and other nucleotides participates partly in the important function of nucleotide salvage by activated cells and also in removal or de novo generation of compounds including ATP, ADP, and adenosine that stimulate purinergic signaling. Seven nucleotide pyrophosphatase/phosphodiesterase NPP family members have been identified to date. These isoenzymes, related by up conservation of catalytic domains and certain other modular domains, exert generally non-redundant functions via distinctions in substrates and/or cellular localization. But they share the capacity to hydrolyze phosphodiester or pyrophosphate bonds, though generally acting on distinct substrates that include nucleoside triphosphates, lysophospholipids and choline phosphate esters. PPi generation from nucleoside triphosphates, catalyzed by NPP1 in tissues including cartilage, bone, and artery media smooth muscle cells, supports normal tissue extracellular PPi levels. Balance in PPi generation relative to PPi degradation by pyrophosphatases holds extracellular PPi levels in check. Moreover, physiologic levels of extracellular PPi suppress hydroxyapatite crystal growth, but concurrently providing a reservoir for generation of pro-mineralizing Pi. Extracellular PPi levels must be supported by cells in mineralization-competent tissues to prevent pathologic calcification. This support mechanism becomes dysregulated in aging cartilage, where extracellular PPi excess, mediated in part by upregulated NPP1 expression stimulates calcification. PPi generated by NPP1modulates not only hydroxyapatite crystal growth but also chondrogenesis and expression of the mineralization regulator osteopontin. This review pays particular attention to the role of NPP1-catalyzed PPi generation in the pathogenesis of certain disorders associated with pathologic calcification.  相似文献   

10.
Li L  Buchet R  Wu Y 《Analytical biochemistry》2008,381(1):123-128
To elucidate the inhibition mechanisms of hydroxyapatite (HA), a biological model mimicking the mineralization process was developed. The addition of 4% (v/v) dimethyl sulfoxide (DMSO) in synthetic cartilage lymph (SCL) medium containing 2 mM calcium and 3.42 mM inorganic phosphate (Pi) at pH 7.6 and 37 °C produced HA as matrix vesicles (MVs) under physiological conditions. Such a model has the advantage of monitoring the HA nucleation process without interfering with other processes at the cellular or enzymatic level. Turbidity measurements allowed us to follow the process of nucleation, whereas infrared spectra and X-ray diffraction permitted us to identify HA. Mineral formation induced by DMSO and by MVs in the SCL medium produced crystalline HA in a similar manner. The nucleation model served to evaluate the inhibition effects of ATP, GTP, UTP, ADP, ADP-ribose, AMP, and pyrophosphate (PPi). Here 10 μM PPi, 100 μM nucleotide triphosphates (ATP, GTP, UTP), and 1 mM ADP inhibited HA formation directly, whereas 1 mM ADP-ribose and 1 mM AMP did not. This confirmed that the PPi group is a potent inhibitor of HA formation. Increasing the PPi concentration from 100 μM to 1 mM induced calcium pyrophosphate dihydrate. We propose that DMSO-induced HA formation could serve to screen putative inhibitors of mineral formation.  相似文献   

11.
The preincubation of rat liver crude extracts with ATP caused a 60% inactivation of phosphoprotein phosphatase in 30 min at 30 °C. The presence of Mg2+, or cyclic AMP, along with ATP in the preincubation mixture had no effect on the inactivation of phosphatase caused by ATP. The crude liver phosphatase was also inactivated by ADP or PPi; PPi being the most potent inactivating metabolite. AMP, adenosine or Pi were without any effect. The effect of ATP or PPi was completely reversed by cobalt. The cobalt effect was very specific and could not be replaced by several metal ions tested except by Mn2+ which was partly active. With the aid of sucrose density gradient studies, it was also shown that PPicauses an apparent conversion of a 4.1 S form to a 7.8 S form of the enzyme in rat liver extracts. Cobalt, on the other hand, converts the higher 7.8 S form to a lower 4.1 S form of the enzyme. The preincubation of purified rabbit liver phosphoprotein phosphatase with PPi also caused a complete inactivation of the enzyme in 40 min. The inactivation of the enzyme by PPi was completely reversed by cobalt. Unlike the apparent interconversion between different molecular forms of the enzyme by PPi and cobalt in rat liver crude extracts, no such interconversion of purified rabbit liver phosphoprotein phosphatase was observed in the presence of PPi and cobalt.  相似文献   

12.
A simple method for measuring PPi at concentrations down to 2 μm has been devised using the ability of inorganic pyrophosphatase to be inactivated by fluoride in the presence of PPi. Orthophosphate (20 mm) and a number of other compounds did not interfere with the assay. The applicability of the method for direct measurement of PPi in urine is demonstrated.  相似文献   

13.
Simultaneous ripples (sudden changes in rate) in CO2 dependent O2 evolution and associated chlorophyll a fluorescence were followed in isolated, largely intact, spinach chloroplasts. These ripples could only be observed under conditions in which the supply of inorganic phosphate was limiting. This limitation was achieved either by 1) omission of phosphate in the assay medium, 2) use of inhibitors of the phosphate translocator, or 3) the addition of triose phosphate, a competitive inhibitor of Pi for the same translocator.The possible relation of these ripples to the dampening oscillations that can be observed in leaves, leaf pieces, isolated cells and protoplasts, is discussed.Abbreviations Pi orthophosphate - PPi: inorganic pyrophosphate - BSA bovine serum albumin - EDTA sodium ethylene-diaminetetraacetate - Hepes 4-(2-hydroxyethyl)-1-piperazine-ethane-sulphonic acid - DHAP dihydroxyacetone phosphate - PGA 3-phosphoglycerate  相似文献   

14.
Phosphoenolpyruvate carboxykinase (PEPCK) is one of the pivotal enzymes that regulates the carbon flow of the central metabolism by fixing CO2 to phosphoenolpyruvate (PEP) to produce oxaloacetate or vice versa. Whereas ATP- and GTP-type PEPCKs have been well studied, and their protein identities are established, inorganic pyrophosphate (PPi)-type PEPCK (PPi-PEPCK) is poorly characterized. Despite extensive enzymological studies, its protein identity and encoding gene remain unknown. In this study, PPi-PEPCK has been identified for the first time from a eukaryotic human parasite, Entamoeba histolytica, by conventional purification and mass spectrometric identification of the native enzyme, followed by demonstration of its enzymatic activity. A homolog of the amebic PPi-PEPCK from an anaerobic bacterium Propionibacterium freudenreichii subsp. shermanii also exhibited PPi-PEPCK activity. The primary structure of PPi-PEPCK has no similarity to the functional homologs ATP/GTP-PEPCKs and PEP carboxylase, strongly suggesting that PPi-PEPCK arose independently from the other functional homologues and very likely has unique catalytic sites. PPi-PEPCK homologs were found in a variety of bacteria and some eukaryotes but not in archaea. The molecular identification of this long forgotten enzyme shows us the diversity and functional redundancy of enzymes involved in the central metabolism and can help us to understand the central metabolism more deeply.  相似文献   

15.
An enzyme from Entamoeba histolytica catalyzes the formation of acetyl phosphate and orthophosphate from acetate and inorganic pyrophosphate (PPi), but it displays much greater activity in the direction of acetate formation. It has been purified 40-fold and separated from interfering enzyme activities by chromatography. Its reaction products have been quantitatively established. ATP cannot replace PPi as phosphoryl donor in the direction of acetyl phosphate formation nor will any common nucleoside diphosphate replace orthophosphate as phosphoryl acceptor in the direction of acetate formation. The trivial name proposed for the new enzyme is acetate kinase (PPi).  相似文献   

16.
Summary Genetic studies suggest that the so-called phosphorus-family of enzymes inN. crassa are controlled by a complex system of regulatory genes which are responsive to the level of phosphorus in the growth medium. The intracellular metabolite(s) that interact with this system to signal changes in the external phosphorus concentration has not been identified. In this study the pools of acid-soluble, phosphorus-containing, compounds are measured in wild-type and phosphorus-family enzyme regulatory mutant strains ofN. crassa before and during phosphorus starvation.Prolonged phosphorus starvation of wild-typeN. crassa failed to alter significantly the pre-starvation level of intracellular orthophosphate, suggesting that intracellular Pi would be a poor effector signal for the control of the phosphorus family enzymes. However, inorganic pyrophosphate (PPi) decreased 15-fold, and tri- and tetrapolyphosphate (PPPi and PPPPi) increased 3- to 5-fold within 15 minutes after transfer of the wild-type strain to phosphorus-free medium. Phosphate starvation of seven different regulatory gene mutant strains resulted in a rapid decrease in the PPi pool similar to that which occurred in the wild-type. However, only two of these seven strains showed increased PPPi and PPPPi pools following phosphate starvation. Additional experiments demonstrated that PPi pools, but not PPPi and PPPPi pools, were unaffected by several starvation regimens other than phosphorus starvation. Metabolic studies employing H3 32PO4 showed that the pool of PPi was labeled to steady-state levels after two minutes of continuous labeling of a phosphate-sufficient culture. Furthermore, long-term steady-state labeling showed that the intracellular PPi pool was directly responsive to the decrease in the extracellular Pi concentration of the medium resulting from cell growth. Growth on phosphoethanolamine, a phosphorus source that allows a modest degree of derepression even in growing cells, resulted in lower levels of PPi than were seen in phosphate-grown cells. These observations suggest that PPi may be involved in the mechanism responsible for the control of phosphorus-family enzyme regulatory gene product activity.  相似文献   

17.
Acetate kinase (ACK) catalyzes the reversible synthesis of acetyl phosphate by transfer of the γ-phosphate of ATP to acetate. Here we report the first biochemical and kinetic characterization of a eukaryotic ACK, that from the protist Entamoeba histolytica. Our characterization revealed that this protist ACK is the only known member of the ASKHA structural superfamily, which includes acetate kinase, hexokinase, and other sugar kinases, to utilize inorganic pyrophosphate (PPi)/inorganic phosphate (Pi) as the sole phosphoryl donor/acceptor. Detection of ACK activity in E. histolytica cell extracts in the direction of acetate/PPi formation but not in the direction of acetyl phosphate/Pi formation suggests that the physiological direction of the reaction is toward acetate/PPi production. Kinetic parameters determined for each direction of the reaction are consistent with this observation. The E. histolytica PPi-forming ACK follows a sequential mechanism, supporting a direct in-line phosphoryl transfer mechanism as previously reported for the well-characterized Methanosarcina thermophila ATP-dependent ACK. Characterizations of enzyme variants altered in the putative acetate/acetyl phosphate binding pocket suggested that acetyl phosphate binding is not mediated solely through a hydrophobic interaction but also through the phosphoryl group, as for the M. thermophila ACK. However, there are key differences in the roles of certain active site residues between the two enzymes. The absence of known ACK partner enzymes raises the possibility that ACK is part of a novel pathway in Entamoeba.  相似文献   

18.
The effectr of phosphate starvation and subsequent uptake on distribution and concentration of phosphate metabolic intermediates and metals were studied in Heterosigma akashiwo (Hada) Hada by 31P-NMR spectroscopy, neutron activation analysis and ESR spectroscopy. Excess orthophosphate (4.5 μM Pi, as NaH2PO4) added to a medium with P-depleted H. akashiwo cells was rapidly taken up resulting in an increase in P cell quota (qp)from 68.2 to 99.6 fmol. cell-1in 2 h and to 156.3 fmol. cell-1in 6 h. After three days, qp approached about 190 fmol. cell?1. Polyphosphate (PPi) rapidly increased from 0 to 11.4 fmol· cell?1in 2 h and to 24.7 fmol·cell?1in 6 h. Diel variation of cell quota indicated that cellular Pi increase was synchronized with cellular PPi decrease and vice versa. The average chain length of PPi increased from ca. 0 to ca. 10.2 phosphate residues in 2 h after addition of Pi and one day later, from ca. 9.8 to ca. 12.5. The cell quota of Mn (qMn), and to a lesser extent Co, increased rapidly from 4.87 fg. cell?1in the P- starved condition to 50.48 fg·cell?12 h afer addition of Pi but decreased to 8.63 fg. Cell?1by 6 h. Concentrations of Zn, As, Hf, Cu and sometimes Al, Mg, K, and Ca changed in a manner opposite to that of Mn and Co. The excretion of these cations, which was synchronized with the uptake of Mn and Co, may be important for a charge balancing in the cells. The ESR spectra showed that the high cellular Mn observed at 2 h after P addition was Mn2+which was taken up by the cells rather than adsorbed on the cell surface. These data combined with PPi data suggested that the behavior of qMn is synchronized with the behavior of average chain length of PPi.  相似文献   

19.
A microprocedure for the colorimetric determination of inorganic pyrophosphate (PPi) in the presence or absence of orthophosphate (Pi) has been developed. PPi is estimated quantitatively as the amount of chromophore formed with molybdate reagent, 1-amino-2-naphthol-4-sulfonic acid in bisulfite and thiol reagent (monothioglycerol or 2-mercaptoethanol). The latter is obligatory for color formation. Pi is estimated without thiol reagent. The two chromophores differ in absorption spectra, the greatest difference being at 580 nm. For both, color develops fully by 10 min and is stable up to 1 hr. Just less than 0.4 μm PPi can be detemined. The extinction coefficients are 2.70 × 104 and 8.76 × 103 for PPi and Pi, respectively, both with thiol reagent present, and 2.77 × 103 for Pi with no thiol reagent.A ten-fold excess of Pi does not interfere with the determination of PPi and in fact can be estimated in the same mixture. A 15-fold excess, however, diminishes the accuracy of PPi estimations. Trichloroacetic acid and sodium fluoride inhibi color formation, but this inhibition is overcome by the addition of sodium acetate buffer, pH 4.0. Nucleoside triphosphates and adenosine 3′:5′-cyclic monophosphate are stable in the reaction mixture.The method was tested in assays of Escherichia coli DNA-dependent RNA polymerase (nucleoside triphosphate: RNA nucleotidyltransferase, EC 2.7.7.6). Progress curves measured by either the rate of PPi formation or the rate of synthesis of labeled RNA were very similar. Product PPi formed by as little as 0.6 unit of RNA polymerase in a 225-μl incubation medium could be measured.An automated version of the method was devised which allows accurate determination of PPi down to 1 μm (without range expander attachment) at a sampling rate of 20–40 tubes/hr.  相似文献   

20.
Adenylation/adenylate-forming enzymes catalyze the activation of a carboxylic acid at the expense of ATP to form an acyl-adenylate intermediate and pyrophosphate (PPi). In a second half-reaction, adenylation enzymes catalyze the transfer of the acyl moiety of the acyl-adenylate onto an acceptor molecule, which can be either a protein or a small molecule. We describe the design, development, and validation of a coupled continuous spectrophotometric assay for adenylation enzymes that employs hydroxylamine as a surrogate acceptor molecule, leading to the formation of a hydroxamate. The released pyrophosphate from the first half-reaction is measured using the pyrophosphatase-purine nucleoside phosphorylase coupling system with the chromogenic substrate 7-methylthioguanosine (MesG). The coupled hydroxamate-MesG assay is especially useful for characterizing the activity and inhibition of adenylation enzymes that acylate a protein substrate and/or fail to undergo rapid ATP-PPi exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号