首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S-Adenosyl-l-methionine (SAM) is the preferred cofactor for biological methyl group transfers to various substrates such as nucleic acids, proteins, and lipids. Here we present stereospecific (>95% of the desired enantiomer) and high-yield preparation of four fluorescent and biologically active SAM analogs and demonstrate their usefulness in binding studies. Using a fluorescence titration experiment, we obtained a Kd of 0.38 μM for the S-2,6-diaminopurinylmethionine-SAM-III riboswitch complex.  相似文献   

2.
Viperin is an interferon-inducible protein inhibiting many DNA and RNA viruses. It contains an N-terminal transmembrane helix, a highly conserved C-terminus and a middle region carrying a CX3CX2C motif, characteristic of radical S-adenosyl-l-methionine (SAM) enzymes. So far no structural characterization has been reported and reconstitution of the [4Fe-4S] cluster in viperin all failed. Here, by dissecting the 361-residue human viperin into 12 fragments, followed by extensive CD and NMR characterization, Viperin (45-361) was identified to be soluble and structured in buffers. Most importantly, we have successfully reconstituted the [4Fe-4S] cluster in Viperin (45-361), thus providing the first experimental evidence confirming that viperin is indeed a radical SAM enzyme. Furthermore, the C-terminus Viperin (214-361) which is insoluble in buffers but again can be solubilized in salt-free water appears to be only partially folded. Our results thus imply that the radical SAM enzyme activity may play a key role in the broad antiviral actions of viperin.  相似文献   

3.
Modification of protein residues by S-adenosyl-l-methionine (AdoMet)-dependent methyltransferases impacts an array of cellular processes. Here we describe a new approach to quantitatively measure the rate of methyl transfer that is compatible with using protein substrates. The method relies on the ability of reverse-phase resin packed at the end of a pipette tip to quickly separate unreacted AdoMet from radiolabeled protein products. Bound radiolabeled protein products are eluted directly into scintillation vials and counted. In addition to decreasing analysis time, the sensitivity of this protocol allows the determination of initial rate data. The utility of this protocol was shown by generating a Michaelis-Menten curve for the methylation of heterogeneous nuclear ribonucleoprotein K (hnRNP K) protein by human protein arginine methyltransferase 1, variant 1 (hPRMT1v1), in just over 1 h. An additional advantage of this assay is the more than 3000-fold reduction in radioactive waste over existing protocols.  相似文献   

4.
Evidence is presented for a cell free system from Conium maculatum which catalyses the transfer of a methyl group from S-adenoysl-l-methionine to coniine with the formation of N-methyl coniine. Maximum enzyme activity which occurred in the unripe fruits was enhanced by dithiothreitol, and evidence for the role of sulphydryl groups of the enzyme was obtained from inhibition with p-CMB, iodoacetamide and N-methyl maleimide. A divalent metal cation dependency was not detected.  相似文献   

5.
S-Adenosyl-l-homocysteine (AdoHcy) background signal in reactions with protein arginine N-methyltransferase 1 is investigated using an ultrahigh-performance liquid chromatography tandem mass spectrometry assay that measures AdoHcy. We identify three sources of AdoHcy background: enzymatic automethylation, AdoHcy contamination in commercial S-adenosyl-l-methionine (AdoMet), and nonenzymatic pseudo-first-order formation of AdoHcy from AdoMet. We propose a potential mechanism for the nonenzymatic production of AdoHcy and illustrate strategies for mitigating background AdoHcy that can be applied to any assay.  相似文献   

6.
S-adenosyl-l-methionine (AdoMet, 1 mM) protects the stationary phase cells of Saccharomyces cerevisiae against the killing effect of acid (10 mM HCl, pH ∼ 2). Both the acid and the acid plus AdoMet treatment for 2 h increased the plasma membrane H+-ATPase activity; thereafter it decreased to the basal level. AdoMet partially recovered the intracellular pH (pHin) that dropped in presence of acid. AdoMet treatment facilitated acid induced phospholipid biosynthesis as well as membrane proliferation, which was reflected in the cellular lipid composition.  相似文献   

7.
Hydroxyprolines are valuable chiral building blocks for organic synthesis of pharmaceuticals. Several microorganisms producing l-proline trans-4- and cis-3-hydroxylase were discovered and these enzymes were applied to the industrial production of trans-4- and cis-3-hydroxy-l-proline, respectively. Meanwhile, other hydroxyproline isomers, cis-4- and trans-3-hydroxy-l-proline, were not easily available because the corresponding hydroxylase have not been discovered. Herein we report novel l-proline cis-4-hydroxylases converting free l-proline to cis-4-hydroxy-l-proline. Two genes encoding uncharacterized proteins from Mesorhizobium loti and Sinorhizobium meliloti were cloned and overexpressed in Escherichia coli, respectively. The functions of purified proteins were investigated in detail, and consequently we detected l-proline cis-4-hydroxylase activity in both proteins. Likewise l-proline trans-4-, cis-3-hydroxylase and prolyl hydroxylase, these enzymes belonged to a 2-oxoglutarate dependent dioxygenase family and required a non-heme ferrous ion. Although their reaction mechanisms were similar to other hydroxylases, the amino acid sequence homology was not observed (less than 40%).  相似文献   

8.

Background

Chronic supplementation with l-citrulline plus l-arginine has been shown to exhibit anti-atherosclerotic effects. However, the short-term action of this combination on the nitric oxide (NO)–cGMP pathway remains to be elucidated. The objective of the present study was to investigate the acute effects of a combination of oral l-citrulline and l-arginine on plasma l-arginine and NO levels, as well as on blood circulation.

Methods

Rats or New Zealand white rabbits were treated orally with l-citrulline, or l-arginine, or a combination of each at half dosage. Following supplementation, plasma levels of l-arginine, NOx, cGMP and changes in blood circulation were determined sequentially.

Results

l-Citrulline plus l-arginine supplementation caused a more rapid increase in plasma l-arginine levels and marked enhancement of NO bioavailability, including plasma cGMP concentrations, than with dosage with the single amino acids. Blood flow in the central ear artery in rabbits was also significantly increased by l-citrulline plus l-arginine administration as compared with the control.

Conclusion

Our data show for the first time that a combination of oral l-citrulline and l-arginine effectively and rapidly augments NO-dependent responses at the acute stage. This approach may have clinical utility for the regulation of cardiovascular function in humans.  相似文献   

9.
d-Arabinose isomerase (d-AI), also known as l-fucose isomerase (l-FI), catalyzes the aldose–ketose isomerization of d-arabinose to d-ribulose, and l-fucose to l-fuculose. Bacillus pallidus (B. pallidus) d-AI can catalyze isomerization of d-altrose to d-psicose, as well as d-arabinose and l-fucose. Three X-ray structures of B. pallidusd-AI in complexes with 2-methyl-2,4-pentadiol, glycerol and an inhibitor, l-fucitol, were determined at resolutions of 1.77, 1.60 and 2.60 Å, respectively. B. pallidusd-AI forms a homo-hexamer, and one subunit has three domains of almost equal size; two Rossmann fold domains and a mimic of the (β/α) barrel fold domain. A catalytic metal ion (Mn2+) was found in the active site coordinated by Glu342, Asp366 and His532, and an additional metal ion was found at the channel for the passage of a substrate coordinated by Asp453. The X-ray structures basically supported the ene-diol mechanism for the aldose–ketose isomerization by B. pallidusd-AI, as well as Escherichia coli (E. coli) l-FI, in which Glu342 and Asp366 facing each other at the catalytic metal ion transfer a proton from C2 to C1 and O1 to O2, acting as acid/base catalysts, respectively. However, considering the ionized state of Asp366, the catalytic reaction also possibly occurs through the negatively charged ene-diolate intermediate stabilized by the catalytic metal ion. A structural comparison with E. colil-FI showed that B. pallidusd-AI possibly interconverts between “open” and “closed” forms, and that the additional metal ion found in B. pallidusd-AI may help to stabilize the channel region.  相似文献   

10.
An approach to stereoselective synthesis of α- or β-3-C-glycosylated l- or d-1,2-glucals starting from the corresponding α- or β-glycopyranosylethanals is described. The key step of the approach is the stereoselective cycloaddition of chiral vinyl ethers derived from both enantiomers of mandelic acid. The preparation of 1,5-anhydro-4,6-di-O-benzyl-2,3-dideoxy-3-C-[(2,3,4,6-tetra-O-benzyl-β-d-glucopyranosyl)methyl]-l-arabino-hex-1-enitol, 1,5-anhydro-4,6-di-O-benzyl-2,3-dideoxy-3-C-[(2,3,4,6-tetra-O-benzyl-β-d-glucopyranosyl)methyl]-d-arabino-hex-1-enitol, and 1,5-anhydro-4,6-di-O-benzyl-2,3-dideoxy-3-C-[(2,3,4-tri-O-benzyl-α-l-fucopyranosyl)methyl]-d-arabino-hex-1-enitol serves as an example of this approach.  相似文献   

11.
l-Cystathionine and l-selenocystathionine have been isolated from the foliage of Astragalus pectinatus. In addition to these two amino acids, some S-methylcysteine and trace amounts of Se-methyl-selenocysteine were also detected in the foliage extracts. The seeds of A pectinatus were found to contain significant amounts of all four of these amino acids plus the γ-glutamyl peptides of S-methylcysteine and Se-methylselenocysteine.  相似文献   

12.
Both S-adenosyl-l-methionine (AdoMet) and glutathione (GSH) are important small molecules with pharmaceutical importance. The co-production of AdoMet and GSH using abundant spent brewer’s yeast cells from the beer industry and with l-methionine supplement was successfully realized. Experimental data showed that improvement of GSH productivity was accompanied by AdoMet accumulation. AdoMet productivity of 40–45 mg g−1 (DCW) was successfully achieved and an additional 13–18 mg g−1 (DCW) GSH was synthesized in spent brewer’s yeast cells.  相似文献   

13.
14.
Maricaulis maris N-acetylglutamate synthase/kinase (mmNAGS/K) catalyzes the first two steps in l-arginine biosynthesis and has a high degree of sequence and structural homology to human N-acetylglutamate synthase, a regulator of the urea cycle. The synthase activity of both mmNAGS/K and human NAGS are regulated by l-arginine, although l-arginine is an allosteric inhibitor of mmNAGS/K, but an activator of human NAGS. To investigate the mechanism of allosteric inhibition of mmNAGS/K by l-arginine, we have determined the structure of the mmNAGS/K complexed with l-arginine at 2.8 Å resolution. In contrast to the structure of mmNAGS/K in the absence of l-arginine where there are conformational differences between the four subunits in the asymmetric unit, all four subunits in the l-arginine liganded structure have very similar conformations. In this conformation, the AcCoA binding site in the N-acetyltransferase (NAT) domain is blocked by a loop from the amino acid kinase (AAK) domain, as a result of a domain rotation that occurs when l-arginine binds. This structural change provides an explanation for the allosteric inhibition of mmNAGS/K and related enzymes by l-arginine. The allosterically regulated mechanism for mmNAGS/K differs significantly from that for Neisseria gonorrhoeae NAGS (ngNAGS). To define the active site, several residues near the putative active site were mutated and their activities determined. These experiments identify roles for Lys356, Arg386, Asn391 and Tyr397 in the catalytic mechanism.  相似文献   

15.
The unique function of 4-hydroxyisoleucine (4-HIL) is to stimulate glucose-induced insulin secretion in a glucose-dependent manner. 4-HIL is distributed only in certain kinds of plants and mushrooms, but the biosynthetic mechanism of 4-HIL has not been elucidated. Moreover, 4-HIL-producing microorganisms have not been reported. l-isoleucine (l-Ile) hydroxylating activity producing 4-HIL was detected in a cell lysate of Bacillus thuringiensis strain 2e2 AKU 0251 obtained from the mid-late exponential phase of growth. Properties of the purified hydroxylase demonstrated that it is a α-ketoglutaric acid (α-KG) dependent l-Ile dioxygenase (IDO) and requires α-KG, ferric ion, and ascorbic acid for its maximum activity. IDO showed high stereoselectivity in l-Ile hydroxylation producing only (2S,3R,4S)-4-HIL. The N-terminal 22 amino acids sequence revealed high homology to a hypothetical protein (GenBank ID: RBTH_06809) in B. thuringiensis serovar israelensis ATCC 35646. The histidine motif, which is conserved in α-KG dependent dioxygenases, is found in RBTH_06809.  相似文献   

16.
d-Bornesitol and l-quebrachitol have been found in the leaves of Acer pseudoplatanus L. The results of incorporation studies using labeled myo-inositol-14C, l-inositol-14C and d-bornesitol-14C indicate that l-quebrachitol is produced by epimerization of d-bornesitol. In Artemisia vulgaris, however, the precursor of l-quebrachitol is l-inositol.  相似文献   

17.
Methionine adenosyltransferases (MATs) catalyze the formation of S-adenosyl-l-methionine (SAM) inside living cells. Recently, S-alkyl analogues of SAM have been documented as cofactor surrogates to label novel targets of methyltransferases. However, these chemically synthesized SAM analogues are not suitable for cell-based studies because of their poor membrane permeability. This issue was recently addressed under a cellular setting through a chemoenzymatic strategy to process membrane-permeable S-alkyl analogues of methionine (SAAMs) into the SAM analogues with engineered MATs. Here we describe a general sensitive activity assay for engineered MATs by converting the reaction products into S-alkylthioadenosines, followed by high-performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) quantification. With this assay, 40 human MAT mutants were evaluated against 7 SAAMs as potential substrates. The structure–activity relationship revealed that, besides better engaged SAAM binding by the MAT mutants (lower Km value in contrast to native MATs), the gained activity toward the bulky SAAMs stems from their ability to maintain the desired linear SN2 transition state (reflected by higher kcat value). Here the I117A mutant of human MATI was identified as the most active variant for biochemical production of SAM analogues from diverse SAAMs.  相似文献   

18.
Both carbohydrate monomers l-gulose and l-galactose are rarely found in nature, but are of great importance in pharmacy R&D and manufacturing. A method for the production of l-gulose and l-galactose is described that utilizes recombinant Escherichia coli harboring a unique mannitol dehydrogenase. The recombinant E. coli system was optimized by genetic manipulation and directed evolution of the recombinant protein to improve conversion. The resulting production process requires a single step, represents the first readily scalable system for the production of these sugars, is environmentally friendly, and utilizes inexpensive reagents, while producing l-galactose at 4.6 g L−1 d−1 and l-gulose at 0.90 g L−1 d−1.  相似文献   

19.
Biosynthesis of lysine and meso-diaminopimelic acid in bacteria provides essential components for protein synthesis and construction of the bacterial peptidoglycan cell wall. The dapE operon enzymes synthesize both meso-diaminopimelic acid and lysine and, therefore, represent potential targets for novel antibacterials. The dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase functions in a late step of the pathway and converts N-succinyl-l,l-diaminopimelic acid to l,l-diaminopimelic acid and succinate. Deletion of the dapE gene is lethal to Helicobacter pylori and Mycobacterium smegmatis, indicating that DapE's are essential for cell growth and proliferation. Since there are no similar pathways in humans, inhibitors that target DapE may have selective toxicity against only bacteria. A major limitation in developing antimicrobial agents that target DapE has been the lack of structural information. Herein, we report the high-resolution X-ray crystal structures of the DapE from Haemophilus influenzae with one and two zinc ions bound in the active site, respectively. These two forms show different activity. Based on these newly determined structures, we propose a revised catalytic mechanism of peptide bond cleavage by DapE enzymes. These structures provide important insight into catalytic mechanism of DapE enzymes as well as a structural foundation that is critical for the rational design of DapE inhibitors.  相似文献   

20.
Both l-cystathionine and l-selenocystathionine have been isolated from the selenium-accumulating legume Neptunia amplexicaulis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号