首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Filamentous phage such as M13 and fd consist of a circular, single-stranded DNA molecule surrounded by several different coat proteins. These phages have been used extensively as vectors in phage display where one of the phage coat proteins is genetically engineered to contain a unique peptide surface loop. Through these peptide sequences, a phage collection can be screened for individual phage that binds to different macromolecules or small organic and inorganic molecules. Here, we use computer-controlled bioreactors to produce large quantities of filamentous phage in the bacterial host Escherichia coli. By measuring phage yield and bacterial growth while changing the growth medium, pH and dissolved oxygen concentration, we found that the optimal conditions for phage yield were NZY medium with pH maintained at 7.4, the dO2 held at 100% and agitation at 800 rpm. These computer-controlled fermentations result in a minimum of a tenfold higher filamentous phage production compared to standard shake flask conditions.  相似文献   

2.
Somers K  Stinissen P  Somers V 《Proteomics》2011,11(12):2550-2554
Phage display is a high-throughput technology used to identify ligands for a given target. A drawback of the approach is the absence of PTMs in phage-displayed peptides. The applicability of phage display could be broadened considerably by the implementation of PTMs in this system. The aim of this study was to investigate the possible application of citrullination, a PTM of an arginine into a citrulline amino acid, in filamentous (M13) and lytic (T7) phage display. After in vitro citrullination of T7 and M13 phages, citrullination was confirmed and the infectivity of both citrullinated and non-citrullinated phage was compared by titer determination. We demonstrated the successful in vitro citrullination of T7 and M13 phage-displayed peptides. This in vitro modification did not affect the viability or infectivity of the T7 virions, a necessary prerequisite for the implementation of this approach in T7 phage display. For M13 phage, however, the infecting phage titer decreased five-fold upon citrullination, limiting the use of this modification in M13 phage display. In conclusion, in vitro citrullination can be applied in T7 phage display giving rise to a high-throughput and sensitive approach to identify citrulline-containing ligands by the use of the strengths of phage display technology.  相似文献   

3.
杜东霞  张冉 《微生物学通报》2009,36(2):0261-0266
噬菌体展示技术是一种将外源肽或蛋白质与特定噬菌体衣壳蛋白相融合,展示于噬菌体表面来构建蛋白质或多肽文库,并从中筛选目的蛋白、多肽或抗体的基因工程高新技术。噬菌粒/辅助噬菌体系统是最常用的噬菌体展示系统,此系统中辅助噬菌体对噬菌粒的复制和组装发挥着至关重要的作用。本文结合当今该领域的最新研究动态,概述了噬菌粒和辅助噬菌体双基因组系统,着重介绍了不同辅助噬菌体的特点及其突变机制,并对其应用前景进行了展望,以期为该技术的进一步完善提供一定的借鉴作用。  相似文献   

4.
We report that, contrary to common belief, polypeptides fused to the carboxy-terminus of the M13 gene-3 minor coat protein are functionally displayed on the phage surface. In a phagemid display system, carboxy-terminal fusion through optimized linker sequences resulted in display levels comparable to those achieved with conventional amino-terminal fusions. These findings are of considerable importance to phage display technology because they enable investigations not suited to amino-terminal display, including the study of protein–protein interactions requiring free carboxy-termini, functional cDNA cloning efforts, and the display of intracellular proteins.  相似文献   

5.
In vivo phage display is a high-throughput method for identifying target ligands specific for different vascular beds. Targeting is possible due to the heterogeneous expression of receptors and other antigens in a particular vascular bed. Such expression is additionally influenced by the physiological or pathological status of the vasculature. In vivo phage display represents a technique that is usable in both, vascular mapping and targeted drug development. In this review, several important methodological aspects of in vivo phage display experiments are discussed. These include choosing an appropriate phage library, an appropriate animal model and the route of phage library administration. In addition, peptides or antibodies identified by in vivo phage display homing to specific types of vascular beds, including the altered vasculature present in several types of diseases are summarized. Still, confirmation in independent experiments and reproduction of identified sequences are needed for enhancing the clinical applicability of in vivo phage display research.  相似文献   

6.
噬菌体展示技术及其在肿瘤研究中的应用   总被引:1,自引:0,他引:1  
噬菌体表面展示技术是一项特异性多肽或蛋白的筛选技术,它将随机序列的多肽或蛋白片段与噬菌体衣壳蛋白融合表达而呈现于病毒表面,被展示的多肽能保持相对独立的空间结构,使其能够与配体作用而达到模仿性筛选特异性分子表位,从而提供了高通量高效率的筛选系统。近年来噬菌体展示技术已广泛应用于肿瘤抗原抗体库的建立、单克隆抗体制备、多肽筛选、疫苗研制、肿瘤相关抗原筛选和抗原表位研究、药物设计、癌症检测和诊断、基因治疗及细胞信号转导研究等。就近年来噬菌体展示技术在肿瘤相关研究中的运用作以综述。  相似文献   

7.
8.
We have genetically modified filamentous bacteriophage to deliver genes to mammalian cells. In previous studies we showed that noncovalently attached fibroblast growth factor (FGF2) can target bacteriophage to COS-1 cells, resulting in receptor-mediated transduction with a reporter gene. Thus, bacteriophage, which normally lack tropism for mammalian cells, can be adapted for mammalian cell gene transfer. To determine the potential of using phage-mediated gene transfer as a novel display phage screening strategy, we transfected COS-1 cells with phage that were engineered to display FGF2 on their surface coat as a fusion to the minor coat protein, pIII. Immunoblot and ELISA analysis confirmed the presence of FGF2 on the phage coat. Significant transduction was obtained in COS-1 cells with the targeted FGF2-phage compared with the nontargeted parent phage. Specificity was demonstrated by successful inhibition of transduction in the presence of excess free FGF2. Having demonstrated mammalian cell transduction by phage displaying a known gene targeting ligand, it is now feasible to apply phage-mediated transduction as a screen for discovering novel ligands.  相似文献   

9.
以粒细胞巨噬细胞集落刺激因子(GMCSF) 为筛选文库的靶分子, 通过高效筛选(High throughputscreening, HTS) 方法来筛选多种多肽噬菌体文库, 在一个以噬菌体主要蛋白质为载体的多肽噬菌体文库中筛选到了一些与GMCSF结合的多肽, 并通过了ELISA和微淘选(micropanning) 实验的证实。这些多肽先导化合物经过进一步的优化, 可能成为GMCSF细胞因子的拮抗剂  相似文献   

10.
11.
Faix PH  Burg MA  Gonzales M  Ravey EP  Baird A  Larocca D 《BioTechniques》2004,36(6):1018-22, 1024, 1026-9
Phage display technologies are powerful tools for selecting binding ligands against purified molecular targets, live cells, and organ vasculature. However, the selection of natural ligands using phage display has been limited because of significant problems associated with the display of complex cDNA repertoires. Here we describe the use of cDNA fragmentation and open reading frame (ORF) selection to display a human placental cDNA library on the pIII coat protein of filamentous phage. The library was enriched for ORFs by selecting cDNA-beta-lactamase fusion proteins on ampicillin, resulting in a cDNA population having 97% ORFs. The ORF-selected cDNAs were fused to pIII in the phagemid vector, pUCMG4CT-198, and the library was rescued with a pIII-deleted helper phage for multivalent display. The resulting phagemid particle library consisted of 87% ORFs, compared to only 6% ORFs when prepared without ORF selection. Western blot analysis indicated cDNA-pIII fusion protein expression in eight out of nine ORF clones tested, and seven of the ORF encoded peptides were displayed multivalently. The high level of cDNA expression obtained by ORF selection suggests that ORF-enriched phage cDNA libraries prepared by these methods will be useful as functional genomics tools for identifying natural ligands from various source tissues.  相似文献   

12.
Phage display is achieved by fusing polypeptide libraries to phage coat proteins. The resulting phage particles display the polypeptides on their surfaces and they also contain the encoding DNA. Library members with particular functions can be isolated with simple selections and polypeptide sequences can be decoded from the encapsulated DNA. The technology's success depends on the efficiency with which polypeptides can be displayed on the phage surface, and significant progress has been made in engineering M13 bacteriophage coat proteins as improved phage display platforms. Functional display has been achieved with all five M13 coat proteins, with both N- and C-terminal fusions. Also, coat protein mutants have been designed and selected to improve the efficiency of heterologous protein display, and in the extreme case, completely artificial coat proteins have been evolved specifically as display platforms. These studies demonstrate that the M13 phage coat is extremely malleable, and this property can be used to engineer the phage particle specifically for phage display. These improvements expand the utility of phage display as a powerful tool in modern biotechnology.  相似文献   

13.
Phage display is a powerful methodology for the identification of peptide ligands binding to any desired target. However, the selection of target-unrelated peptides (TUPs) appears as a huge problem in the screening of phage display libraries through biopanning. The phage-displayed peptide TLHPAAD has been isolated both in our laboratory and by another reserach group on completely different screening targets prompting us to hypothesize that it may be a potential TUP. In the current study, we analyzed the binding characteristics and propagation rate of phage clone displaying TLHPAAD peptide (SW-TUP clone). The results of ELISA experiment and phage recovery assay provided strong support for the notion that SW-TUP phage binds to polystyrene with a significantly higher affinity than control phage clones. Furthermore, this polystyrene binding was demonstrated to occur in a concentration- and pH-dependent mode. Characterization of the propagation profile of phage clones within a specified time course revealed no statistically significant difference between the amplification rate of SW-TUP and control phages. Our findings lead us to the conclusion that SW-TUP phage clone with the displayed peptide TLHPAAD is not a true target binder and its selection in biopanning experiments results from its bidning affinity to the polystyrene surface of the solid phase.  相似文献   

14.
The identification of proteins that interact with polycystin-1, the product of the autosomal dominant polycystic kidney disease gene, is an important step towards understanding the molecular pathogenesis of the disease. We have developed a two-step approach for the efficient identification of potential polycystin-1 ligands using the T7 phage display system. The first enrichment step of 4–5 rounds of biopanning is followed by a second step of reverse protein overlay assay. Thus, the sequencing efforts are minimized to the analysis of only positive rather than randomly chosen clones from the enriched population as in the standard phage display approach. Most importantly, the modified approach immediately provides the confirmation of the specificity of interaction and discriminates between strong and weak interactions. Here we present several potential interactors with distinct regions of polycystin-1, representing high-affinity binding partners. Electronic Publication  相似文献   

15.
A novel adapter-directed phage display system was developed with modular features. In this system, the target protein is expressed as a fusion protein consisting of adapter GR1 from the phagemid vector, while the recombinant phage coat protein is expressed as a fusion protein consisting of adapter GR2 in the helper phage vector. Surface display of the target protein is accomplished through specific heterodimerization of GR1 and GR2 adapters, followed by incorporation of the heterodimers into phage particles. A series of engineered helper phages were constructed to facilitate both display valency and formats, based on various phage coat proteins. As the target protein is independent of a specific phage coat protein, this modular system allows the target protein to be displayed on any given phage coat protein and allows various display formats from the same vector without the need for reengineering. Here, we demonstrate the shuttling display of a single-chain Fv antibody on phage surfaces between multivalent and monovalent formats, as well as the shuttling display of an antigen-binding fragment molecule on phage coat proteins pIII, pVII, and pVIII using the same phagemid vectors combined with different helper phage vectors. This adapter-directed display concept has been applied to eukaryotic yeast surface display and to a novel cross-species display that can shuttle between prokaryotic phage and eukaryotic yeast systems.  相似文献   

16.
Legendre D  Fastrez J 《Gene》2002,290(1-2):203-215
Phage display has evolved during the past 15 years as a powerful technique to select, from libraries of peptides or proteins, binders for various targets or to evolve new functions in proteins. In recent years, the knowledge acquired in phage display technology was exploited to engineer phages as vehicles for receptor-mediated gene delivery. The first vectors generated provided the proof of the concept that development of gene delivery vehicles based on phages was feasible. Results obtained showed that the level of receptor ligand display was an essential factor that determines the efficiency of transduction and suggested that phagemids might be more appropriate than phages for gene delivery. However, due to the limitations of the existing display systems, vectors constructed up to now allowed only relatively low levels of ligand display. The transduction efficiency of these vectors was relatively poor. Here, we describe the construction and optimization of a new phagemid display system that was designed to allow the functional selection of peptides that promote gene delivery from phagemids in a high display format. Peptides are displayed on every copy of the major coat protein pVIII and are expressed from the phagemid itself. The phagemid is rescued as particles by a modified R408 helper phage, deficient in pVIII production. Besides an expression cassette for pVIII, the phagemid also contains the SV40 origin of replication, the GFP gene and the neomycin resistance marker. As a model we constructed a library of octapeptides and showed that the library is amenable to selection on cos-7 cells. Several selection approaches were investigated and a preliminary analysis of the peptides selected was carried out.  相似文献   

17.
We have reported variants of the M13 bacteriophage major coat protein (P8) that enable high copy display of monomeric and oligomeric proteins, such as human growth hormone and steptavidin, on the surface of phage particles (Sidhu SS, Weiss GA, Wells JA. 2000. High copy display of large proteins on phage for functional selections. J Mol Biol 296:487-495). Here, we explore how an optimized P8 variant (opti-P8) could evolve the ability to efficiently display a protein fused to its N-terminus. Reversion of individual opti-P8 residues back to the wild-type P8 residue identifies a limited set of hydrophobic residues responsible for the high copy protein display. These hydrophobic amino acids bracket a conserved hydrophobic face on the P8 alpha helix thought to be in contact with the phage coat. Mutations additively combine to promote high copy protein display, which was further enhanced by optimization of the linker between the phage coat and the fusion protein. These data are consistent with a model in which protein display-enhancing mutations allow for better packing of the fusion protein into the phage coat. The high tolerance for phage coat protein mutations observed here suggests that filamentous phage coat proteins could readily evolve new capabilities.  相似文献   

18.
Often a screening or selection experiment targets a cell or tissue, which presents many possible molecular targets and identifies a correspondingly large number of ligands. We describe a statistical method to extract an estimate of the complexity or richness of the set of molecular targets from competition experiments between distinguishable ligands, including aptamers derived from combinatorial experiments (SELEX or phage display). In simulations, the non-parametric statistic provides a robust estimate of complexity from a 100 ×100 matrix of competition experiments, which is clearly feasible in high-throughput format. The statistic and method are potentially applicable to other ligand binding situations.  相似文献   

19.
Biotechnological applications of phage and cell display   总被引:20,自引:0,他引:20  
In recent years, the use of surface-display vectors for displaying polypeptides on the surface of bacteriophage and bacteria, combined with in vitro selection technologies, has transformed the way in which we generate and manipulate ligands, such as enzymes, antibodies and peptides. Phage display is based on expressing recombinant proteins or peptides fused to a phage coat protein. Bacterial display is based on expressing recombinant proteins fused to sorting signals that direct their incorporation on the cell surface. In both systems, the genetic information encoding for the displayed molecule is physically linked to its product via the displaying particle. Using these two complementary technologies, we are now able to design repertoires of ligands from scratch and use the power of affinity selection to select those ligands having the desired (biological) properties from a large excess of irrelevant ones. With phage display, tailor-made proteins (fused peptides, antibodies, enzymes, DNA-binding proteins) may be synthesized and selected to acquire the desired catalytic properties or affinity of binding and specificity for in vitro and in vivo diagnosis, for immunotherapy of human disease or for biocatalysis. Bacterial surface display has found a range of applications in the expression of various antigenic determinants, heterologous enzymes, single-chain antibodies, and combinatorial peptide libraries. This review explains the basis of phage and bacterial surface display and discusses the contributions made by these two leading technologies to biotechnological applications. This review focuses mainly on three areas where phage and cell display have had the greatest impact, namely, antibody engineering, enzyme technology and vaccine development.  相似文献   

20.
Organ-specific metastasis is an important character of cancer cells. Cancer cells that can metastasize to a special organ were thought to have different proteins in cell membrane, which might have potential utility as diagnostic markers and therapeutic targets. In the present work, based on high liver-metastatic gastric cancer cells, XGC9811-L, a screening approach with phage displayed peptide library, was successfully used to isolate 8-mer peptide ligands binding to the target cells. The phage20 had the highest binding efficiency to XGC9811-L cells, which also displayed remarkable cell specificity. Peptide20 that was displayed on phage20 could suppress the motility and invasion of XGC9811-L significantly. The adhesive ability of XGC9811-L to collagen IV was also inhibited by peptide20. Furthermore, phage20 could significantly reduce the incidence of liver metastasis of gastric cancer transplanted into nude mice and was also beneficial for the reduction the number of metastatic nodules in the liver. In conclusion, the phage display is an effective method to screen for the new molecules associated with organ-specific metastasis. The selected peptide20 can reverse the liver metastasis behavior of the gastric cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号