首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Nucleic acid hybridization with a labeled probe is the only practical way to detect a complementary target sequence in a complex nucleic acid mixture. The first section of this article covers quantitative aspects of nucleic acid hybridization thermodynamics and kinetics. The probes considered are oligonucleotides or polynucleotides, DNA or RNA, single- or double-stranded, and natural or modified, either in the nucleotide bases or in the backbone. The hybridization products are duplexes or triplexes formed with targets in solution or on solid supports. Additional topics include hybridization acceleration and reactions involving branch migration. The second section deals with synthesis or biosynthesis and detection of labeled probes, with a discussion of their sensitivity and specificity limits. Direct labeling is illustrated with radioactive probes. The discussion of indirect labels begins with biotinylated probes as prototypes. Reporter groups considered include radioactive, fluorescent, and chemiluminescent nucleotides, as well as enzymes with colorimetric, fluorescent, and luminescent substrates.  相似文献   

2.
The double helix is known to form as a result of hybridization of complementary nucleic acid strands in aqueous solution. In the helix the negatively charged phosphate groups of each nucleic acid strand are distributed helically on the outside of the duplex and are available for interaction with cationic groups. Cation-coated glass surfaces are now widely used in biotechnology, especially for covalent attachment of cDNAs and oligonucleotides as surface-bound probes on microarrays. These cationic surfaces can bind the nucleic acid backbone electrostatically through the phosphate moiety. Here we describe a simple method to fabricate DNA microarrays based upon adsorptive rather than covalent attachment of oligonucleotides to a positively charged surface. We show that such adsorbed oligonucleotide probes form a densely packed monolayer, which retains capacity for base pair-specific hybridization with a solution state DNA target strand to form the duplex. However, both strand dissociation kinetics and the rate of DNase digestion suggest, on symmetry grounds, that the target DNA binds to such adsorbed oligonucleotides to form a highly asymmetrical and unwound duplex. Thus, it is suggested that, at least on a charged surface, a non-helical DNA duplex can be the preferred structural isomer under standard biochemical conditions.  相似文献   

3.
In molecular testing using PCR, the target DNA is amplified via PCR and the sequence of interest is investigated via hybridization with short oligonucleotide capture probes that are either in a solution or immobilized on solid supports such as beads or glass slides. In this report, we report the discovery of assembly of DNA complex(es) between a capture probe and multiple strands of the PCR product. The DNA complex most likely has branched structure. The assembly of branched DNA was facilitated by the product of asymmetric PCR. The amount of branched DNA assembled was increased five fold when the asymmetric PCR product was denatured and hybridized with a capture probe all in the same PCR reaction mixture. The major branched DNA species appeared to contain three reverse strands (the strand complementary to the capture probe) and two forward strands. The DNA was sensitive to S1 nuclease suggesting that it had single-stranded gaps. Branched DNA also appeared to be assembled with the capture probes immobilized on the surface of solid support when the product of asymmetric PCR was hybridized. Assembly of the branched DNA was also increased when hybridization was performed in complete PCR reaction mixture suggesting the requirement of DNA synthesis. Integration of asymmetric PCR, heat denaturation and hybridization in the same PCR reaction mixture with the capture probes immobilized on the surface of solid support achieved dramatic increase in the signal and sensitivity of detection of DNA. Such a system should be advantageously applied for development of automated process for detection of DNA.  相似文献   

4.
Chitosan, a naturally occurring biopolymer, was used as a scaffold for the covalent binding of single-stranded DNA oligonucleotide probes in a fluorescence-based nucleic acid hybridization assay. Chitosan's pH dependent chemical and electrostatic properties enable its deposition on electrodes and metal surfaces, as well as on the bottom of microtiter plates. A combinatorial 96-well microtiter plate format was used to optimize chemistries and reaction conditions leading to hybridization experiments. We found the coupling of oligonucleotides using relatively common glutaraldehyde chemistry was quite robust. Our hybridization results for complementary ssDNA oligonucleotides (E. coli dnaK sequences) demonstrated linear fluorescence intensity with concentration of E. coli dnaK-specific oligonucleotide from 0.73 microM to 6.6 microM. Moreover, hybridization assays were specific as there was minimal fluorescence associated with noncomplementary groEL oligonucleotide. Finally, these results demonstrate the portability of a DNA hybridization assay based on covalent coupling to chitosan, which, in turn, can be deposited onto various surfaces. More arduous surface preparation techniques involving silanizing agents and hazardous washing reagents are eliminated using this technique.  相似文献   

5.
DNA probes: applications of the principles of nucleic acid hybridization.   总被引:26,自引:0,他引:26  
Nucleic acid hybridization with a labeled probe is the only practical way to detect a complementary target sequence in a complex nucleic acid mixture. The first section of this article covers quantitative aspects of nucleic acid hybridization thermodynamics and kinetics. The probes considered are oligonucleotides or polynucleotides, DNA or RNA, single- or double-stranded, and natural or modified, either in the nucleotide bases or in the backbone. The hybridization products are duplexes or triplexes formed with targets in solution or on solid supports. Additional topics include hybridization acceleration and reactions involving branch migration. The second section deals with synthesis or biosynthesis and detection of labeled probes, with a discussion of their sensitivity and specificity limits. Direct labeling is illustrated with radioactive probes. The discussion of indirect labels begins with biotinylated probes as prototypes. Reporter groups considered include radioactive, fluorescent, and chemiluminescent nucleotides, as well as enzymes with colorimetric, fluorescent, and luminescent substrates.  相似文献   

6.
A conceptually new technique for fast DNA detection has been developed. Here, we report a fast and sensitive online fluorescence resonance energy transfer (FRET) detection technique for label-free target DNA. This method is based on changes in the FRET signal resulting from the sequence-specific hybridization between two fluorescently labelled nucleic acid probes and target DNA in a PDMS microfluidic channel. Confocal laser-induced microscopy has been used for the detection of fluorescence signal changes. In the present study, DNA hybridizations could be detected without PCR amplification because the sensitivity of confocal laser-induced fluorescence detection is very high. Two probe DNA oligomers (5'-CTGAT TAGAG AGAGAA-TAMRA-3' and 5'-TET-ATGTC TGAGC TGCAGG-3') and target DNA (3'-GACTA ATCTC TCTCT TACAG GCACT ACAGA CTCGA CGTCC-5') were introduced into the channel by a microsyringe pump, and they were efficiently mixed by passing through the alligator teeth-shaped PDMS microfluidic channel. Here, the nucleic acid probes were terminally labelled with the fluorescent dyes, tetrafluororescein (TET) and tetramethyl-6-carboxyrhodamine (TAMRA), respectively. According to our confocal fluorescence measurements, the limit of detection of the target DNA is estimated to be 1.0 x 10(-6) to 1.0 x 10(-7)M. Our result demonstrates that this analytical technique is a promising diagnostic tool that can be applied to the real-time analysis of DNA targets in the solution phase.  相似文献   

7.
Quantifying interactions in DNA microarrays is of central importance for a better understanding of their functioning. Hybridization thermodynamics for nucleic acid strands in aqueous solution can be described by the so-called nearest neighbor model, which estimates the hybridization free energy of a given sequence as a sum of dinucleotide terms. Compared with its solution counterparts, hybridization in DNA microarrays may be hindered due to the presence of a solid surface and of a high density of DNA strands. We present here a study aimed at the determination of hybridization free energies in DNA microarrays. Experiments are performed on custom Agilent slides. The solution contains a single oligonucleotide. The microarray contains spots with a perfect matching (PM) complementary sequence and other spots with one or two mismatches (MM) : in total 1006 different probe spots, each replicated 15 times per microarray. The free energy parameters are directly fitted from microarray data. The experiments demonstrate a clear correlation between hybridization free energies in the microarray and in solution. The experiments are fully consistent with the Langmuir model at low intensities, but show a clear deviation at intermediate (non-saturating) intensities. These results provide new interesting insights for the quantification of molecular interactions in DNA microarrays.  相似文献   

8.
We have constructed light-up probes for nucleic acid detection. The light-up probe is a peptide nucleic acid (PNA) oligonucleotide to which the asymmetric cyanine dye thiazole orange (TO) is tethered. It combines the excellent hybridization properties of PNA and the large fluorescence enhancement of TO upon binding to DNA. When the PNA hybridizes to target DNA, the dye binds and becomes fluorescent. Free probes have low fluorescence, which may increase almost 50-fold upon hybridization to complementary nucleic acid. This makes the light-up probes particularly suitable for homogeneous hybridization assays, where separation of the bound and free probe is not necessary. We find that the fluorescence enhancement upon hybridization varies among different probes, which is mainly due to variations in free probe fluorescence. For eight probes studied the fluorescence quantum yield at 25 degrees C in the unbound state ranged from 0.0015 to 0.08 and seemed to depend mainly on the PNA sequence. The binding of the light-up probes to target DNA is highly sequence specific and a single mismatch in a 10-mer target sequence was readily identified.  相似文献   

9.
We have extended our earlier work to show that individual 14–20mer peptide nucleic acid probes directed against interspersed α-satellite sequences can specifically identify chromosomes. Peptide nucleic acid (PNA) probes were used to detect chromosomal abnormalities and repeat structure in the human genome by fluorescence in situ hybridization (FISH). The hybridization of a single PNA probe species directed against a highly abundant α-satellite DNA repeat sequence was sufficient to absolutely identify a chromosome. Selection of highly repetitive or region-specific DNA repeats involved DNA database analysis. Distribution of a specific repeat sequence in human genome was estimated through two means: a computer program ``whole genome' approach based on ∼400 Mb (12%) human genomic sequence. The other method involved directed search for alpha satellite sequences. In total, ∼240 unique DNA repeat candidates were found. Forty-two PNA probes were designed for screening chromosome-specific probes. Ten chromosome-specific PNA probes for human Chromosomes (Chrs) 1, 2, 7, 9, 11, 17, 18, X, and Y have been identified. Interphase and metaphase results demonstrate that chromosome-specific PNA probes are capable of detecting simple aneuploidies (trisomies) in human. Another set of PNA probes showed distinct banding-like patterns and could be used as sequence-specific stains for chromosome ``bar coding'. Potential application of PNA probes for investigating repeat structure and function is also discussed. Received: 2 September 1999 / Accepted: 16 December 1999  相似文献   

10.
The use of fluorescent nucleic acid hybridization probes that generate a fluorescence signal only when they bind to their target enables real-time monitoring of nucleic acid amplification assays. Real-time nucleic acid amplification assays markedly improves the ability to obtain qualitative and quantitative results. Furthermore, these assays can be carried out in sealed tubes, eliminating carryover contamination. Fluorescent nucleic acid hybridization probes are available in a wide range of different fluorophore and quencher pairs. Multiple hybridization probes, each designed for the detection of a different nucleic acid sequence and each labeled with a differently colored fluorophore, can be added to the same nucleic acid amplification reaction, enabling the development of high-throughput multiplex assays. In order to develop robust, highly sensitive and specific real-time nucleic acid amplification assays it is important to carefully select the fluorophore and quencher labels of hybridization probes. Selection criteria are based on the type of hybridization probe used in the assay, the number of targets to be detected, and the type of apparatus available to perform the assay. This article provides an overview of different aspects of choosing appropriate labels for the different types of fluorescent hybridization probes used with different types of spectrofluorometric thermal cyclers currently available.  相似文献   

11.
The cumbersome process required for diagnosis by DNA microarray can be simplified by simple extraction of nucleic acid from cells and by integration of liquid-phase polymerase chain reaction (PCR) and hybridization on the surface of a microarray slide. An unexpected benefit was the large (five- to sixfold) increase in detection signal that also is translated into an increase in sensitivity and the confidence level of diagnosis. The large increase in the detection signal appears to be due to participation of PCR primers as well as to extension of the immobilized capture probes during the hybridization process. The reason for the large increase in signal is not clear in view of only one round of DNA synthesis during the hybridization step. The integrated process correctly identified various genotypes of human papillomavirus (HPV) in the infected clinical human cervical specimens with specificity and efficiency. The process described in this article saves labor, time, and cost and should be applicable for automation of diagnosis by DNA microarray.  相似文献   

12.
Classical strategies for gene microarrays require labeling of probes or target nucleic acids with signaling molecules, a process that is expensive, time consuming and not always reliable. Bazan and colleagues showed that a nucleic acid-binding cationic conjugated polyelectrolyte can be used in label-free DNA microarrays based on surfaces modified with neutral peptide nucleic acid (PNA) probes. This technique provides a simple and sensitive method for DNA detection without the need for covalent labeling of target DNA.  相似文献   

13.
Molecular beacons (MBs) are a novel class of nucleic acid probes that become fluorescent when bound to a complementary sequence. Because of this characteristic, coupled with the sequence specificity of nucleic acid hybridization and the sensitivity of fluorescence techniques, MBs are very useful probes for a variety of applications requiring the detection of DNA or RNA. We survey various applications of MBs, including the monitoring of DNA triplex formation, and describe recent developments in MB design that enhance their sensitivity.  相似文献   

14.
文章讨论了DNA芯片的制作原理和杂交信号的检测方法。依其结构,DNA芯片可分为两种形式,DNA阵列和寡核苷酸微芯片。DNA芯片的制作方法主要有光导原位合成法和自动化点样法。DNA芯片与标记的探针或DNA样品杂交,并通过探测杂交信号谱型来实现DNA序列或基因表达的分析。适应于DNA芯片的发展,同时出现了许多新型的杂交信号检测方法。主要有激光荧光扫描显微镜、激光扫描共焦显微镜、结合使用CCD相机的荧光显微镜、光纤生物传感器、化学发生法、光激发磷光物质存储屏法、光散射法等。  相似文献   

15.
A number of in situ hybridization protocols using digoxigenin or biotin labelled probes were assessed for viral nucleic acid detection in formalin fixed, paraffin embedded tissue. Single-step detection protocols for biotin labelled probes produced low sensitivity; however, enzyme based one-step detection protocols for digoxigenin probes produced high sensitivity for both RNA and DNA systems. For both probe types, multistep detection protocols produced equally high sensitivity. Use of an enhanced APAAP procedure for digoxigenin labelled probes acheived maximal sensitivity without use of biotin-streptavidin reactions. The sensitivity of nucleic acid detection obtained with a digoxigenin labelled probe is comparable to that obtained using biotin. Digoxigenin labelled probes for nucleic acid detection are recommended for tissues with endogenous biotin.  相似文献   

16.
The main principles that underly the use of nucleic acid probes forin situ hybridization are summarized. These include probe design, target preparation, hybridization formats and conditions, and signal generating systems. These principles underly the specific protocol that is described, namely the use of an akaline phosphatase-labeled cloned sequence of the alphoid repeated DNA family as a centomere probe for human chromosomes.  相似文献   

17.
A mathematical model based on receptor-ligand interactions at a cell surface has been modified and further developed to represent heterogeneous DNA-DNA hybridization on a solid surface. The immobilized DNA molecules with known sequences are called probes, and the DNA molecules in solution with unknown sequences are called targets in this model. Capture of the perfectly complementary target is modeled as a combined reaction-diffusion limited irreversible reaction. In the model, there are two different mechanisms by which targets can hybridize with the complementary probes: direct hybridization from the solution and hybridization by molecules that adsorb nonspecifically and then surface diffuse to the probe. The results indicate that nonspecific adsorption of single-stranded DNA on the surface and subsequent two-dimensional diffusion can significantly enhance the overall reaction rate. Heterogeneous hybridization depends strongly on the rate constants for DNA adsorption/desorption in the non-probe-covered regions of the surface, the two-dimensional (2D) diffusion coefficient, and the size of probes and targets. The model shows that the overall kinetics of DNA hybridization to DNA on a solid support may be an extremely efficient process for physically realistic 2D diffusion coefficients, target concentrations, and surface probe densities. The implication for design and operation of a DNA hybridization surface is that there is an optimal surface probe density when 2D diffusion occurs; values above that optimum do not increase the capture rate. Our model predicts capture rates in agreement with those from recent experimental literature. The results of our analysis predict that several things can be done to improve heterogeneous hybridization: 1) the solution phase target molecules should be about 100 bases or less in size to speed solution-phase and surface diffusion; 2) conditions should be created such that reversible adsorption and two-dimensional diffusion occur in the surface regions between DNA probe molecules; 3) provided that 2) is satisfied, one can achieve results with a sparse probe coverage that are equal to or better than those obtained with a surface totally covered with DNA probes.  相似文献   

18.
The principle objectives when creating a robust DNA diagnostic assay system are sensitivity, specificity and minimal read-time. To meet these ends, depending on the specifically defined test, various aspects of molecular hybridization methodology must be optimized. In particular, among other things, attention has focused on (i) formulating highly specific probes; (ii) devising sensitive nonisotopic detection systems, (iii) minimizing the extent of preparing clinical samples for assaying, (iv) amplifying the target sequence to augment sensitivity and (v) enhancing hybridization kinetics to speed up the reaction period. In this article, some recent studies that are directed to the development of nucleic acid hybridization systems for clinical diagnosis of microorganisms are considered.  相似文献   

19.
Luminescence reactions can be used to detect specific nucleic acid sequences hybridized with a nucleic probe. Different labels such as cytidine sulphone, fluorescein, and biotin can be incorporated into DNA or oligonucleotide molecules and detected by antibody or avidin conjugates coupled to glucose-6P dehydrogenase. On supports such as nitrocellulose filters, sensitivity is not greatly increased using luminescence, but detection is rapid and easy to perform using polaroid film. Moreover, hybridization can be performed with different labelled probes on the same sample. In solution, luminescence can be used to monitor sandwich reactions. The method is less sensitive than detection on filters but can easily be automated. The performance of these assays can be increased considerably by enzymatic amplification of the target catalysed by a thermostable polymerase.  相似文献   

20.
Two different solid supports, channel glass and flat glass, were compared for their affect on the sensitivity and efficiency of DNA hybridization reactions. Both solid supports were tested using a set of arrayed, synthetic oligonucleotides that are designed to detect short insertion/deletion polymorphisms (SIDPs). A total of 13 different human SIDPs were chosen for analysis. Capture probes, designed for this test set, were covalently immobilized on substrates. Hybridization efficiency was assessed using fluorescently labeled stacking probes which were preannealed to the target and then hybridized to the support-bound oligonucleotide array; the hybridization pattern was detected by fluorescence imaging. It was found that structural features of nucleic acid capture probes tethered to a solid support and the molecular basis of their interaction with targets in solution have direct implications on the hybridization process. Our results demonstrate that channel glass has a number of practical advantages over flat glass including higher sensitivity and a faster hybridization rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号