首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High density lipoprotein has anti-inflammatory effects in addition to mediating reverse cholesterol transport. While many of the chronic anti-inflammatory effects of high density lipoprotein (HDL) are attributed to changes in cell adhesion molecules, little is known about acute signal transduction events elicited by HDL in endothelial cells. We now show that high density lipoprotein decreases endothelial cell exocytosis, the first step in leukocyte trafficking. ApoA-I, a major apolipoprotein of HDL, mediates inhibition of endothelial cell exocytosis by interacting with endothelial scavenger receptor-BI which triggers an intracellular protective signaling cascade involving protein kinase C (PKC). Other apolipoproteins within the HDL particle have only modest effects upon endothelial exocytosis. Using a human primary culture of endothelial cells and murine apo-AI knockout mice, we show that apo-AI prevents endothelial cell exocytosis which limits leukocyte recruitment. These data suggest that high density lipoprotein may inhibit diseases associated with vascular inflammation in part by blocking endothelial exocytosis.  相似文献   

2.
Consumption of green tea is associated with a decrease in cardiovascular mortality. The beneficial health effects of green tea are attributed in part to polyphenols, organic compounds found in tea that lower blood pressure, reduce body fat, decrease LDL cholesterol, and inhibit inflammation. We hypothesized that epigallocatechin gallate (EGCG), the most abundant polyphenol in tea, inhibits endothelial exocytosis, the initial step in leukocyte trafficking and vascular inflammation. To test this hypothesis, we treated human umbilical-vein endothelial cells with EGCG and other polyphenols, and then measured endothelial exocytosis. We found that EGCG decreases endothelial exocytosis in a concentration-dependent manner, with the effects most prominent after 4 h of treatment. Other catechin polyphenols had no effect on endothelial cells. By inhibiting endothelial exocytosis, EGCG decreases leukocyte adherence to endothelial cells. In searching for the mechanism by which EGCG affects endothelial cells, we found that EGCG increases Akt phosphorylation, eNOS phosphorylation, and nitric oxide (NO) production. NOS inhibition revealed that NO mediates the anti-inflammatory effects of EGCG. Our data suggest that polyphenols can decrease vascular inflammation by increasing the synthesis of NO, which blocks endothelial exocytosis.  相似文献   

3.
Although an excess of reactive oxygen species (ROS) can damage the vasculature, low concentrations of ROS mediate intracellular signal transduction pathways. We hypothesized that hydrogen peroxide plays a beneficial role in the vasculature by inhibiting endothelial exocytosis that would otherwise induce vascular inflammation and thrombosis. We now show that endogenous H(2)O(2) inhibits thrombin-induced exocytosis of granules from endothelial cells. H(2)O(2) regulates exocytosis by inhibiting N-ethylmaleimide sensitive factor (NSF), a protein that regulates membrane fusion events necessary for exocytosis. H(2)O(2) decreases the ability of NSF to hydrolyze adenosine triphosphate and to disassemble the soluble NSF attachment protein receptor complex. Mutation of NSF cysteine residue C264T eliminates the sensitivity of NSF to H(2)O(2), suggesting that this cysteine residue is a redox sensor for NSF. Increasing endogenous H(2)O(2) levels in mice decreases exocytosis and platelet rolling on venules in vivo. By inhibiting endothelial cell exocytosis, endogenous H(2)O(2) may protect the vasculature from inflammation and thrombosis.  相似文献   

4.
Regulated endothelial exocytosis of Weibel-Palade bodies (WPBs), the first stage in leukocyte trafficking, plays a pivotal role in inflammation and injury. Acute mechanical stretch has been closely associated with vascular inflammation, although the precise mechanism is unknown. Here, we show that hypertensive stretch regulates the exocytosis of WPBs of endothelial cells (ECs) through VEGF receptor 2 (VEGFR2) signaling pathways. Stretch triggers a rapid release (within minutes) of von Willebrand factor and interleukin-8 from WPBs in cultured human ECs, promoting the interaction between leukocytes and ECs through the translocation of P-selectin to the cell membrane. We further show that hypertensive stretch significantly induces P-selectin translocation of intact ECs and enhances leukocyte adhesion both ex vivo and in vivo. Stretch-induced endothelial exocytosis is mediated via a VEGFR2/PLCγ1/calcium pathway. Interestingly, stretch also induces a negative feedback via a VEGFR2/Akt/nitric oxide pathway. Such dual effects are confirmed using pharmacological and genetic approaches in carotid artery segments, as well as in acute hypertensive mouse models. These studies reveal mechanical stretch as a potent agonist for endothelial exocytosis, which is modulated by VEGFR2 signaling. Thus, VEGFR2 signaling pathways may represent novel therapeutic targets in limiting hypertensive stretch-related inflammation.  相似文献   

5.
Endothelial exocytosis regulates vascular thrombosis and inflammation. The trafficking and release of endothelial vesicles is mediated by SNARE (Soluble NSF Attachment protein REceptors) molecules, but the exact identity of endothelial SNAREs has been unclear. Three SNARE molecules form a ternary complex, including isoforms of the syntaxin (STX), vesicle-associated membrane protein (VAMP), and synaptosomal-associated protein (SNAP) families. We now identify SNAP23 as the predominant endothelial SNAP isoform that mediates endothelial exocytosis of von Willebrand Factor (VWF). SNAP23 was localized to the plasma membrane. Knockdown of SNAP23 decreased endothelial exocytosis, suggesting it is important for endothelial exocytosis. SNAP23 interacted with the endothelial exocytic machinery, and formed complexes with other known endothelial SNARE molecules. Taken together, these data suggest that SNAP23 is a key component of the endothelial SNARE machinery that mediates endothelial exocytosis.  相似文献   

6.
Nitric oxide (NO) inhibits vascular inflammation, but the molecular basis for its anti-inflammatory properties is unknown. We show that NO inhibits exocytosis of Weibel-Palade bodies, endothelial granules that mediate vascular inflammation and thrombosis, by regulating the activity of N-ethylmaleimide-sensitive factor (NSF). NO inhibits NSF disassembly of soluble NSF attachment protein receptor (SNARE) complexes by nitrosylating critical cysteine residues of NSF. NO may regulate exocytosis in a variety of physiological processes, including vascular inflammation, neurotransmission, thrombosis, and cytotoxic T lymphocyte cell killing.  相似文献   

7.
The endothelial cell-specific granule Weibel-Palade body releases vasoactive substances capable of modulating vascular inflammation. Although innate recognition of pathogens by Toll-like receptors (TLRs) is thought to play a crucial role in promotion of inflammatory responses, the molecular basis for early-phase responses of endothelial cells to bacterial pathogens has not fully been understood. We here report that human aortic endothelial cells respond to bacterial lipoteichoic acid (LTA) and synthetic bacterial lipopeptides, but not lipopolysaccharide or peptidoglycan, to induce Weibel-Palade body exocytosis, accompanied by release or externalization of the storage components von Willebrand factor and P-selectin. LTA could activate rapid Weibel-Palade body exocytosis through a TLR2- and MyD88-dependent mechanism without de novo protein synthesis. This process was at least mediated through MyD88-dependent phosphorylation and activation of phospholipase Cgamma. Moreover, LTA activated interleukin-1 receptor-associated kinase-1-dependent delayed exocytosis with de novo protein synthesis and phospholipase Cgamma-dependent activation of the NF-kappaB pathway. Increased TLR2 expression by transfection or interferon-gamma treatment increased TLR2-mediated Weibel-Palade body exocytosis, whereas reduced TLR2 expression under laminar flow decreased the response. Thus, we propose a novel role for TLR2 in induction of a primary proinflammatory event in aortic endothelial cells through Weibel-Palade body exocytosis, which may be an important step for linking innate recognition of bacterial pathogens to vascular inflammation.  相似文献   

8.
Lowenstein CJ  Tsuda H 《Biological chemistry》2006,387(10-11):1377-1383
Vascular injury triggers endothelial exocytosis of granules, releasing pro-inflammatory and pro-thrombotic mediators into the blood. Nitric oxide (NO) and reactive oxygen species (ROS) limit vascular inflammation and thrombosis by inhibiting endothelial exocytosis. NO decreases exocytosis by regulating the activity of the N-ethylmaleimide-sensitive factor (NSF), a central component of the exocytic machinery. NO nitrosylates specific cysteine residues of NSF, thereby inhibiting NSF disassembly of the soluble NSF attachment protein receptor (SNARE). NO also modulates exocytosis of other cells; for example, NO regulates platelet activation by inhibiting alpha-granule secretion from platelets. Other radicals besides NO can regulate exocytosis as well. For example, H(2)O(2) inhibits exocytosis by oxidizing NSF. Using site-directed mutagenesis, we have defined the critical cysteine residues of NSF, and found that one particular cysteine residue, C264, renders NSF sensitive to oxidative stress. Since radicals such as NO and H(2)O(2) inhibit NSF and decrease exocytosis, NSF may act as a redox sensor, modulating exocytosis in response to changes in oxidative stress.  相似文献   

9.
Although pulmonary inflammation is a serious, sometimes life-threatening, consequence of respiratory syncytial virus (RSV) infection, the mechanisms involved are not well understood. Since the process of inflammation is initiated by a complex series of events including the activation of specific adhesion molecules on vascular endothelium, we searched for endothelial cell-activating factors released from RSV-infected epithelial cells. We demonstrate here that vascular endothelial cells exposed to culture supernatants from RSV-infected pulmonary epithelial A549 cells are activated to express increased cell surface ICAM-1, and to a lesser extent, VCAM-1 and E-selectin. IL-1alpha was identified as the predominant endothelial cell-activating factor by pretreating epithelial cell supernatants with anti-IL-1alpha antibody. The preferential upregulation of endothelial ICAM-1 (relative to VCAM-1 and E-selectin) by RSV-infected epithelial cell supernatants was replicated by recombinant IL-1alpha thus confirming IL-1alpha as a major endothelial cell-activating cytokine released by RSV-infected epithelial cells. Il-1alpha mediated endothelial cell activation is thus a likely contributory event in the initiation of leukocyte inflammation associated with RSV infection.  相似文献   

10.
Whether dendritic cell (DC) derived exosomes play a role in the progression of endothelial inflammation and atherosclerosis remains unclear. Using a transwell system and exosome release inhibitor GW4869, we demonstrated that mature DCs contributed to endothelial inflammation and exosomes were involved in the process. To further confirm this finding, we isolated exosomes from bone marrow dendritic cell (BMDC) culture medium (named DC‐exos) and stimulated human umbilical vein endothelial cell (HUVEC) with these DC‐exos. We observed that mature DC‐exos increased HUVEC inflammation through NF‐κB pathway in a manner similar to that of lipopolysaccharide. After a protein array analysis of exosomes, we identified and confirmed tumour necrosis factor (TNF)‐α on exosome membrane being the trigger of NF‐κB pathway in HUVECs. We then performed an in vivo study and found that the aorta endothelial of mice could uptake intravenously injected exosomes and was activated by these exosomes. After a period of 12 weeks of mature DC‐exos injection into ApoE?/? mice, the atherosclerotic lesions significantly increased. Our study demonstrates that mature DCs derived exosomes increase endothelial inflammation and atherosclerosis via membrane TNF‐α mediated NF‐κB pathway. This finding extends our knowledge on how DCs affect inflammation and provides a potential method to prevent endothelial inflammation and atherosclerosis.  相似文献   

11.
Endothelial cells exhibit regulated exocytosis in response to inflammatory mediators such as thrombin and histamine. The exocytosis of Weibel-Palade bodies (WPBs) containing von Willebrand factor, P-selectin, and interleukin-8 within minutes after stimulation is important for vascular homeostasis. SNARE proteins are key components of the exocytic machinery in neurons and some secretory cells, but their role in regulating exocytosis in endothelial cells is not well understood. We examined the function of SNARE proteins in mediating exocytosis of WPBs in endothelial cells. We identified the presence of syntaxin 4, syntaxin 3, and the high affinity syntaxin 4-regulatory protein Munc18c in human lung microvascular endothelial cells. Small interfering RNA-induced knockdown of syntaxin 4 (but not of syntaxin 3) inhibited exocytosis of WPBs as detected by the reduction in thrombin-induced cell surface P-selectin expression. Thrombin ligation of protease-activated receptor-1 activated the phosphorylation of syntaxin 4 and Munc18c, which, in turn, disrupted the interaction between syntaxin 4 and Munc18. Protein kinase Calpha activation was required for the phosphorylation of syntaxin 4 and Munc18c as well as the cell surface expression of P-selectin. We also observed that syntaxin 4 knockdown inhibited the adhesion of neutrophils to thrombin-activated endothelial cells, demonstrating the functional role of syntaxin 4 in promoting endothelial adhesivity. Thus, protease-activated receptor-1-induced protein kinase Calpha activation and phosphorylation of syntaxin 4 and Munc18c are required for the cell surface expression of P-selectin and the consequent binding of neutrophils to endothelial cells.  相似文献   

12.
α-Synuclein is a small presynaptic protein implicated in the pathogenesis of Parkinson disease. Nevertheless, its physiological roles and mechanisms remain incompletely understood. α-Synuclein is not only expressed in neurons but also in the vascular endothelium, which contains intracellular granules called Weibel-Palade bodies (WPBs) that contain a number of chemokines, adhesive molecules, and inflammatory cytokines. This study explored whether the exocytosis of WPB is regulated by α-synuclein. Phorbol 12-myristate 13-acetate-, thrombin-, or forskolin-induced von Willebrand factor release or translocation of P-selectin from endothelial cells were inhibited by α- and β-synuclein but not γ-synuclein. Three point mutants (A30P, A53T, and E46K) found in familial Parkinson disease also inhibited WPB exocytosis similar to that of wild-type α-synuclein. Furthermore, the negative regulation of WPB exocytosis required the N terminus or the nonamyloid β-component of Alzheimer disease amyloid region of α-synuclein, but not the C-terminal acidic tail, and α-synuclein affected WPB exocytosis through interference with RalA activation by enhancing the interaction of RalGDS-β-arrestin complexes. Immuno-EM analysis revealed that α-synuclein was localized close to WPBs. These findings imply that α-synuclein plays as a negative regulator in WPB exocytosis in endothelial cells.  相似文献   

13.
14.
Peroxynitrite is formed in the organism by activated neutrophils as a result of the enhanced production of nitrogen monoxide and superoxide anion radical in the inflammation foci. Since peroxynitrite modifies the structure of macromolecules, including the elements of actin cytoskeleton, it can influence signal transduction pathways that regulate intracellular granule exocytosis. In this paper we explore a dual effect of peroxynitrite on the processes of neutrophil degranulation by the methods of flow cytometry, light microscopy, and atomic force microscopy. We showed that peroxynitrite at concentrations less than 300 μM activated graded exocytosis of neutrophil intracellular granules, which resulted in the enhancement of neutrophil adhesion to the substrate, cell spreading on the substrate, and activation of neutrophil ability to kill microorganisms. Peroxynitrite at higher concentrations inhibited exocytosis of neutrophil granules and hindered cell adhesion to the substrate. The character of influence of the specific agents, such as colchicine and cytochalasin that selectively disrupt cytoskeletal structures, on peroxynitrite-induced changes in neutrophil morphology indicates an important role of actin cytoskeleton in the regulation of intracellular granule exocytosis induced by peroxynitrite. Our results support the hypothesis suggesting that peroxynitrite is a natural regulator of neutrophil effector functions.  相似文献   

15.
Summary The purpose of this study is to identify optimal culture conditions to support the proliferation of human macrovascular endothelial cells. Two cell lines were employed: human saphenous vein endothelial cells (HSVEC) and human umbilical vein endothelial cells (HUVEC). The influence of basal nutrient media (14 types), fetal bovine serum (FBS), and mitogens (three types) were investigated in relation to cell proliferation. Additionally, a variety of extracellular matrix (ECM) substrate-coated culture dishes were also tested. The most effective nutrient medium in augmenting cell proliferation was MCDB 131. Compared to the more commonly used M199 medium, MCDB 131 resulted in a 2.3-fold increase in cell proliferation. Media containing 20% FBS increased cell proliferation 7.5-fold compared to serum-free media. Among the mitogens tested, heparin (50 μg/ml) and endothelial cell growth supplement (ECGS) (50μg/ml) significantly improved cell proliferation. Epithelial growth factor (EGF) provided no improvement in cell proliferation. There were no statistical differences in cell proliferation or morphology when endothelial cells were grown on uncoated culture plates compared to plates coated with ECM proteins: fibronectin, laminin, gelatin, or collagen types I and IV. The culture environment yielding maximal HSVEC and HUVEC proliferation is MCDB 131 nutrient medium supplemented with 2 mM glutamine, 20% FBS, 50 μg/ml heparin, and 50 μg/ml ECGS. The ECM substrate-coated culture dishes offer no advantage.  相似文献   

16.
Summary A method to culture rat cerebral microvascular endothelial cells (RCMECs) was developed and adapted to concurrently obtain cultures of rat aortic endothelial cells (RAECs) without subculturing, cloning, or “weeding.” The attachment and growth requirements of endothelial cell clusters from isolated brain microvessels were first evaluated. RCMECs required fetal bovine serum to attach efficiently. Attachment and growth also depended on the matrix provided (fibronectin≈laminin>gelatin>poly-d-lysine≈Matrigel>hyaluronic acid≈plastic) and the presence of endothelial cell growth supplement and heparin in the growth medium. Non-endothelial cells are removed by allowing these cells to attach to a matrix that RCMECs attach to poorly (e.g., poly-d-lysine) and then transferring isolated endothelial cell clusters to fibronectin-coated dishes. These cell cultures, labeled with 1,1′-dioctadecyl-3,3,3′,3′-tetramethyl-indocarboxyamine perchlorate (DiI-Ac-LDL) and analyzed using flow cytometry, were 97.7±2.6% (n=6) pure. By excluding those portions designed to isolate brain microvessels, the method was adapted to obtain RAEC cultures. RAECs do not isolate as clusters and have different morphology in culture, but respond similarly to matrices and growth medium supplements. RCMECs and RAECs have Factor VIII antigen, accumulate DiI-Ac-LDL, contain Weibel-Palade bodies, and have complex junctional structures. The activities of γ-glutamyl transferase and alkaline phosphatase were measured as a function of time in culture. RCMECs had higher enzymatic activity than RAECs. In both RCMECs and RAECs enzyme activity decreased with time in culture. The function of endothelial cells is specialized depending on its location. This culture method allows comparison of two endothelial cell cultures obtained using very similar culture conditions, and describes their initial characterization. These cultures may provide a model system to study specialized endothelial cell functions and endothelial cell differentiation. This work was funded by the National Institutes of Health grant RO1-NS-21076, and AHA-GIA 881134. Support for Ellen Gordon provided by the National Institutes of Health, NSO7144 and the Seattle Affiliate of the AHA (88-WA-111, 89-WA-112).  相似文献   

17.
The time course for cell surface loss of von Willebrand factor (VWF) and the propolypeptide of VWF (proregion) following exocytosis of individual Weibel-Palade bodies (WPBs) from single human endothelial cells was analyzed. Chimeras of enhanced green fluorescent protein (EGFP) and full-length pre-pro-VWF (VWF-EGFP) or the VWF propolypeptide (proregion-EGFP) were made and expressed in human umbilical vein endothelial cells. Expression of VWF-EGFP or proregion-EGFP resulted in fluorescent rod-shaped organelles that recruited the WPB membrane markers P-selectin and CD63. The WPB secretagogue histamine evoked exocytosis of these fluorescent WPBs and extracellular release of VWF-EGFP or proregion-EGFP. Secreted VWF-EGFP formed distinctive extracellular patches of fluorescence that were labeled with an extracellular antibody to VWF. The half-time for dispersal of VWF-EGFP from extracellular patches was 323.5 +/- 146.2 s (+/-S.D., n = 20 WPBs). In contrast, secreted proregion-EGFP did not form extracellular patches but dispersed rapidly from its site of release. The half-time for dispersal of proregion-EGFP following WPB exocytosis was 2.98 +/- 1.88 s (+/-S.D., n = 32 WPBs). The slow rate of loss of VWF-EGFP is consistent with the adhesive nature of this protein for the endothelial membrane. The much faster rate of loss of proregion-EGFP indicates that this protein does not interact strongly with extracellular VWF or the endothelial membrane and consequently may not play an adhesive role at the endothelial cell surface.  相似文献   

18.
P-selectin (CD62P), a cell adhesion molecule for most leukocytes, is stored in the alpha-granules of platelets and the Weibel-Palade bodies of endothelial cells. Upon thrombogenic and inflammatory challenges, P-selectin is rapidly expressed, by exocytosis, on activated platelets and stimulated endothelial cells. However, little is known for the molecular mechanisms governing the regulation of the rapid mobilization of P-selectin in these cells. Here we show that phenylarsine oxide (PAO) and diamide (both were inhibitors for protein tyrosine phosphatases), but not genistein (an inhibitor for protein tyrosine kinases), adenosine, wortmannin and LY294002 (all were inhibitors for phosphatidylinositol 3- and 4-kinases), could inhibit P-selectin exocytosis on activated platelets and could abolish the P-selectin mediated aggregation of activated platelets to neutrophils. However, PAO did not attenuate the P-selectin mediated adhesion of human promyeloid HL-60 cells on the stimulated endothelial cells under flow conditions. Further, PAO had no detectable effects on the exocytosis of P-selectin in the stimulated endothelial cells. These results indicate that protein tyrosine phosphatases are necessary for P-selectin exocytosis on the activated platelets, but not on the stimulated endothelial cells, and suggest that inhibitors for protein tyrosine phosphatases may be potentially valuable for treatment of platelet/leukocyte aggregation.  相似文献   

19.
BackgroundCalcium signaling and membrane fusion play key roles in exocytosis of drug-containing vesicles through the blood-brain barrier (BBB). Identifying the role of synaptotagmin-like protein4-a (Slp4-a) in the presence of Ca2+ ions, at the pre-fusion stage of a vesicle with the basolateral membrane of endothelial cell, can reveal brain drug transportation across BBB.MethodsWe utilized molecular dynamics (MD) simulations with a coarse-grained PACE force field to investigate the behaviors of Slp4-a with vesicular and endothelial membranes at the pre-fusion stage of exocytosis since all-atom MD simulation or experiments are more time-consuming and expensive to capture these behaviors.ResultsThe Slp4-a pulls lipid membranes (vesicular and endothelial) into close proximity and disorganizes lipid arrangement at contact points, which are predictors for initiation of fusion. Our MD results also indicate that Slp4-a needs Ca2+ to bind with weakly-charged POPE lipids (phosphatidylethanolamine).ConclusionsSlp4-a is an important trigger for membrane fusion in BBB exocytosis. It binds to lipid membranes at multiple binding sites and triggers membrane disruption for fusion in calcium-dependent case.General significanceUnderstanding the prefusion process of the vesicle will help to design better drug delivery mechanisms to the brain through formidable BBB.  相似文献   

20.
Gingipains, cysteine proteases derived from Porphyromonas gingivalis, are important virulence factors in periodontal diseases. We found that arginine-specific gingipain A (RgpA) increased the responsiveness of vascular endothelial cells to P. gingivalis lipopolysaccharides (LPS) and P. gingivalis whole cells to induce enhanced IL-8 production through protease-activated receptors (PARs) and phospholipase C (PLC) gamma. We therefore investigated whether RgpA-induced enhanced cell activation is mediated through exocytosis of Weibel-Palade bodies (WPBs) because they store vasoactive substances. RgpA rapidly activated PAR- and PLCgamma-dependent WPB exocytosis. In addition, angiopoietin (Ang)-2, a substance of WPB, enhanced IL-8 production by P. gingivalis LPS, suggesting that Ang-2 mediates the RgpA-induced enhanced cell responses. Thus, we propose a novel role for RgpA in induction of a proinflammatory event through PAR-mediated WPB exocytosis, which may be an important step for enhanced endothelial responses to P. gingivalis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号