首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The alkaline protease gene from Aspergillus oryzae was cloned, and then it was successfully expressed in the heterologous Pichia pastoris GS115 with native signal peptide or α-factor secretion signal peptide. The yield of the recombinant alkaline protease with native signal peptide was about 1.5-fold higher than that with α-factor secretion signal peptide, and the maximum yield of the recombinant alkaline protease was 513 mg/L, which was higher than other researches. The recombinant alkaline protease was purified by ammonium sulfate precipitation, ion exchange chromatography and gel filtration chromatography. The purified recombinant alkaline protease showed on SDS–PAGE as a single band with an apparent molecular weight of 34 kDa. The recombinant alkaline protease was identical to native alkaline protease from A. oryzae with regard to molecular weight, optimum temperature for activity, optimum pH for activity, stability to pH, and similar sensitivity to various metal ions and protease inhibitors. The native enzyme retained 61.18% of its original activity after being incubated at 50 °C for 10 min, however, the recombinant enzyme retained 56.22% of its original activity with same disposal. The work demonstrates that alkaline protease gene from A. oryzae can be expressed largely in P. pastoris without affecting its enzyme properties and the recombinant alkaline protease could be widely used in various industrial applications.  相似文献   

2.
Production of alkaline protease employing the laboratory isolate, Bacillus sp. under solid state fermentation (SSF) was optimized. The effect of wheat bran and lentil husk was examined. Wheat bran showed highest enzyme production. The appropriate incubation time, inoculum size, moisture level and buffer solution level were determined. Maximum yields of 429.041 and 168.640 U g−1 were achieved by employing wheat bran and lentil husk as substrates in 0.1 M carbonate/bicarbonate buffer at pH 10 with 30 and 40% initial moisture level at 24 h. Inoculum size and buffer solution level were found to be 20 and 25% and 0.5:1 for wheat bran and lentil husk, respectively.  相似文献   

3.
Aspergillus nidulans PW1 produces an extracellular carboxylesterase activity that acts on several lipid esters when cultured in liquid media containing olive oil as a carbon source. The enzyme was purified by gel filtration and ion exchange chromatography. It has an apparent MW and pI of 37 kDa and 4.5, respectively. The enzyme efficiently hydrolyzed all assayed glycerides, but showed preference toward short- and medium-length chain fatty acid esters. Maximum activity was obtained at pH 8.5 at 40°C. The enzyme retained activity after incubation at pHs ranging from 8 to11 for 12 h at 37°C and 6 to 8 for 24 h at 37°C. It retained 80% of its activity after incubation at 30 to 70°C for 30 min and lost 50% of its activity after incubation for 15 min at 80°C. Noticeable activation of the enzyme is observed when Fe2+ ion is present at a concentration of 1 mM. Inhibition of the enzyme is observed in the presence of Cu2+, Fe3+, Hg2+, and Zn2+ ions. Even though the enzyme showed strong carboxylesterase activity, the deduced N-terminal amino acid sequence of the purified protein corresponded to the protease encoded by prtA gene.  相似文献   

4.
Summary We have cloned and determined the nucleotide sequence of a cDNA fragment for the entire coding region of the alkaline protease (Alp) from a filamentous ascomycete Aspergillus oryzae. According to the deduced amino acid sequence, Alp has a putative prepro region of 121 amino acids preceding the mature region, which consists of 282 amino acids. A consensus sequence of a signal peptide consiting of 21 amino acids is found at the N-terminus of the prepro region. The primary structure of the mature region shares extensive homology (29%–44%) with those of subtilisin families, and the three residues (Asp 32, His 64 and Ser 221 in subtilisin BPN) composing the active site are preserved. The entire cDNA, coding for prepro Alp, when introduced into the yeast Saccharomyces cerevisiae, directed the secretion of enzymatically active Alp into the culture medium, with its N-terminus and specific activity identical to native Aspergillus Alp.  相似文献   

5.
An extracellular alkaline serine protease has been purified from a strain of Aspergillus clavatus, to apparent homogeneity, by ammonium sulfate precipitation and chromatography on Sephadex G-75. Its molar mass, estimated by SDS-PAGE, was 35 kDa. Maximum protease activity was observed at pH 9.5 and 40°C. The enzyme was active between pH 6.0 and 11.0 and was found to be unstable up to 50°C. Calcium at 5 mM increased its thermal stability. The protease was strongly inhibited by PMSF and chymostatin as well as by SDS, Tween 80 and carbonate ion. Substrate specificity was observed with N-p-Tos-Gly-Pro-Arg-p-nitroanilide and N-Suc-Ala-Ala-Ala-p-nitroanilide being active substates. Parts of the amino acid sequence were up to 81% homologous with those of several fungal alkaline serine proteases.  相似文献   

6.
An obligatory alkalophilic Bacillus sp. P-2, which produced a thermostable alkaline protease was isolated by selective screening from water samples. Protease production at 30 °C in static conditions was highest (66 U/ml) when glucose (1% w/v) was used with combination of yeast extract and peptone (0.25% w/v, each), in the basal medium. Protease production by Bacillus sp. P-2 was suppressed up to 90% when inorganic nitrogen sources were supplemented in the production medium. Among the various agro-byproducts used in different growth systems (solid state, submerged fermentation and biphasic system), wheat bran was found to be the best in terms of maximum enhancement of protease yield as compared to rice bran and sunflower seed cake. The protease was optimally active at pH 9.6, retaining more than 80% of its activity in the pH range of 7–10. The optimum temperature for maximum protease activity was 90 °C. The enzyme was stable at 90 °C for more than 1h and retained 95 and 37% of its activity at 99 °C and 121 °C, respectively, after 1 h. The half-life of protease at 121 °C was 47 min.  相似文献   

7.
The feasibility of arrowroot (Marantha arundinacea) starch for alkaline protease production using an alkalophilic Bacillus lentus isolate was evaluated in batch fermentations in shake flasks and in a bioreactor under a range of conditions. A new arrowroot starch-casein medium (pH 10.2) was formulated having a composition (%, w/v): arrowroot starch 1, casein 1, sodium succinate 0.25, NH4Cl 0.05, NaCl 0.05, KH2PO4 0.04, K2HPO4 0.03, MgCl2 0.01, yeast extract 0.01 and Na2CO3 1.05. The isolate produced a maximum protease yield (6754.7 U ml–1) in this medium when grown for 72 h at 250 rev/min and 37 °C. Scaling-up studies in a bioreactor showed a 5-fold increase in alkaline protease yields (31899 U ml–1) at a lower production time of 45 h, aeration of 1 v/v/m and agitation of 400 rev/min at 37 °C.  相似文献   

8.
An extracellular protease was produced by Arthrobacter ramosus isolated from the alkaline lake of Lonar, Buldhana District of Maharashtra, India when grown on a synthetic medium of pH 10 containing casein. The optimum conditions for production were 3.0% initial casein concentration, 2% inoculum of 1 × 108 cells/ml, pH 9.0, temperature 30 °C and shaken culture conditions. The protease was purified by ammonium sulphate precipitation followed by Sephadex G-100 chromatography. Two proteases viz. Arthro I and Arthro II, having molecular weights 21 and 11.4 kDa respectively were isolated. The Arthro II fraction had K m 395 g/ml and V max 10.55 g/min for azocasein. The maximum activity of enzyme was at 55 °C and pH 8. It was thermostable (up to 80 °C), alkali stable (pH 12) and stable in commercial detergent. The enzyme may contain a thiol group at the active site.  相似文献   

9.
An investigation on the properties of an alkaline protease secreted by Bacillus circulans BM15 strain isolated from a mangrove sediment sample was carried out in order to characterize the enzyme and to test its potency as a detergent additive. The protease was purified to apparent homogeneity by ammonium sulphate precipitation and was a 30-kDa protease as shown by SDS-PAGE and its proteolytic activity was detected by casein zymography. It had optimum activity at pH 7, was stable at alkaline pH range (7 to 11), had optimum temperature of activity 40°C and was stable up to a temperature of 55°C after incubation for one hour. Hg2+, Zn2+, Co2+, and Cu2+completely inhibited the enzyme activity, while Ca2+, Mg2+, K+ and Fe3+ were enhancing the same. The serine protease inhibitor PMSF and metal chelator EDTA inhibited the activity of this protease while the classic metalloprotease inhibitor 1, 10 phenanthroline did not show inhibition. The enzyme was stable in SDS, Triton-X-100 and H2 O2 as well as in various commercial detergents after incubation for one hour. The extracellular production of the enzyme, the pH and temperature stability and stability in presence of oxidants, surfactants and commercial detergents suggest its possible use as a detergent additive.  相似文献   

10.
Agro-industrial residues and cow dung were used as the substrate for the production of alkaline protease by Bacillus cereus strain AT. The bacterial strain Bacillus cereus strain AT produced a high level of protease using cow dung substrate (4813 ± 62 U g−1). Physiological fermentation factors such as the incubation time (72 h), the pH (9), the moisture content (120%), and the inoculum level (6%) played a vital role in the enzyme bioprocess. The enzyme production improved with the supplementation of maltose and yeast extract as carbon and nitrogen sources, respectively. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis and zymogram analysis of the purified protease indicated an estimated molecular mass of 46 kDa. The protease enzyme was stable over a temperature range of 40–50 °C and pH 6–9, with maximum activity at 50 °C and pH 8. Among the divalent ions tested, Ca2+, Na+ and Mg2+ showed activities of 107 ± 0.7%, 103.5 ± 1.3%, and 104.6 ± 0.9, respectively. The enzyme showed stability in the presence of surfactants such as sodium dodecyl sulfate and on various commercially available detergents. The crude enzyme effectively de-haired goat hides within 18 h of incubation at 30 °C. The enzymatic properties of this protease suggest its suitable application as an additive in detergent formulation and also in leather processing. Based on the laboratory results, the use of cow dung for producing and extracting enzyme is not cumbersome and is easy to scale up. Considering its cheap cost and availability, cow dung is an ideal substrate for enzyme bioprocess in an industrial point of view.  相似文献   

11.
The proteases are enzymes produced by several filamentous fungi with important biotechnological applications. In this work, a protease from Aspergillus flavus was characterized. The culture filtrate of A. flavus was purified to homogeneity by Sephacryl S-200 column chromatography followed by CM–cellulose. The molecular weight of the purified enzyme was estimated to be approximately 32?kDa by SDS–PAGE. The enzyme hydrolysed BTpNA (N-α-benzoyl-dl-tyrosyl-p-nitroanilide), azo-casein and casein as substrates. Optimal temperature and pH were 55?°C and 6.5, respectively. The enzyme was stimulated by Mg2+, Ca2+, Zn2+ and inhibited by Hg2+ and Ag2+ and Cu2+. The protease showed increased activity with detergents, such as Tween 80 and Triton X, and was stable to the reducing agents, such as β-mercaptoethanol. The protease activity was strongly inhibited in the presence of phenylmethylsulfonyl fluoride, indicating it is a serine protease. The enzyme entrapped in calcium alginate beads retained its activity for longer time and could be reused up to 10 times. The thermostability was increased after the immobilization and the enzyme retained 100% of activity at 45?°C after 60?min of incubation, and 90% of residual activity at 50?°C after 30?min. In contrast, the free enzyme only retained 10% of its residual activity after 60?min at 50?°C. The enzymatic preparation was demonstrated to be efficient in the capability of dehairing without destruction of the hide. The remarkable properties such as temperature, pH and immobilization stability found with this enzyme assure that it could be a potential candidate for industrial applications.  相似文献   

12.
【背景】蛋白酶活性研究对于理解金黄杆菌属(Chryseobacterium)菌株的生态角色、工业价值及潜在致病机理十分重要。【目的】分析一株细菌的新型基因组序列,以此推断其中潜在的蛋白酶基因,并对其蛋白酶活性进行验证与优化,为后续研究提供数据支撑。【方法】利用高通量测序技术对菌株基因组序列进行测定与组装,并利用单因素优化方法对菌株的蛋白酶作用条件与产酶条件进行优化。【结果】分离得到一株蛋白酶活性菌株,通过分子生物学手段鉴定为金黄杆菌属菌株,并命名为Chryseobacterium sp. ZHDP1。该菌株基因组大小为4 917 748 bp,GC含量为35.95%,平均核苷酸相似性和DNA-DNA杂交指数分别为91.39和47.8。该菌株基因组中发现超过20条蛋白酶基因,上清液中也检测到蛋白酶活性,其最适反应温度和pH值分别为50℃和7.0。Zn2+、Mn2+和Cr2O72-对蛋白酶活性有强烈抑制作用。ZHDP1菌株在培养温度35℃、培养时间35 h、接种量4%、碳源和氮源为...  相似文献   

13.
An alkaline, SDS-stable protease optimally active at pH 11 from a Bacillus sp. RGR-14 was produced in a complex medium containing soybean meal, starch and calcium carbonate. The protease was active over a wide temperature range of 20–80 °C with major activity between 45 and 70 °C. The protease was completely stable for 1 h in 0.1% SDS and retained 70% of its activity in the presence of 0.5% SDS after 1 h of incubation. The enzyme was active in presence of surfactants (ionic and non-ionic) with 29% enhancement in activity in Tween-85 and was also stable in various oxidizing agents with 100 and 60% activity in presence of 1% sodium perborate and 1% H2O2, respectively. The enzyme was also compatible with commercial detergents (1% w/v) such as Surf, Ariel, Wheel, Fena and Nirma, retaining more than 70% activity in all the detergents after 1 h. Wash performance analysis of grass and blood stains on cotton fabric showed an increase in reflectance (14 and 25% with grass and blood stains, respectively) after enzyme treatment. However, enzyme in conjunction with detergent proved best, with a maximum reflectance change of 46 and 34% for grass and blood stain removal, respectively, at 45 °C. Stain removal was also effective after protease treatment at 25 and 60 °C.  相似文献   

14.
In cynobacteria and higher plants, salinity is known to inhibit the activity of several enzymes involved in photosynthesis and hence decreases the overall photosynthetic rate. This gave us an impetus to search for a protease, which may be involved in the turnover of non-functional enzymes produced under salinity stress. Taking the possible changes in pH gradient of the chloroplast under consideration, we have tried to identify a protease, which is induced under salinity and characterized it as an alkaline protease using spinach (Spinacia oleracea) leaves as a model system. The HIC-HPLC purified homogeneous alkaline serine protease from the isolated spinach chloroplasts had two subunits of molecular weight 63 and 32 kDa. The enzyme was maximally active at pH 8.5 and 50°C. The enzyme showed the property to hydrolyze the synthetic substrate like azocaesin and had sufficient proteolytic activity in gelatin bound native PAGE. The enzyme activity was also dependent upon the presence of divalent cations and reduced environment. The active site residues were identified and the homogeneous alkaline serine protease had cysteine, lysine and tryptophan residues at its active site.  相似文献   

15.
Summary The production of extracellular alkaline proteases from Aspergillus clavatus was evaluated in a culture filtrate medium, with different carbon and nitrogen sources. The fungus was cultivated at three different temperatures during 10 days. The proteolytic activity was determined on casein pH 9.5 at 37 °C. The highest alkaline proteolytic activity (38 U/ml) was verified for culture medium containing glucose and casein at 1% (w/v) as substrates, obtained from cultures developed at 25 °C for 6 days. Cultures developed in Vogel medium with glucose at 2% (w/v) and 0.2% (w/v) NH4NO3 showed higher proteolytic activity (27 U/ml) when compared to the cultures with 1% of the same sugar. Optimum temperature was 40 °C and the half-lives at 40, 45 and 50 °C were 90, 25 and 18 min, respectively. Optimum pH of enzymatic activity was 9.5 and the enzyme was stable from pH 6.0 to 12.0.  相似文献   

16.
Aspergillus niger K10 cultivated on 2-cyanopyridine produced high levels of an intracellular nitrilase, which was partially purified (18.6-fold) with a 24% yield. The N-terminal amino acid sequence of the enzyme was highly homologous with that of a putative nitrilase from Aspergillus fumigatus Af293. The enzyme was copurified with two proteins, the N-terminal amino acid sequences of which revealed high homology with those of hsp60 and an ubiquitin-conjugating enzyme. The nitrilase exhibited maximum activity (91.6 U mg-1) at 45°C and pH 8.0. Its preferred substrates, in the descending order, were 4-cyanopyridine, benzonitrile, 1,4-dicyanobenzene, thiophen-2-acetonitrile, 3-chlorobenzonitrile, 3-cyanopyridine, and 4-chlorobenzonitrile. Formation of amides as by-products was most intensive, in the descending order, for 2-cyanopyridine, 4-chlorobenzonitrile, 4-cyanopyridine, and 1,4-dicyanobenzene. The enzyme stability was markedly improved in the presence of d-sorbitol or xylitol (20% w/v each). p-Hydroxymercuribenzoate and heavy metal ions were the most powerful inhibitors of the enzyme.  相似文献   

17.
Gao J  Weng H  Zhu D  Yuan M  Guan F  Xi Y 《Bioresource technology》2008,99(16):7623-7629
The production of extracellular cellulases by a newly isolated thermoacidophilic fungus, Aspergillus terreus M11, on the lignocellulosic materials was studied in solid-state fermentation (SSF). The results showed that the high-level cellulase activity was produced at 45 degrees C pH 3 and moisture 80% with corn stover and 0.8% yeast extract as carbon and nitrogen sources. 581 U endoglucanase activity, 243 U filter paper activity and 128 U beta-glucosidase activity per gram of carbon source were obtained in the optimal condition. Endoglucanase and beta-glucosidase exhibited their maximum activity at pH 2 and pH 3, respectively, and both of them showed remarkable stability in the range of pH 2-5. The activities of endoglucanase and beta-glucosidase were up to the maximum at 70 degrees C and maintained about 65% and 53% of their original activities after incubation at 70 degrees C for 6h. The enzyme preparations from this strain were used to hydrolyze Avicel. Higher hydrolysis yields of Avicel were up to 63% on 5% Avicel (w/v) for 72 h with 20 U FPase/g substrate.  相似文献   

18.
The detergent-compatible alkaline protease was produced from the bacterial strain Bacillus sp. APP-07 isolated from Laundromat soil of Solapur, Maharashtra, India. The culture was grown in 1000?ml capacity baffled flask with a working volume of 100?ml and incubated at 55?°C for 33?h on a rotary shaker. After incubation, alkaline protease was partially purified by the sequential method of acetone precipitation followed by nominal molecular weight limit (NMWL) cut-off ultrafiltration using 50?K and 10?K filters. Finally, Sephadex G-100 gel filtration chromatographic purification was performed to obtain 3.12 fold purified alkaline protease enzyme with a 66.67% final yield. The purified enzyme showed 31907.269 units (U) of enzyme activity containing 8741.718?U/mg of specific enzyme activity. The molecular weight of the enzyme was confirmed about 33.0?kDa (kDa) by the SDS-PAGE analysis. The purified enzyme was stable at higher pH and temperature range, with an optimum pH 10.5 and temperature 55?°C. The enzyme showed excellent stability and compatibility in various detergents, surfactants, bleach, and oxidizing agents. The enzyme activity enhanced in the presence of Ca2+, Cu2+, and surfactants, whereas; the phenylmethylsulphonyl fluoride (PMSF) and Diisopropyl fluorophosphate (DFP) completely inhibit the enzymatic activity, which pointed out that the enzyme affiliated to serine-centered metalloproteases family.In conclusion, the remarkable tolerance and stability of the enzyme explored the promising candidature for the several potential applications in the laundry detergents. The sustainability of the enzyme might serve several possible applications in the laundry detergents, leather industries, and other harsh industrial processes.  相似文献   

19.
The endogenous protease activity in various commercially available laundry detergents of international companies was studied. The maximum protease activity was found at 50 degrees C in pH range 10.5-11.0 in all the tested laundry detergents. The endogenous protease activity in the tested detergents retained up to 70% on incubation at 40 degrees C for 1 h, whereas less than 30% activity was only found on incubation at 50 degrees C for 1 h. The alkaline protease from an alkalophilic strain of Bacillus cereus was studied for its compatibility in commercial detergents. The cell free fermented broth from shake flask culture of the organism showed maximum activity at pH 10.5 and 50 degrees C. The protease from B. cereus showed much higher residual activity (more than 80%) on incubation with laundry detergents at 50 degrees C for 1 h or longer. The protease enzyme from B. cereus was found to be superior over the endogenous proteases present in the tested commercial laundry detergents in comparison to the enzyme stability during the washing at higher temperature, e.g., 40-50 degrees C.  相似文献   

20.
Fusarium sp. BLB, which produces a strongly fibrinolytic enzyme, was isolated from plant leaf (Hibiscus). Fibrinolytic alkaline protease was purified from a culture filtrate of Fusarium sp. BLB by precipitation with (NH4)2SO4 and column chromatography with CM-Toyopearl 650M and Superdex 75. The purified enzyme was homogeneous on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weight was 27,000 by SDS-PAGE. Maximum activity of protease was observed at pH 9.5 and 50°C. Purified protease was active between pH 2.5 and 11.5 and was found to be stable up to 50°C. The enzyme derived from Fusarium sp. BLB is useful for thrombolytic therapy because this enzyme showed pH resistance. The activity was inhibited by diisopropylfluorophosphate and phenylmethylsulfonyl fluoride. The N-terminal amino acid sequence of the enzyme showed a similarity to those of proteases from Fusarium sp., Streptomyces griseus, Bos taurus bovine, Katsuwo pelamis digestive tract, and Lumbricus rubellus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号