首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L C Kurz  C Frieden 《Biochemistry》1987,26(25):8450-8457
The 13C NMR spectra of [2-13C]- and [6-13C]purine ribosides have been obtained free in solution and bound to the active site of adenosine deaminase. The positions of the resonances of the bound ligand are shifted relative to those of the free ligand as follows: C-2, -3.7 ppm; C-6, -73.1 ppm. The binary complexes are in slow exchange with free purine riboside on the NMR time scale, and the dissociation rate constant is estimated to be 13.5 s-1 from the slow exchange broadening of the free signal. In aqueous solution, protonation of purine riboside at N-1 results in changes in 13C chemical shift relative to those of the free base as follows: C-2, -4.9 ppm; C-6, -7.9 ppm. The changes in chemical shift that occur when purine riboside binds to the enzyme indicate that the hybridization of C-6 changes from sp2 to sp3 in the binary complex with formation of a new bond to oxygen or sulfur. A change in C-2 hybridization can be eliminated as can protonation at N-1 as the sole cause of the chemical shift changes. The kinetic constants for the adenosine deaminase catalyzed hydrolysis of 6-chloro- and 6-fluoropurine riboside have been compared, and the reactivity order implies that carbon-halogen bond breaking does not occur in the rate-determining step. These observations support a mechanism for the enzyme in which formation of a tetrahedral intermediate is the most difficult chemical step. Enzymic stabilization of this intermediate may be an important catalytic strategy used by the enzyme to lower the standard free energy of the preceding transition state.  相似文献   

2.
L C Kurz  E Weitkamp  C Frieden 《Biochemistry》1987,26(11):3027-3032
We have studied the effects of viscosogenic agents, sucrose and ficoll, on (1) the hydrolysis of adenosine and of 6-methoxypurine riboside catalyzed by adenosine deaminase and (2) the rates of association and dissociation of ground-state and transition-state analogue inhibitors. For adenosine, Vmax/Km is found to be inversely proportional to the relative viscosity with sucrose, an agent affecting the microscopic viscosity, while no effect is found with ficoll, an agent affecting the macroscopic viscosity. Viscosogenic agents have no effect on the kinetic constants for 6-methoxypurine riboside. Thus, the bimolecular rate constant, Vmax/Km = 11.2 +/- 0.8 microM-1 s-1, for the reaction with adenosine is found to be at the encounter-controlled limit while that for the reaction with the poor substrate 6-methoxypurine riboside, 0.040 +/- 0.004 microM-1 s-1, is limited by some other process. Viscosity-dependent processes do not make a significant (less than 10%) contribution to Vmax. The dissociation constants for inhibitors are unaffected by viscosity. The ground-state analogue inhibitor purine riboside appears to bind at a rate comparable to that of adenosine. However, the slower rates of association (0.16-2.5 microM-1 s-1) and dissociation (5 X 10(-6) to 12 s-1) of transition-state analogue inhibitors are affected by the viscosity of the medium to approximately the same extent as the encounter-controlled rates of association and dissociation of adenosine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Adenosine deaminase, a purine salvage enzyme essential for immune competence, was studied by time-resolved fluorescence spectroscopy. The heterogeneous emission from this four-tryptophan protein was separated into three lifetime components: tau 1 = 1 ns and tau 2 = 2.2 ns an emission maximum at about 330 nm and tau 3 = 6.3 ns with emission maximum at about 340 nm. Solvent accessibility of the tryptophan emission was probed with polar and nonpolar fluorescence quenchers. Acrylamide, iodide, and trichloroethanol quenched emission from all three components. Acrylamide quenching caused a blue shift in the decay-associated spectrum of component 3. The ground-state analogue enzyme inhibitor purine riboside quenched emission associated with component 2 whereas the transition-state analogue inhibitor deoxycoformycin quenched emission from both components 2 and 3. The quenching due to inhibitor binding had no effect on the lifetimes or emission maxima of the decay-associated spectra. These observations can be explained by a simple model of four tryptophan environments. Quenching studies of the enzyme-inhibitor complexes indicate that adenosine deaminase undergoes different protein conformation changes upon binding of ground- and transition-state analogue inhibitors. The results are consistent with localized structural alterations in the enzyme.  相似文献   

4.
Human thymus adenosine deaminase was isolated by using a monoclonal antibody affinity column. The highly purified enzyme produced by this rapid, efficient procedure had a molecular weight of 44,000. Quenching of the intrinsic protein fluorescence by small molecules was used to probe the accessibility of tryptophan residues in the enzyme and enzyme-inhibitor complexes. The fluorescence emission spectrum of human adenosine deaminase at 295-nm excitation had a maximum at about 335 nm and a quantum yield of 0.03. Addition of polar fluorescence quenchers, iodide and acrylamide, shifted the peak to the blue, and the hydrophobic quencher trichloroethanol shifted the peak to the red, indicating that the emission spectrum is heterogeneous. The fluorescence quenching parameters obtained for these quenchers reveal that the tryptophan environments in the protein are relatively hydrophobic. Binding of both ground-state and transition-state analogue inhibitors caused decreases in the fluorescence intensity of the enzyme, suggesting that one or more tryptophans may be near the active site. The kinetics of the fluorescence decrease were consistent with a slow conformational alteration in the transition-state inhibitor complexes. Fluorescence quenching experiments using polar and nonpolar quenchers were also carried out for the enzyme-inhibitor complexes. The quenching parameters for all enzyme-inhibitor complexes differed from those for the uncomplexed enzyme, suggesting that inhibitor binding causes changes in the conformation of adenosine deaminase. For comparison, parallel quenching studies were performed for calf adenosine deaminase in the absence and presence of inhibitors. While significant structural differences between adenosine deaminase from the two sources were evident, our data indicate that both enzymes undergo conformational changes on binding ground-state and transition-state inhibitors.  相似文献   

5.
We have determined 15N isotope effects and solvent deuterium isotope effects for adenosine deaminase using both adenosine and the slow alternate substrate 7,8-dihydro-8-oxoadenosine. With adenosine, 15N isotope effects were 1.0040 in H2O and 1.0023 in D2O, and the solvent deuterium isotope effect was 0.77. With 7,8-dihydro-8-oxoadenosine, 15N isotope effects were 1.015 in H2O and 1.0131 in D2O, and the solvent deuterium isotope effect was 0.45. The inverse solvent deuterium isotope effect shows that the fractionation factor of a proton, which is originally less than 0.6, increases to near unity during formation of the tetrahedral intermediate from which ammonia is released. Proton inventories for 1/V and 1/(V/K) vs percent D2O are linear, indicating that a single proton has its fractionation factor altered during the reaction. We conclude that a sulfhydryl group on the enzyme donates its proton to oxygen or nitrogen during this step. pH profiles with 7,8-dihydro-8-oxoadenosine suggest that the pK of this sulfhydryl group is 8.45. The inhibition of adenosine deaminase by cadmium also shows a pK of approximately 9 from the pKi profile. Quantitative analysis of the isotope effects suggests an intrinsic 15N isotope effect for the release of ammonia from the tetrahedral intermediate of approximately 1.03 for both substrates; however, the partition ratio of this intermediate for release of ammonia as opposed to back-reaction is 14 times greater for adenosine (1.4) than for 7,8-dihydro-8-oxoadenosine (0.1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The effect of inhibitors, 1-deazaadenosine (1-dAdo) and erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA), on the conformation of adenosine deaminase was studied using the method of selective quenching of fluorescence emission by acrylamide, I- and Cs+. Both in free adenosine deaminase and in its complexes with the inhibitors, the wavelength maxima and half-width of the emission characterize the environment of fluorescing tryptophan residues in adenosine deaminase as weak polar with limited access to solvent. The formation of complexes with the ground state inhibitors used did not quench or change the main emission characteristics of tryptophan fluorescence in adenosine deaminase. Small blue shifts of emission maxima were observed upon quenching in all three samples. The Stern-Volmer parameters of tryptophan fluorescence quenching by acrylamide were not essentially influenced by complex formation of the enzyme with the inhibitors: in general, the folding of the enzyme molecule in the complexes is not perturbed. On the contrary, the emission quenching by charged heavy ions, I- and Cs+, in the complexes was hindered in comparison with free adenosine deaminase. In the complex with 1-deazaadenosine, the parameters for quenching by both ions evidence the essential worsening of their interaction with tryptophans. In the complex with erythro-9-(2-hydroxy-3-nonyl)adenine, along with the worse quenching by I-, complete prohibition of quenching by Cs+ was observed. These data indicate that the local environments of fluorescing tryptophan residues is substantially distorted compared with free adenosine deaminase, which leads to their screening from charged heavy ions.  相似文献   

7.
The mechanism of inhibition of GMP synthetase by purine and purine-analog nucleosides was investigated. It was found that in addition to allowing the nucleoside to bind to the enzyme (Udaka, S., and Moyed, H. S. (1963) J. Biol. Chem. 238, 2797)PPi was also a competitive inhibitor with respect to ATP. A rate equation was derived to describe this inhibitory model for two competitive inhibitors where the binding of one inhibitor is contingent upon the binding of the other. The inhibition constants for a large number of nucleosides were then determined. It was found that the initial enzyme-inhibitor complex (of all nucleoside inhibitors) was slowly (0.2 min-1) transformed into a secondary (nondissociating) complex. The two inhibitory complexes appeared to exist in equilibrium. While decoyenine, N6-allyladenosine, and adenosine had similar inhibition constants for the initial complex (0.7 to 1.0 muM), their apparent inhibition constants for the secondary complex were 0.004, 0.06, and 0.5 muM respectively. These differences in the apparent dissociation constants from the secondary complexes are due to different equilibria between the initial and the secondary complexes. The ratios of the secondary complex to the initial complex at equilibrium were 3,250, 290, and 11 for decovenine, N6-allyladenosine, and adenosine, respectively.  相似文献   

8.
W Jones  L C Kurz  R Wolfenden 《Biochemistry》1989,28(3):1242-1247
Positions of equilibria of highly unfavorable addition reactions, whose products are present at concentrations below the limits of detection, can be determined from equilibria of combination of anionic nucleophiles with quaternized enamines. Applied to the newly prepared 1-methylpurinium ribonucleoside cation, this method yields approximate equilibrium constants of 2 X 10(-9) M-1 for addition of water and 4 X 10(-5) M-1 for addition of N-acetylcysteine to neutral purine ribonucleoside, in dilute aqueous solution. Positions of 13C magnetic resonances and UV absorption maxima of the above complexes and comparison with those of adenosine deaminase complexes strongly suggest that purine ribonucleoside is bound by adenosine deaminase as the 1,6 covalent hydrate, not as a covalently bonded complex formed by addition of a thiol group at the active site. The favorable position of equilibrium of the hydration reaction on the enzyme, together with its extremely unfavorable position in free solution, indicates that the effective activity of substrate water at the active site is in the neighborhood of 10(10) M. The Ki value of the active diastereomer of 6-hydroxy-1,6-dihydropurine ribonucleoside is estimated as 1.6 X 10(-13) M, more than 8 orders of magnitude lower than the apparent dissociation constants of enzyme complexes with the substrate adenosine or the product inosine. The enzyme's remarkable affinity for this hydrated species, which is vanishingly rare in free solution, seems understandable in terms of the hydrate's close resemblance to a hydrated intermediate approaching the transition state in direct water attack on adenosine.  相似文献   

9.
5-Aminoimidazole-4-carboxamide riboside (AICA riboside; Acadesine) activates AMP-activated protein kinase (AMPK) in intact cells, and is reported to exert protective effects in the mammalian CNS. In rat cerebrocortical brain slices, AMPK was activated by metabolic stress (ischaemia > hypoxia > aglycaemia) and AICA riboside (0.1-10 mm). Activation of AMPK by AICA riboside was greatly attenuated by inhibitors of equilibrative nucleoside transport. AICA riboside also depressed excitatory synaptic transmission in area CA1 of the rat hippocampus, which was prevented by an adenosine A1 receptor antagonist and reversed by application of adenosine deaminase. However, AICA riboside was neither a substrate for adenosine deaminase nor an agonist at adenosine receptors. We conclude that metabolic stress and AICA riboside both stimulate AMPK activity in mammalian brain, but that AICA riboside has an additional effect, i.e. competition with adenosine for uptake by the nucleoside transporter. This results in an increase in extracellular adenosine and subsequent activation of adenosine receptors. Neuroprotection by AICA riboside could be mediated by this mechanism as well as, or instead of, by AMPK activation. Caution should therefore be exercised in ascribing an effect of AICA riboside to AMPK activation, especially in systems where inhibition of adenosine re-uptake has physiological consequences.  相似文献   

10.
Several adenosine analogs, such as coformycin, 2'-deoxycoformycin and erythro-9-(3-nonyl-p-aminobenzyl)adenine (EHNA), which are strong inhibitors of mammalian adenosine deaminase, are much weaker inhibitors of the Saccharomyces cerevisiae enzyme. The specificity of the yeast enzyme is more restricted than that of mammalian adenosine deaminase, particularly towards the ribose moiety and around position 6 and 1 of the substrate. The sulphydryl group appears to be more masked in the yeast than in the mammalian enzyme. The kinetic effects of pH with adenosine substrate and with the inhibitor purine riboside are reported. The findings on specificity and pH kinetic effects can be interpreted in a model involving proton transfer from the -SH group of the enzyme to the N-1 atom of the substrate.  相似文献   

11.
The steady-state kinetic mechanism of beta-amyloid precursor protein-cleaving enzyme (BACE)-catalyzed proteolytic cleavage was evaluated using product and statine- (Stat(V)) or hydroxyethylene-containing (OM99-2) peptide inhibition data, solvent kinetic isotope effects, and proton NMR spectroscopy. The noncompetitive inhibition pattern observed for both cleavage products, together with the independence of Stat(V) inhibition on substrate concentration, suggests a uni-bi-iso kinetic mechanism. According to this mechanism, the enzyme undergoes multiple conformation changes during the catalytic cycle. If any of these steps are rate-limiting to turnover, an enzyme form preceding the rate-limiting conformational change should accumulate. An insignificant solvent kinetic isotope effect (SKIE) on k(cat)/K(m), a large inverse solvent kinetic isotope effect on k(cat), and the absence of any SKIE on the inhibition onset by Stat(V) during catalysis together indicate that the rate-limiting iso-step occurs after formation of a tetrahedral intermediate. A moderately short and strong hydrogen bond (at delta 13.0 ppm and phi of 0.6) has been observed by NMR spectroscopy in the enzyme-hydroxyethylene peptide (OM99-2) complex that presumably mimics the tetrahedral intermediate of catalysis. Collapse of this intermediate, involving multiple steps and interconversion of enzyme forms, has been suggested to impose a rate limitation, which is manifested in a significant SKIE on k(cat). Multiple enzyme forms and their distribution during catalysis were evaluated by measuring the SKIE on the noncompetitive (mixed) inhibition constants for the C-terminal reaction product. Large, normal SKIE values were observed for these inhibition constants, suggesting that both kinetic and thermodynamic components contribute to the K(ii) and K(is) expressions, as has been suggested for other iso-mechanism featuring enzymes. We propose that a conformational change related to the reprotonation of aspartates during or after the bond-breaking event is the rate-limiting segment in the catalytic reaction of beta-amyloid precursor protein-cleaving enzyme, and ligands binding to other than the ground-state forms of the enzyme might provide inhibitors of greater pharmacological relevance.  相似文献   

12.
L Frick  R Wolfenden  E Smal  D C Baker 《Biochemistry》1986,25(7):1616-1621
Experiments with radioactive deoxycoformycin indicate that the inhibitor is released from calf intestinal adenosine deaminase after the enzyme-inhibitor complex is disrupted by denaturation. Experiments with 2H2O and H218O indicate that the enzyme does not catalyze elimination-addition reactions that could have led to reversible covalent derivatization of the enzyme. Ultraviolet difference spectra and the influence of pH on inhibitor binding indicate that deoxycoformycin is bound intact as the neutral species, at a binding site that is less polar than solvent water. The enzyme-inhibitor complex appears to be held together by hydrogen bonds of extraordinary stability (ca. 10 kcal/mol). These results suggest that deamination proceeds by direct water attack, the enzyme acting as a general-base catalyst.  相似文献   

13.
The small-size adenosine deaminase (Mr = 35,000 and 43,000) in calf intestinal mucosa, frog liver and scallop adductor muscle and the large-size deaminase (Mr = 100,000) in frog liver probably formed by adding a conversion protein to the small enzyme, were tightly bound to the purine riboside affinity column. Binding of the other large-size enzymes (Mr = 140,000) in the midgut gland of scallop and mussel to the column was not successful. It seems that the binding difference does not depend on a change in affinity between active site and ligand but rather on the stereospecific positioning of active site in the enzyme molecules.  相似文献   

14.
4-Nitrophenyl-N-substituted carbamates (1) are characterized as pseudosubstrate inhibitors of acetylcholinesterase. The first step is formation of the enzyme-inhibitor tetrahedral intermediate with the inhibition constant (Ki), the second step is formation of the carbamyl enzyme with the carbamylation constant (kc), and the third step is hydrolysis of the carbamyl enzyme with decarbamylation constant (kd). According to pre-steady state kinetics the Ki step is divided further into two steps: (1) formation of the enzyme-inhibitor complex with the dissociation constant (KS) and (2) formation of the enzyme-inhibitor tetrahedral intermediate from the complex with the equilibrium constant (k2/k-2). Since the inhibitors are protonated in pH 7.0 buffer solution, the virtual dissociation constant (KS') of the enzyme-protonated inhibitor complex can be calculated from the equation, -log KS'=-log KS-pKa + 14. The -logKS, -log KS', log k2, and log k-2 values are multiply linearly correlated with the Jave equation (log(k/k0)=rho*sigma* + deltaEs + psi pi). For -log KS'-sigma*-Es)pi-correlation, the rho* value of -0.4 indicates that the enzyme-protonated inhibitor complexes have more positive charges than the protonated inhibitors, the delta value of 0.44 suggests that the bulkily substituted inhibitors lessen the reaction due to the difficulty of the inhibitors to enter the narrow enzyme active site gorge, and the psi value of 0.27 implies that the inhibitors with hydrophobic substituents accelerate the inhibitors entering the active site gorge of the enzyme. For log k2/k-2,-sigma*-Es-pi-correlation, the rho* value of 1.1 indicates that the enzyme-protonated inhibitor tetrahedral intermediates have more negative charges than the enzyme-protonated inhibitor complexes, the delta value of 0.15 suggests that the bulkily substituted inhibitors are difficult to bind into a small acyl binding site of the enzyme, and the psi value of -0.3 implies that the inhibitors with hydrophobic substituents resist binding to the hydrophilic acyl binding site of the enzyme.  相似文献   

15.
Adenosine deaminase is a purine salvage enzyme that catalyzes the deamination of adenosine and deoxyadenosine. Deficiency of the enzyme activity is associated with T-cell and B-cell dysfunction. Mutant adenosine deaminase has been isolated from heterozygous and homozygous deficient lymphoblast cell lines with the aid of an affinity matrix consisting of coformycin (a potent inhibitor of the enzyme) as the affinity ligand, bound to 3,3'-iminobispropylamine-derivatized Sepharose. Routinely, 80-90% of adenosine deaminase in crude cell homogenates could be bound to the material. Adenosine deaminase was specifically eluted by enzyme inhibitors or less efficiently by high substrate concentrations. Protein preparations isolated from several different deficient cell lines were highly purified and exhibited molecular weights identical to wild-type adenosine deaminase. This method produces a protein that is suitable for structural studies.  相似文献   

16.
Several recent X-ray crystal structures of adenosine deaminase (ADA) in complex with various adenosine surrogates have illustrated the preferred mode of substrate binding for this enzyme. To define more specific structural details of substrate preferences for binding and catalysis, we have studied the ADA binding efficiencies and deamination kinetics of several synthetic adenosine analogues in which the furanosyl ring is biased toward a particular conformation. NMR solution studies and pseudorotational analyses were used to ascertain the preferred furanose ring puckers (P, nu(MAX)) and rotamer distributions (chi and gamma) of the nucleoside analogues. It was shown that derivatives which are biased toward a "Northern" (3'-endo, N) sugar ring pucker were deaminated up to 65-fold faster and bound more tightly to the enzyme than those that preferred a "Southern" (2'-endo, S) conformation. This behavior, however, could be modulated by other structural factors. Similarly, purine riboside inhibitors of ADA that prefer the N hemisphere were more potent inhibitors than S analogues. These binding propensities were corroborated by detailed molecular modeling studies. Docking of both N- and S-type analogues into the ADA crystal structure coordinates showed that N-type substrates formed a stable complex with ADA, whereas for S-type substrates, it was necessary for the sugar pucker to adjust to a 3'-endo (N-type) conformation to remain in the ADA substrate binding site. These data outline the intricate structural details for optimum binding in the catalytic cleft of ADA.  相似文献   

17.
4-Nitrophenyl-N-substituted carbamates (1-6) are the pseudo-substrate inhibitors of porcine pancreatic cholesterol esterase. Thus, the first step of the inhibition (Ki step) is the formation of the enzyme inhibitor tetrahedral adduct and the second step of the inhibition (kc) is the formation of the carbamyl enzyme. The formation of the enzyme inhibitor tetrahedral adduct is further divided into two steps, the formation of the enzyme-inhibitor complex with the dissociation constant, KS, at the first step and the formation of the enzyme-inhibitor tetrahedral adduct from the complex at the second step. The two-step mechanism for the formation of the enzyme-inhibitor tetrahedral adduct is confirmed by the pre-steady-state kinetics. The results of quantitative structure-activity relationships for the pre-steady-state inhibitions of cholesterol esterase by carbamates 1-6 indicate that values of -logKs and logk2/k-2 are correlated with the Taft substituent constant, sigma*, and the rho* values from these correlations are -0.33 and 0.1, respectively. The negative rho* value for the -logKS-sigma*-correlation indicates that the first step of the two-step formation of the enzyme-inhibitor tetrahedral adduct (KS step) is the formation of the positive enzyme inhibitor complex. The positive rho* value for the logk2/k-2 -sigma*-correlation indicates that the enzyme inhibitor tetrahedral adduct is more negative than the enzyme inhibitor complex. Finally, the two-step mechanism for the formation of the enzyme inhibitor tetrahedral adduct is proposed according to these results. Thus, the partially positive charge is developed at nitrogen of carbamates 1-6 in the enzyme-inhibitor complex probably due to the hydrogen bonding between the lone pair of nitrogen of carbamates 1-6 and the amide hydrogen of the oxyanion hole of the enzyme. The second step of the two-step formation of the enzyme-inhibitor tetrahedral adduct is the nucleophilic attack of the serine of the enzyme to the carbonyl group of carbamates 1-6 in the enzyme-inhibitor complex and develops the negative-charged oxygen in the adduct.  相似文献   

18.
Lin G  Liao WC  Ku ZH 《The protein journal》2005,24(4):201-207
The pre-steady states of Pseudomonas species lipase inhibitions by p-nitrophenyl-N-substituted carbamates (1-6) are composed of two steps: (1) formation of the non-covalent enzyme-inhibitor complex (E:I) from the inhibitor and the enzyme and (2) formation of the tetrahedral enzyme-inhibitor adduct (E-I) from the E:I complex. From a stopped-flow apparatus, the dissociation constant for the E:I complex, KS, and the rate constant for formation of the tetrahedral E-I adduct from the E:I complex, k2 are obtained from the non-linear least-squares of curve fittings of first-order rate constant (k(obs)) versus inhibition concentration ([I]) plot against k(obs)=k2+k2[I]/(KS+[I]). Values of pKS, and log k2 are linearly correlated with the sigma* values with the rho* values of -2.0 and 0.36, respectively. Therefore, the E:I complexes are more positive charges than the inhibitors due to the rho* value of -2.0. The tetrahedral E-I adducts on the other hand are more negative charges than the E:I complexes due to the rho* value of 0.36. Formation of the E:I complex from the inhibitor and the enzyme are further divided into two steps: (1) the pre-equilibrium protonation of the inhibitor and (2) formation of the E:I complex from the protonated inhibitor and the enzyme.  相似文献   

19.
Citrate synthase complexes with the transition-state analog inhibitor, carboxymethyl-CoA (CM-CoA), are believed to mimic those with the activated form of acetyl-CoA. The X-ray structure [Karpusas, M., Branchaud, B., & Remington, S.J. (1990) Biochemistry 29, 2213] of the ternary complex of the enzyme, oxaloacetate, and CMCoA has been used as the basis for a proposal that a neutral enol of acetyl-CoA is that activated form. Since the inhibitor carboxyl has a pKa of 3.90, analogy with an enolic acetyl-CoA intermediate leads to the prediction that a proton should be taken up from solution upon formation of the analog complex so that the transition-state analog carboxyl is protonated when bound. We have obtained evidence in solution for this proposal by comparing the isoelectric points and the pH dependence of the dissociation constants of the ternary complexes of the pig heart enzyme with the neutral ground-state analog inhibitor, acetonyl-CoA (KCoA), and the anionic transition-state analog inhibitor (CMCoA) and by studying the NMR spectra of the transition-state analog complexes of allosteric (Escherichia coli) and nonallosteric (pig heart) enzymes. The pH dependence of the dissociation constant of the ground-state analog indicates no proton uptake, while that for the transition-state analog indicates that 0.55 +/- 0.04 proton is taken up when the analog binds to the citrate synthase-oxaloacetate binary complex. The overall charges of ternary complexes of the pig heart enzyme with the transition-state and ground-state analog inhibitors are the same, as monitored by their isoelectric points.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
An adenosine (phosphate) deaminase from the squid liver had much lower activity for 5′-deoxyadenosine than that for adenosine, 2′-, or 3′-deoxyadenosine. 3′-IMP and inosine as well as purine riboside and adenine competitively inhibited the deamination of adenosine 3′ phenylphosphonate by the enzyme, but 5′-AMP and 5′-IMP did not. The enzyme deaminated the 5′-hydroxyl terminal adenosine residue in dinucleotides and trinucleotide, but not the 3′-hydroxyl terminal one in dinucleotides. The 5′-hydroxyl group of the ribose moiety was necessary for the substrate binding and catalytic activity of the squid enzyme. These results indicated that the recognition of ribose moiety in the substrate by the squid enzyme might be intermediate between those by adenosine deaminase and adenosine (phosphate) deaminase from microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号