首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The SCF complex (Skp1-Cullin-1-F-box) and the APC/cyclosome (anaphase-promoting complex) are two ubiquitin ligases that play a crucial role in eukaryotic cell cycle control. In fission yeast F-box/WD-repeat proteins Pop1 and Pop2, components of SCF are required for cell-cycle-dependent degradation of the cyclin-dependent kinase (CDK) inhibitor Rum1 and the S-phase regulator Cdc18. Accumulation of these proteins in pop1 and pop2 mutants leads to re-replication and defects in sexual differentiation. Despite structural and functional similarities, Pop1 and Pop2 are not redundant homologues. Instead, these two proteins form heterodimers as well as homodimers, such that three distinct complexes, namely SCFPop1/Pop1, SCFPop1/Pop2 and SCFPop2/Pop2, appear to exist in the cell. The APC/cyclosome is responsible for inactivation of CDK/cyclins through the degradation of B-type cyclins. We have identified two novel components or regulators of this complex, called Apc10 and Ste9, which are evolutionarily highly conserved. Apc10 (and Ste9), together with Rum1, are required for the establishment of and progression through the G1 phase in fission yeast. We propose that dual downregulation of CDK, one via the APC/cyclosome and the other via the CDK inhibitor, is a universal mechanism that is used to arrest the cell cycle at G1.  相似文献   

2.
Although the yeast Saccharomyces cerevisiae has only one sphingolipid class with a head group based on phosphoinositol, the yeast Pichia pastoris as well as many other fungi have a second class, glucosylceramide, which has a glucose head group. These two sphingolipid classes are in addition distinguished by a characteristic structure of their ceramide backbones. Here, we investigate the mechanisms controlling substrate entry into the glucosylceramide branch of the pathway. By a combination of enzymatic in vitro studies and lipid analysis of genetically engineered yeast strains, we show that the ceramide synthase Bar1p occupies a key branching point in sphingolipid biosynthesis in P. pastoris. By preferring dihydroxy sphingoid bases and C(16)/C(18) acyl-coenzyme A as substrates, Bar1p produces a structurally well defined group of ceramide species, which is the exclusive precursor for glucosylceramide biosynthesis. Correlating with the absence of glucosylceramide in this yeast, a gene encoding Bar1p is missing in S. cerevisiae. We could not successfully investigate the second ceramide synthase in P. pastoris that is orthologous to S. cerevisiae Lag1p/Lac1p. By analyzing the ceramide and glucosylceramide species in a collection of P. pastoris knock-out strains in which individual genes encoding enzymes involved in glucosylceramide biosynthesis were systematically deleted, we show that the ceramide species produced by Bar1p have to be modified by two additional enzymes, sphingolipid Δ4-desaturase and fatty acid α-hydroxylase, before the final addition of the glucose head group by the glucosylceramide synthase. Together, this set of four enzymes specifically defines the pathway leading to glucosylceramide biosynthesis.  相似文献   

3.
CENP-A is a centromere-specific histone H3 variant that is- essential for faithful chromosome segregation in all eukaryotes thus far investigated. We genetically identified two factors, Ams2 and Mis6, each of which is required for the correct centromere localization of SpCENP-A (Cnp1), the fission yeast homologue of CENP-A. Ams2 is a cell-cycle-regulated GATA factor that localizes on the nuclear chromatin, including on centromeres, during the S phase. Ams2 may be responsible for the replication-coupled loading of SpCENP-A by facilitating nucleosomal formation during the S phase. Consistently, overproduction of histone H4, but not that of H3, suppressed the defect of SpCENP-A localization in Ams2-deficient cells. We demonstrated the existence of at least two distinct phases for SpCENP-A loading during the cell cycle: the S phase and the late-G2 phase. Ectopically induced SpCENP-A was efficiently loaded onto the centromeres in G2-arrested cells, indicating that SpCENP-A probably undergoes replication-uncoupled loading after the completion of S phase. This G2 loading pathway of SpCENP-A may require Mis6, a constitutive centromere-binding protein that is also implicated in the Mad2-dependent spindle attachment checkpoint response. Here, we discuss the functional relationship between the flexible loading mechanism of CENP-A and the plasticity of centromere chromatin formation in fission yeast.  相似文献   

4.
5.
How a given Ras prreotein coordinates multiple signaling inputs and outputs is a fundamental issue of signaling specificity. Schizosaccharomyces pombe contains one Ras, Ras1, that has two distinct outputs. Ras1 activates Scd1, a presumptive guanine nucleotide exchange factor (GEF) for Cdc42, to control morphogenesis and chromosome segregation, and Byr2, a component of a mitogen-activated protein kinase cascade, to control mating. So far there is only one established Ras1 GEF, Ste6. Paradoxically, ste6 null (ste6 Delta) mutants are sterile but normal in cell morphology. This suggests that Ste6 specifically activates the Ras1-Byr2 pathway and that there is another GEF capable of activating the Scd1 pathway. We thereby characterized a potential GEF, Efc25. Genetic data place Efc25 upstream of the Ras1-Scd1, but not the Ras1-Byr2, pathway. Like ras1 Delta and scd1 Delta, efc25 Delta is synthetically lethal with a deletion in tea1, a critical element for cell polarity control. Using truncated proteins, we showed that the C-terminal GEF domain of Efc25 is essential for function and regulated by the N terminus. We conclude that Efc25 acts as a Ras1 GEF specific for the Scd1 pathway. While ste6 expression is induced during mating, efc25 expression is constitutive. Moreover, Efc25 overexpression renders cells hyperelongated and sterile; the latter can be rescued by activated Ras1. This suggests that Efc25 can recruit Ras1 to selectively activate Scd1 at the expense of Byr2. Reciprocally, Ste6 overexpression can block Scd1 activation. We propose that external signals can partly segregate two Ras1 pathways by modulating GEF expression and that GEFs can influence how Ras is coupled to specific effectors.  相似文献   

6.
7.
8.

Background  

Inducible inactivation of a protein is a powerful approach for analysis of its function within cells. Fission yeast is a useful model for studying the fundamental mechanisms such as chromosome maintenance and cell cycle. However, previously published strategies for protein-depletion are successful only for some proteins in some specific conditions and still do not achieve efficient depletion to cause acute phenotypes such as immediate cell cycle arrest. The aim of this work was to construct a useful and powerful protein-depletion system in Shizosaccaromyces pombe.  相似文献   

9.
Dillerent chicken tissues are shown to display a clearly pronounced specificity relative to [2-14C] orotic acid and [5-3H]uridine as precursors of synthesis of the pool and RNA pyrimidine nucleotides. The fraction of pyrimidine nucleotides synthetized relative to the reserve pathway (uridine utilization) decreases in the series: kidneys greater than duodenum mucosa greater than lungs greater than liver greater than pancreas greater than bone marrow greater than brain greater than spleen. The results of [2-14C]orotic acid and [53H]uridine incorporation into UMP and CMP of the liver and spleen tissues RNA are interpreted in terms of the concept on existence of separate pools of pyrimidine phosphates--RNA precursors.  相似文献   

10.
The biosynthesis of gramicidin S in a cell-free system   总被引:3,自引:0,他引:3       下载免费PDF全文
1. A cell-free system prepared from Bacillus brevis cells, harvested in the late phase of growth and consisting of the 11000g supernatant, has been shown to incorporate into gramicidin S the five constituent amino acids added in labelled form. The results are consistent with complete synthesis and not merely a completion of pre-existing intermediate peptides. 2. The incorporation of 14C-labelled amino acids by the 11000g supernatant into gramicidin S requires an energy source. Omission of phosphoenolpyruvate and pyruvate kinase from the incubation mixture prevents incorporation into gramicidin S. The cell-free system incorporates [14C]-leucine, -proline and -phenylalanine over a period of 4hr. With [14C]leucine, incorporation into gramicidin S takes place in the range pH6–9 with maximum incorporation at pH7·0. High concentrations of chloramphenicol or puromycin decreased the incorporation into gramicidin S by only about 20%. 3. The 50000g supernatant exhibited no decrease in ability of incorporating [14C]valine into gramicidin S as compared with the 11000g supernatant. About 40% of the incorporating ability remained in the 105000g supernatant after 3hr. centrifugation. When recombining the 105000g sediment with the 105000g supernatant, some increase in incorporation over that obtained with the supernatant alone was obtained. The findings tend to support the view that gramicidin S is synthesized in a different manner from that of proteins.  相似文献   

11.
12.
Proteinase and peptidase activities of the fission yeast Schizosaccharomyces pombe were investigated. Several intracellular proteolytic enzymes were found: two endoproteinases, one carboxypeptidase, one aminopeptidase and one dipeptidyl-aminopeptidase. In addition, proteinase inhibitors were detected. In fresh crude extracts an activation procedure is needed to measure maximal activities of endoproteinases and carboxypeptidase, whose level is markedly dependent on growth medium composition and on growth phase, while aminopeptidase and dipeptidyl-aminopeptidase activities are very little, if at all, regulated by the carbon source.  相似文献   

13.
Intact cells of Flavobacterium dehydrogenans grown on glucose or acetate did not incorporate mevalonic acid-[14C]. After treatment with lysozyme the protoplasts were lysed by sonication in a dilute medium containing mevalonic acid-[14C] and the cell-free system produced incorporated label into uncyclized C40, monocyclic C45 and bicyclic C50 carotenoids of which decaprenoxanthin was the most abundant.With mevalonate-[2-14C,4R-4-3H1] the 14C:3H ratios of the carotenoids showed that the hydrogen atoms at C-2 and C-6 of the ring and that at C-3 of the 1-hydroxy, 2-methyl but-2-ene-4-yl residues of decaprenoxanthin were derived from the 4-pro-R hydrogen atom of mevalonic acid.Mevalonate-[2-14C,2R-2-3H1] and mevalonate-[2-14C,2S-2-3H1] gave ratios which showed that the C-4 hydrogen atoms of decaprenoxanthin were derived from the 2-pro-S hydrogen atom of mevalonic acid.  相似文献   

14.
Cell morphogenesis depends on polarized exocytosis. One widely held model posits that long-range transport and exocyst-dependent tethering of exocytic vesicles at the plasma membrane sequentially drive this process. Here, we describe that disruption of either actin-based long-range transport and microtubules or the exocyst did not abolish polarized growth in rod-shaped fission yeast cells. However, disruption of both actin cables and exocyst led to isotropic growth. Exocytic vesicles localized to cell tips in single mutants but were dispersed in double mutants. In contrast, a marker for active Cdc42, a major polarity landmark, localized to discreet cortical sites even in double mutants. Localization and photobleaching studies show that the exocyst subunits Sec6 and Sec8 localize to cell tips largely independently of the actin cytoskeleton, but in a cdc42 and phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2)–dependent manner. Thus in fission yeast long-range cytoskeletal transport and PIP2-dependent exocyst represent parallel morphogenetic modules downstream of Cdc42, raising the possibility of similar mechanisms in other cell types.  相似文献   

15.
Abstract: Plants and the fission yeast Schizosaccharomyces pombe synthesize small cadmium-binding peptides, called phytochelatins, in response to cadmium. Derived from glutathione (GSH: λ-Glu-Cys-Gly), they have the general structure (λ-Glu-Cys) n Gly, where n is 2–11. In order to study the biosynthesis of phytochelatins, we used the mutagen N -methyl- N '-nitro- N nitrosoguanidine (MNNG) to select mutants with a lowered GSH content. GSH-deficient mutants show a Cd-sensitive phenotype, whereas resistance to Cu is only slightly influenced. These Cd-sensitive mutants contain 2–15% of the wild-type GSH level. For three mutants a lowered activity of λ-glutamylcysteine synthetase was measured. One of the mutants was transformed to Cd-resistance and the complementing fragment was analyzed further. The complementing fragment hybridized with chromosome III. In the transformants, GSH content was restored up to wild-type levels, whereas the activity of λ-glutamylcysteine synthetase was significantly increased compared with the wild-type. Possible mechanisms for Cd-resistance in the transformants are discussed.  相似文献   

16.
17.
Summary Exposed to iodine vapors, colonies of a homothallic strain of Schizosaccharomyces pombe were of two classes: P, with many black streaks, and d, with scarcely any. Contiguous P and d colonies, but not contiguous P colonies nor contiguous d colonies, gave the iodine junction reaction, a black line along the common boundary of two colonies. Neither class could be purified. On replating, a P colony gave rise to a P plate, which contained mostly P but also d colonies; a d colony gave rise to a d plate, which contained mostly d but also P colonies. The P/d colony ratio of a fresh isolate (if isolated as a P colony) was very high or (if isolated as a d conoly) very low. It fell, if initially high, or rose, if initially low, on subsequent replatings of the same isolate. Maintained for many generations, an isolate attained a fairly constant P/d colony ratio that was less than unity. Tetrad analysis showed 2:2 segregation of the classes. We conclude that a homothallic clone is a mixture of two types of cells: P, which gives rise to a P colony, and d, to a d colony. The two types are sexually complementary and interconvertible. The rate of intercoversion of P to d exceeds that of d to P by a factor of about 2.NRCC no.: 17334  相似文献   

18.
19.
A new product obtained by incubation of [2-14C ]-mevalonic acid with a cell-free system from Cucurbita maxima endosperm was identified by GC-MS as ent-kaura-6,16-dien-19-oic acid. When this compound was reincubated with the microsomal fraction it was converted to 7β-hydroxykaurenolide and hence to 7β,12α-dihydroxykaurenolide. The dienoic acid was also obtained by incubation of ent-kaurene, ent1-kaurenol, ent-kaurenal and ent-kaurenoic acid, but not ent-7α-hydroxykaurenoic acid, with the microsomal fraction. Thus, in the C. maxima cell-free system, the kaurenolides are formed by a pathway which branches from the GA pathway at ent-kaurenoic acid and proceeds via the dienoic acid.  相似文献   

20.
We isolated and characterized a nickel (Ni2+)-resistant mutant (GA1) of Schizosaccharomyces pombe. This mutant strain displayed resistance to both Ni2+ and Zn2+, but not to Cd2+, Co2+, and Cu2+. The growth rate of GA1 increased proportionally with increasing Mg2+ concentrations until 50 mM Mg2+. The GA1 mutation phenotype suggests a defect in Mg2+ uptake. Sequence analysis of the GA1 open reading frame (ORF) O13779, which is homologous to the prokaryotic and eukaryotic CorA Mg2+ transport systems, revealed a point mutation at codon 153 (ccc to acc) resulting in a Pro 153Thr substitution in the N-terminus of the CorA domain. Our results provide novel genetic information about Ni2+ resistance in fission yeast. Specifically, that reducing Mg2+ influx through the CorA Mg2+ transport membrane protein confers Ni2+ resistance in S. pombe. We also report that Ni2+ ion detoxification of the fission yeast is related to histidine metabolism and pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号