首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human DNA polymerase iota (pol(iota)) is a recently discovered enzyme that exhibits extremely low fidelity on undamaged DNA templates. Here, we show that poliota is able to facilitate limited translesion replication of a thymine-thymine cyclobutane pyrimidine dimer (CPD). More importantly, however, the bypass event is highly erroneous. Gel kinetic assays reveal that pol(iota) misinserts T or G opposite the 3' T of the CPD approximately 1.5 times more frequently than the correct base, A. While pol(iota) is unable to extend the T.T mispair significantly, the G.T mispair is extended and the lesion completely bypassed, with the same efficiency as that of the correctly paired A. T base pair. By comparison, pol(iota) readily misinserts two bases opposite a 6-4 thymine-thymine pyrimidine-pyrimidone photoproduct (6-4PP), but complete lesion bypass is only a fraction of that observed with the CPD. Our data indicate, therefore, that poliota possesses the ability to insert nucleotides opposite UV photoproducts as well as to perform unassisted translesion replication that is likely to be highly mutagenic.  相似文献   

2.
Seki M  Wood RD 《DNA Repair》2008,7(1):119-127
DNA polymerase theta (pol theta) is a nuclear A-family DNA polymerase encoded by the POLQ gene in vertebrate cells. The biochemical properties of pol theta and of Polq-defective mice have suggested that pol theta participates in DNA damage tolerance. For example, pol theta was previously found to be proficient not only in incorporation of a nucleotide opposite a thymine glycol or an abasic site, but also extends a polynucleotide chain efficiently from the base opposite the lesion. We carried out experiments to determine whether this ability to extend from non-standard termini is a more general property of the enzyme. Pol theta extended relatively efficiently from matched termini as well as termini with A:G, A:T and A:C mismatches, with less descrimination than a well-studied A-family DNA polymerase, exonuclease-free pol I from E. coli. Although pol theta was unable to, by itself, bypass a cyclobutane pyrimidine dimer or a (6-4) photoproduct, it could perform some extension from primers with bases placed across from these lesions. When pol theta was combined with DNA polymerase iota, an enzyme that can insert a base opposite a UV-induced (6-4) photoproduct, complete bypass of a (6-4) photoproduct was possible. These data show that in addition to its ability to insert nucleotides opposite some DNA lesions, pol theta is proficient at extension of unpaired termini. These results show the potential of pol theta to act as an extender after incorporation of nucleotides by other DNA polymerases, and aid in understanding the role of pol theta in somatic mutagenesis and genome instability.  相似文献   

3.
Xeroderma pigmentosum variant (XPV) patients carry germ-line mutations in DNA polymerase eta (poleta), a major translesion DNA synthesis (TLS) polymerase, and exhibit severe sunlight sensitivity and high predisposition to skin cancer. Using a quantitative TLS assay system based on gapped plasmids we analyzed TLS across a site-specific TT CPD (thymine-thymine cyclobutane pyrimidine dimer) or TT 6-4 PP (thymine-thymine 6-4 photoproduct) in three pairs of poleta-proficient and deficient human cells. TLS across the TT CPD lesion was reduced by 2.6-4.4-fold in cells lacking poleta, and exhibited a strong 6-17-fold increase in mutation frequency at the TT CPD. All targeted mutations (74%) in poleta-deficient cells were opposite the 3'T of the CPD, however, a significant fraction (23%) were semi-targeted to the nearest nucleotides flanking the CPD. Deletions and insertions were observed at a low frequency, which increased in the absence of poleta, consistent with the formation of double strand breaks due to defective TLS. TLS across TT 6-4 PP was about twofold lower than across CPD, and was marginally reduced in poleta-deficient cells. TLS across TT 6-4 PP was highly mutagenic (27-63%), with multiple mutations types, and no significant difference between cells with or without poleta. Approximately 50% of the mutations formed were semi-targeted, of which 84-93% were due to the insertion of an A opposite the template G 5' to the 6-4 PP. These results, which are consistent with the UV hyper-mutability of XPV cells, highlight the critical role of poleta in error-free TLS across CPD in human cells, and suggest a potential involvement, although minor, of poleta in TLS across 6-4 PP under some conditions.  相似文献   

4.
Yagi Y  Ogawara D  Iwai S  Hanaoka F  Akiyama M  Maki H 《DNA Repair》2005,4(11):1252-1269
In translesion synthesis (TLS), specialized DNA polymerases (pols) facilitate progression of replication forks stalled by DNA damage. Although multiple TLS pols have been identified in eukaryotes, little is known about endogenous TLS pols and their relative contributions to TLS in vivo because of their low cellular abundance. Taking advantage of Xenopus laevis oocyte cells, with their extraordinary size and abundant enzymes involved in DNA metabolism, we have identified and characterized endogenous TLS pols for DNA damage induced by ultraviolet (UV) irradiation. We designed a TLS assay which monitors primer elongation on a synthetic oligomer template over a single UV-induced lesion, either a cys-syn cyclobutane pyrimidine dimer (CPD) or a pyrimidine (6-4) pyrimidone photoproduct. Four distinct TLS activities (TLS1-TLS4) were identified in X. laevis oocyte extracts, using three template/primer (T/P) DNA substrates having various sites at which primer extension is initiated relative to the lesion. TLS1 and TLS2 activities appear to be sequence-dependent. TLS3 and TLS4 extended the primers over the CPD in an error-free manner irrespective of sequence context. Base insertion opposite the CPD of the T/P substrate in which the 3'-end of the primer is placed one base upstream of the lesion was observed only with TLS3. TLS3 and TLS4 showed primer extension with similar efficiencies on the T/P substrate whose 3'-primer terminal dinucleotide (AA) was complementary to the CPD lesion. Investigations with antibodies and recombinant pols revealed that TLS3 and TLS4 were most likely attributable to pol eta and pol kappa, respectively. These results indicate that error-free insertion in CPD bypass is due mainly to pol eta (TLS3) in the extracts, and suggest that pol kappa (TLS4) may assist pol eta (TLS3) in error-free extension during CPD bypass.  相似文献   

5.
6.
Overexpression of the error-prone DNA polymerase beta (Pol beta) has been found to increase spontaneous mutagenesis by competing with the replicative polymerases during DNA replication. Here, we investigate an additional mechanism potentially used by Pol beta to enhance genetic instability via its ability to incorporate ribonucleotides into DNA. By using an in vitro primer extension assay, we show that purified human and calf thymus Pol beta can synthesize up to 8-mer long RNA. Moreover, Pol beta can efficiently incorporate rCTP opposite G in the absence of dCTP and, to a lesser extent, rATP opposite T in the absence of dATP and rGTP opposite C in the absence of dGTP. Recently, Pol beta was shown to catalyze in vitro translesion replication of a thymine cyclobutane pyrimidine dimer (CPD). Here, we investigate if ribonucleotides could be incorporated opposite the CPD damage and modulate the efficiency of the bypass process. We find that all four rNTPs can be incorporated opposite the CPD lesion, and that this process affects translesion synthesis. We discuss how incorporation of ribonucleotides into DNA may contribute to the high frequency of mutagenesis observed in Pol beta up-regulating cells.  相似文献   

7.
Analysis of the spectrum of UV-induced mutations generated in synchronized wild-type S-phase cells reveals that only approximately 25% of mutations occur at thymine (T), whilst 75% are targeted to cytosine (C). The mutational spectra changes dramatically in XP-V cells, devoid of poleta, where approximately 45% of mutations occur at Ts and approximately 55% at Cs. At the present time, it is unclear whether the C-->T mutations actually represent true misincorporations opposite C, or perhaps occur as the result of the correct incorporation of adenine (A) opposite a C in a UV-photoproduct that had undergone deamination to uracil (U). In order to assess the role that human poliota might play, if any, in the replicative bypass of such UV-photoproducts, we have analyzed the efficiency and fidelity of pol iota-dependent bypass of a T-U cyclobutane pyrimidine dimer (CPD) in vitro. Interestingly, pol iota-dependent bypass of a T-U CPD occurs more efficiently than that of a corresponding T-T CPD. Guanine (G) was misincorporated opposite the 3'U of the T-U CPD only two-fold less frequently than the correct Watson-Crick base, A. While pol iota generally extended the G:3'U-CPD mispairs less efficiently than the correctly paired primer, pol iota-dependent extension was equal to, or greater than that observed with human pols eta and kappa and S. cerevisiae pol zeta under the same assay conditions. Thus, we hypothesize that the ability of pol iota to bypass T-U CPDs through the frequent misincorporation of G opposite the 3'U of the CPD, may provide a mechanism whereby human cells can decrease the mutagenic potential of these lesions.  相似文献   

8.
We obtained a monoclonal antibody directed against UV-induced DNA damage. Analysis of the antigenic determinant in UV-irradiated DNA recognized by this antibody, 64M-1, revealed that it bound UV-irradiated oligo- or poly-nucleotides containing thymine-thymine or thymine-cytosine sequences. The antibody failed to bind DNA irradiated with 313 nm UV in the presence of acetophenone, which contained predominantly thymine dimers as DNA damage. The binding activity of this antibody to 254-nm UV-irradiated DNA decreased with 313-nm UV irradiation, and the decrease of this binding activity correlated with the decrease of fluorescence corresponding to (6-4) photoproducts. These results suggest that the antigenic determinant recognized by this monoclonal antibody is a (6-4) photoproduct. Using autoradiography with 3H-antibody, we could detect the formation of the (6-4) photoproduct in individual human cells irradiated with 254-nm UV doses as low as 20 J/m2.  相似文献   

9.
DNA polymerases beta and eta are among the few eukaryotic polymerases known to efficiently bypass cisplatin and oxaliplatin adducts in vitro. Our laboratory has previously established that both polymerases misincorporated dTTP with high frequency across from cisplatin- and oxaliplatin-GG adducts. This decrease in polymerase fidelity on platinum-damaged DNA could lead to in vivo mutations, if this base substitution were efficiently elongated. In this study, we performed a steady-state kinetic analysis of the steps required for fixation of dTTP misinsertion during translesion synthesis past cisplatin- and oxaliplatin-GG adducts by pol beta and pol eta. The efficiency of translesion synthesis by pol eta past Pt-GG adducts was very similar to that observed for this polymerase when the template contains thymine-thymine dimers. This finding suggested that pol eta could play a role in translesion synthesis past platinum-GG adducts in vivo. On the other hand, translesion synthesis past platinum-GG adducts by pol beta was much less efficient. Translesion synthesis by pol eta is likely to be predominantly error-free, since the probability of correct insertion and extension by pol eta was 1000-2000-fold greater than the probability of incorrect insertion and extension. Our results also indicated that for pol eta the frequency of misincorporation is the same across from the 3'G and the 5'G of the platinum-GG adducts for both cisplatin and oxaliplatin adducts. On the other hand, pol beta is more likely to misinsert at the 3'G of the adducts and misinsertion occurs at higher frequency for oxaliplatin-GG than for cisplatin-GG adducts.  相似文献   

10.
Escherichia coli polymerase V (pol V/UmuD(2)'C) is a low-fidelity DNA polymerase that has recently been shown to avidly incorporate ribonucleotides (rNTPs) into undamaged DNA. The fidelity and sugar selectivity of pol V can be modified by missense mutations around the "steric gate" of UmuC. Here, we analyze the ability of three steric gate mutants of UmuC to facilitate translesion DNA synthesis (TLS) of a cyclobutane pyrimidine dimer (CPD) in vitro, and to promote UV-induced mutagenesis and cell survival in vivo. The pol V (UmuC_F10L) mutant discriminates against rNTP and incorrect dNTP incorporation much better than wild-type pol V and although exhibiting a reduced ability to bypass a CPD in vitro, does so with high-fidelity and consequently produces minimal UV-induced mutagenesis in vivo. In contrast, pol V (UmuC_Y11A) readily misincorporates both rNTPs and dNTPs during efficient TLS of the CPD in vitro. However, cells expressing umuD'C(Y11A) were considerably more UV-sensitive and exhibited lower levels of UV-induced mutagenesis than cells expressing wild-type umuD'C or umuD'C(Y11F). We propose that the increased UV-sensitivity and reduced UV-mutability of umuD'C(Y11A) is due to excessive incorporation of rNTPs during TLS that are subsequently targeted for repair, rather than an inability to traverse UV-induced lesions.  相似文献   

11.
UV light-induced DNA lesions block the normal replication machinery. Eukaryotic cells possess DNA polymerase eta (Poleta), which has the ability to replicate past a cis-syn thymine-thymine (TT) dimer efficiently and accurately, and mutations in human Poleta result in the cancer-prone syndrome, the variant form of xeroderma pigmentosum. Here, we test Poleta for its ability to bypass a (6-4) TT lesion which distorts the DNA helix to a much greater extent than a cis-syn TT dimer. Opposite the 3' T of a (6-4) TT photoproduct, both yeast and human Poleta preferentially insert a G residue, but they are unable to extend from the inserted nucleotide. DNA Polzeta, essential for UV induced mutagenesis, efficiently extends from the G residue inserted opposite the 3' T of the (6-4) TT lesion by Poleta, and Polzeta inserts the correct nucleotide A opposite the 5' T of the lesion. Thus, the efficient bypass of the (6-4) TT photoproduct is achieved by the combined action of Poleta and Polzeta, wherein Poleta inserts a nucleotide opposite the 3' T of the lesion and Polzeta extends from it. These biochemical observations are in concert with genetic studies in yeast indicating that mutations occur predominantly at the 3' T of the (6-4) TT photoproduct and that these mutations frequently exhibit a 3' T-->C change that would result from the insertion of a G opposite the 3' T of the (6-4) TT lesion.  相似文献   

12.
Humans possess four Y-family polymerases: pols eta, iota, kappa and the Rev1 protein. The pivotal role that pol eta plays in protecting us from UV-induced skin cancers is unquestioned given that mutations in the POLH gene (encoding pol eta), lead to the sunlight-sensitive and cancer-prone xeroderma pigmentosum variant phenotype. The roles that pols iota, kappa and Rev1 play in the tolerance of UV-induced DNA damage is, however, much less clear. For example, in vitro studies in which the ability of pol iota to bypass UV-induced cyclobutane pyrimidine dimers (CPDs) or 6-4 pyrimidine-pyrimidone (6-4PP) lesions has been assayed, are somewhat varied with results ranging from limited misinsertion opposite CPDs to complete lesion bypass. We have tested the hypothesis that such discrepancies might have arisen from different assay conditions and local sequence contexts surrounding each UV-photoproduct and find that pol iota can facilitate significant levels of unassisted highly error-prone bypass of a T-T CPD, particularly when the lesion is located in a 3'-A[T-T]A-5' template sequence context and the reaction buffer contains no KCl. When encountering a T-T 6-4PP dimer under the same assay conditions, pol iota efficiently and accurately inserts the correct base, A, opposite the 3'T of the 6-4PP by factors of approximately 10(2) over the incorporation of incorrect nucleotides, while incorporation opposite the 5'T is highly mutagenic. Pol kappa has been proposed to function in the bypass of UV-induced lesions by helping extend primers terminated opposite CPDs. However, we find no evidence that the combined actions of pol iota and pol kappa result in a significant increase in bypass of T-T CPDs when compared to pol iota alone. Our data suggest that under certain conditions and sequence contexts, pol iota can bypass T-T CPDs unassisted and can efficiently incorporate one or more bases opposite a T-T 6-4PP. Such biochemical activities may, therefore, be of biological significance especially in XP-V cells lacking the primary T-T CPD bypassing enzyme, pol eta.  相似文献   

13.
The yeast REV3 gene encodes the catalytic subunit of DNA polymerase zeta (pol zeta), a B family polymerase that performs mutagenic DNA synthesis in cells. To probe pol zeta mutagenic functions, we generated six mutator alleles of REV3 with amino acid replacements for Leu979, a highly conserved residue inferred to be at the pol zeta active site. Replacing Leu979 with Gly, Val, Asn, Lys, Met or Phe resulted in yeast strains with elevated UV-induced mutant frequencies. While four of these strains had reduced survival following UV irradiation, the rev3-L979F and rev3-L979M strains had normal survival, suggesting retention of pol zeta catalytic activity. UV mutagenesis in the rev3-L979F background was increased when photoproduct bypass by pol eta was eliminated by deletion of RAD30. The rev3-L979F mutation had little to no effect on mutagenesis in an ogg1Delta background, which cannot repair 8-oxo-guanine in DNA. UV-induced can1 mutants from rev3-L979F and rad30Deltarev3-L979F strains primarily contained base substitutions and complex mutations, suggesting error-prone bypass of UV photoproducts by L979F pol zeta. Spontaneous mutation rates in rev3-L979F and rev3-L979M strains are elevated by about two-fold overall and by two- to eight-fold for C to G transversions and complex mutations, both of which are known to be generated by wild-type pol zetain vitro. These results indicate that Rev3p-Leu979 replacements reduce the fidelity of DNA synthesis by yeast pol zetain vivo. In conjunction with earlier studies, the data establish that the conserved amino acid at the active site location occupied by Leu979 is critical for the fidelity of all four yeast B family polymerases. Reduced fidelity with retention of robust polymerase activity suggests that the homologous rev3-L979F allele may be useful for analyzing pol zeta functions in mammals, where REV3 deletion is lethal.  相似文献   

14.
The encounter of replication forks with DNA lesions may lead to fork arrest and/or the formation of single-stranded gaps. A major strategy to cope with these replication irregularities is translesion DNA replication (TLS), in which specialized error-prone DNA polymerases bypass the blocking lesions. Recent studies suggest that TLS across a particular DNA lesion may involve as many as four different TLS polymerases, acting in two-polymerase reactions in which insertion by a particular polymerase is followed by extension by another polymerase. Insertion determines the accuracy and mutagenic specificity of the TLS reaction, and is carried out by one of several polymerases such as polη, polκ or polι. In contrast, extension is carried out primarily by polζ. In cells from XPV patients, which are deficient in TLS across cyclobutane pyrimidine dimers (CPD) due to a deficiency in polη, TLS is carried out by at least two backup reactions each involving two polymerases: One reaction involves polκ and polζ, and the other polι and polζ. These mechanisms may also assist polη in normal cells under an excessive amount of UV lesions.  相似文献   

15.
16.
Though DNA polymerase I (poll) of Escherichia (E.) coli is understood to play a role in repair synthesis of excision repair, it is still obscure whether DNA polymerase beta (pol beta) plays a similar role in eukaryotic cells. To estimate the role of pol beta in excision repair processes, we inserted the rat pol beta gene into several mutant E. coli defective in a diverse set of enzymatic activities of poll. UV resistance was seen only when the 5'----3' exonuclease (exo) activity of poll molecules remained. Therefore it is suggested that 5'----3' exo activity as well as pol beta activity are essential for repair synthesis of excision repair in eukaryotic cells.  相似文献   

17.
The yeast RAD30-encoded DNA polymerase eta (Poleta) bypasses a cis-syn thymine-thymine dimer efficiently and accurately. Human DNA polymerase eta functions similarly in the bypass of this lesion, and mutations in human Poleta result in the cancer prone syndrome, the variant form of xeroderma pigmentosum. UV light, however, also elicits the formation of cis-syn cyclobutane dimers and (6-4) photoproducts at 5'-CC-3' and 5'-TC-3' sites, and in both yeast and human DNA, UV-induced mutations occur primarily by 3' C to T transitions. Genetic studies presented here reveal a role for yeast Poleta in the error-free bypass of cyclobutane dimers and (6-4) photoproducts formed at CC and TC sites. Thus, by preventing UV mutagenesis at a wide spectrum of dipyrimidine sites, Poleta plays a pivotal role in minimizing the incidence of sunlight-induced skin cancers in humans.  相似文献   

18.
The mutagenic properties of UV-induced photoproducts, both the cis-syn thymine-thymine dimer (TT) and the thymine-thymine pyrimidine pyrimidone (6-4) photoproduct [T(6-4)T] were studied in mammalian cells using shuttle vectors. A shuttle vector able to replicate in both mammalian cells and bacteria was produced in its single-stranded DNA form. A unique photoproduct was inserted at a single restriction site and after recircularization of the single-stranded DNA vector, this latter was transfected into simian COS7 cells. After DNA replication the vector was extracted from cells and used to transform bacteria. Amplified DNA was finally analyzed without any selective screening, DNA from randomly picked bacterial colonies being directly sequenced. Our results show clearly that both lesions are mutagenic, but at different levels. Mutation frequencies of 2 and 60% respectively were observed with the TT dimer and the T(6-4)T. With the TT dimer the mutations were targeted on the 3'-T. With the T(6-4)T a large variety of mutations were observed. A majority of G-->T transversions were semi-targeted to the base before the 5'-T of the photoproduct. These kinds of mutations were not observed when the same plasmid was transfected directly into SOS-induced JM105 bacteria or when the T(6-4)T oligonucleotide inserted in a different plasmid was replicated in SOS-induced SMH10 Escherichia coil bacteria. These semi-targeted mutations are therefore the specific result of bypass of the T(6-4)T lesion in COS7 cells by one of the eukaryotic DNA polymerases.  相似文献   

19.
Sunlight-induced C to T mutation hotspots in skin cancers occur primarily at methylated CpG sites that coincide with sites of UV-induced cyclobutane pyrimidine dimer (CPD) formation. The C or 5-methyl-C in CPDs are not stable and deaminate to U and T, respectively, which leads to the insertion of A by DNA polymerase η and defines a probable mechanism for the origin of UV-induced C to T mutations. We have now determined the photoproduct formation and deamination rates for 10 consecutive T=mCG CPDs over a full helical turn at the dyad axis of a nucleosome and find that whereas photoproduct formation and deamination is greatly inhibited for the CPDs closest to the histone surface, it is greatly enhanced for the outermost CPDs. Replacing the G in a T=mCG CPD with A greatly decreased the deamination rate. These results show that rotational position and flanking sequence in a nucleosome can significantly and synergistically modulate CPD formation and deamination that contribute to C to T mutations associated with skin cancer induction and may have influenced the evolution of the human genome.  相似文献   

20.
DNA polymerase η (pol η) synthesizes across from damaged DNA templates in order to prevent deleterious consequences like replication fork collapse and double-strand breaks. This process, termed translesion synthesis (TLS), is an overall positive for the cell, as cells deficient in pol η display higher mutation rates. This outcome occurs despite the fact that the in vitro fidelity of bypass by pol η alone is moderate to low, depending on the lesion being copied. One possible means of increasing the fidelity of pol η is interaction with replication accessory proteins present at the replication fork. We have previously utilized a bacteriophage based screening system to measure the fidelity of bypass using purified proteins. Here we report on the fidelity effects of a single stranded binding protein, replication protein A (RPA), when copying the oxidative lesion 7,8-dihydro-8-oxo-guanine(8-oxoG) and the UV-induced cis-syn thymine-thymine cyclobutane pyrimidine dimer (T-T CPD). We observed no change in fidelity dependent on RPA when copying these damaged templates. This result is consistent in multiple position contexts. We previously identified single amino acid substitution mutants of pol η that have specific effects on fidelity when copying both damaged and undamaged templates. In order to confirm our results, we examined the Q38A and Y52E mutants in the same full-length construct. We again observed no difference when RPA was added to the bypass reaction, with the mutant forms of pol η displaying similar fidelity regardless of RPA status. We do, however, observe some slight effects when copying undamaged DNA, similar to those we have described previously. Our results indicate that RPA by itself does not affect pol η dependent lesion bypass fidelity when copying either 8-oxoG or T-T CPD lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号