共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytochrome c release from mitochondria is a critical event in the apoptosis induction. Dissociation of cytochrome c from the mitochondrial inner membrane (IMM) is a necessary first step for cytochrome c release. In the present study, the effect of reactive oxygen species (ROS) on the dissociation of cytochrome c from beef-heart submitochondrial particles (SMP) and on the cardiolipin content was investigated. Exposure of SMP to mitochondrial-mediated ROS generation resulted in a large dissociation of cytochrome c from SMP and in a parallel loss of cardiolipin. Both these effects were directly and significantly correlated and also abolished by superoxide dismutase+catalase. These results demonstrate that ROS generation induces the dissociation of cytochrome c from IMM via cardiolipin peroxidation. The data may prove useful in clarifying the molecular mechanism underlying the release of cytochrome c from the mitochondria to the cytosol. 相似文献
2.
Reactive oxygen species affect mitochondrial electron transport complex I activity through oxidative cardiolipin damage 总被引:12,自引:0,他引:12
The aim of this study was to investigate the influence of reactive oxygen species (ROS) on the activity of complex I and on the cardiolipin content in bovine heart submitochondrial particles (SMP). ROS were generated through the use of xanthine/xanthine oxidase (X/XO) system. Treatment of SMP with X/XO resulted in a large production of superoxide anion, detected by acetylated cytochrome c method, which was blocked by superoxide dismutase (SOD). Exposure of SMP to ROS generation resulted in a marked loss of complex I activity and to parallel loss of mitochondrial cardiolipin content. Both these effects were completely abolished by SOD+catalase. Exogenous added cardiolipin was able to almost completely restore the ROS-induced loss of complex I activity. No restoration was obtained with other major phospholipid components of the mitochondrial membrane such as phosphatidylcholine and phosphatidylethanolamine, nor with peroxidized cardiolipin. These results demonstrate that ROS affect the mitochondrial complex I activity via oxidative damage of cardiolipin which is required for the functioning of this multisubunit enzyme complex. These results may prove useful in probing molecular mechanisms of ROS-induced peroxidative damage to mitochondria, which have been proposed to contribute to those pathophysiological conditions characterized by an increase in the basal production of reactive oxygen species such as aging, ischemia/reperfusion and chronic degenerative diseases. 相似文献
3.
The effect of reactive oxygen species (ROS), produced by the mitochondrial respiratory chain, on the activity of cytochrome c oxidase and on the cardiolipin content in bovine heart submitochondrial particles (SMP) was studied. ROS were produced by treatment of succinate-respiring SMP with antimycin A. This treatment resulted in a large production of superoxide anion, measured by epinephrine method, which was blocked by superoxide dismutase (SOD). Exposure of SMP to mitochondrial mediated ROS generation, led to a marked loss of cytochrome c oxidase activity and to a parallel loss of cardiolipin content. Both these effects were completely abolished by SOD+catalase. Added cardiolipin was able to almost completely restore the ROS-induced loss of cytochrome c oxidase activity. No restoration was obtained with peroxidized cardiolipin. These results demonstrate that mitochondrial mediated ROS generation affects the activity of cytochrome c oxidase via peroxidation of cardiolipin which is needed for the optimal functioning of this enzyme complex. These results may prove useful in probing molecular mechanism of ROS-induced peroxidative damage to mitochondria which have been proposed to contribute to aging, ischemia/reperfusion and chronic degenerative diseases. 相似文献
4.
Selivanov VA Votyakova TV Pivtoraiko VN Zeak J Sukhomlin T Trucco M Roca J Cascante M 《PLoS computational biology》2011,7(3):e1001115
Reactive oxygen species (ROS) produced in the mitochondrial respiratory chain (RC) are primary signals that modulate cellular adaptation to environment, and are also destructive factors that damage cells under the conditions of hypoxia/reoxygenation relevant for various systemic diseases or transplantation. The important role of ROS in cell survival requires detailed investigation of mechanism and determinants of ROS production. To perform such an investigation we extended our rule-based model of complex III in order to account for electron transport in the whole RC coupled to proton translocation, transmembrane electrochemical potential generation, TCA cycle reactions, and substrate transport to mitochondria. It fits respiratory electron fluxes measured in rat brain mitochondria fueled by succinate or pyruvate and malate, and the dynamics of NAD(+) reduction by reverse electron transport from succinate through complex I. The fitting of measured characteristics gave an insight into the mechanism of underlying processes governing the formation of free radicals that can transfer an unpaired electron to oxygen-producing superoxide and thus can initiate the generation of ROS. Our analysis revealed an association of ROS production with levels of specific radicals of individual electron transporters and their combinations in species of complexes I and III. It was found that the phenomenon of bistability, revealed previously as a property of complex III, remains valid for the whole RC. The conditions for switching to a state with a high content of free radicals in complex III were predicted based on theoretical analysis and were confirmed experimentally. These findings provide a new insight into the mechanisms of ROS production in RC. 相似文献
5.
Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing 总被引:14,自引:0,他引:14
Chandel NS McClintock DS Feliciano CE Wood TM Melendez JA Rodriguez AM Schumacker PT 《The Journal of biological chemistry》2000,275(33):25130-25138
During hypoxia, hypoxia-inducible factor-1alpha (HIF-1alpha) is required for induction of a variety of genes including erythropoietin and vascular endothelial growth factor. Hypoxia increases mitochondrial reactive oxygen species (ROS) generation at Complex III, which causes accumulation of HIF-1alpha protein responsible for initiating expression of a luciferase reporter construct under the control of a hypoxic response element. This response is lost in cells depleted of mitochondrial DNA (rho(0) cells). Overexpression of catalase abolishes hypoxic response element-luciferase expression during hypoxia. Exogenous H(2)O(2) stabilizes HIF-1alpha protein during normoxia and activates luciferase expression in wild-type and rho(0) cells. Isolated mitochondria increase ROS generation during hypoxia, as does the bacterium Paracoccus denitrificans. These findings reveal that mitochondria-derived ROS are both required and sufficient to initiate HIF-1alpha stabilization during hypoxia. 相似文献
6.
7.
Wonjong Lee 《Free radical research》2018,52(1):39-50
Itraconazole (ITC), a well-known fungistatic agent, has potent fungicidal activity against Candida albicans. However, its mechanism of fungicidal activity has not been elucidated yet, and we aimed to identify the mechanism of ITC against C. albicans. ITC caused cell shrinkage via potassium leakage through the ion channel. Since shrunken cells could indicate apoptosis, we investigated apoptotic features. Annexin V-FITC and TUNEL assays indicated that fungicidal activity of ITC was involved in apoptosis. Subsequently, we confirmed an intracellular factor that could cause apoptosis. ITC treatment caused reactive oxygen species (ROS) accumulation. To confirm whether ROS is related with ITC-triggered cell death, cell viability was examined using the ROS scavenger N-acetylcysteine (NAC). NAC pretreatment recovered ITC-induced cell death, indicating that antifungal activity of ITC is associated with ROS, which is also confirmed by impaired glutathione-related antioxidant system and oxidized intracellular lipids. Moreover, ITC-induced mitochondrial dysfunction, in turn, triggered cytochrome c release and metacaspase activation, leading to apoptosis. Unlike the only ITC-treatment group, cells with NAC pretreatment did not show significant damage to mitochondria, and attenuated apoptotic features. Therefore, our results suggest that ITC induces apoptosis as fungicidal mechanism, and intracellular ROS is major factor to trigger the apoptosis by ITC in C. albicans. 相似文献
8.
Using AS-30D rat ascites hepatoma cells, we studied the modulating action of various antioxidants, inhibitors of mitochondrial permeability transition pore and inhibitors of the respiratory chain on Cd2+-produced cytotoxicity. It was found that Cd2+ induced both necrosis and apoptosis in a time- and dose-dependent way. This cell injury involved dissipation of the mitochondrial transmembrane potential, respiratory dysfunction and initial increase of the generation of reactive oxygen species (ROS), followed by its decrease after prolonged incubation. Inhibitors of the mitochondrial permeability transition pore, cyclosporin A and bongkrekic acid, and inhibitors of respiratory complex III, stigmatellin and antimycin A, but not inhibitor of complex I, rotenone, partly prevented necrosis evoked by exposure of the cells to Cd2+. Apoptosis of the cells was partly prevented by free radical scavengers and by preincubation with N-acetylcysteine. Stigmatellin, antimycin A and cyclosporin A also abolished Cd2+-induced increase in ROS generation. It is concluded that Cd2+ toxicity in AS-30D rat ascites hepatoma, manifested by cell necrosis and/or apoptosis, involves ROS generation, most likely at the level of respiratory complex III, and is related to opening of the mitochondrial permeability transition pore. 相似文献
9.
In mitochondria from most organisms, including Neurospora crassa , dimeric complex III was found associated with complex I. Additional association of complex IV with this core structure leads to the formation of a respirasome. It was recently described for bacteria and mammals that complex III is needed for the assembly/stability of complex I. To elucidate the role of complex III in the organization of the respiratory chain of N. crassa , we analysed strains devoid of either the Rieske iron-sulphur or the COREII polypeptide subunits. The mutants display reduced growth, are female sterile and lack active complex III. The supramolecular organization of the oxidative phosphorylation system was characterized by electrophoretic analyses and the efficiency of the respiratory chain analysed by oxygen consumption measurements. The results obtained indicate that absence of complex III activity is not associated with the absence of complex I or complex IV, and leads to the induction of alternative oxidase. Complex III mutant mitochondria are devoid of respirasomes but contain significant amounts of dimeric complex I (I2 ) and of the supercomplex I1 IV1 . Moreso, for the first time the alternative oxidase was found associated with dimeric complex IV and with supercomplex I1 IV1 . 相似文献
10.
Study on the effect of pentachlorophenol on the succinate oxidase activity of submitochondrial particles and on the reduction level of cytochromes b revealed that the Ki value for PCP is equal to 2-4 microM. The succinate-DCPIP-reductase activity is noncompetitively inhibited with PCP (by 75-85%) (Ki = 3.6 microM). In the case of the succinate-PMS-reductase activity PCP at micromolar concentrations decreases the value of V only by 40% (C50 = 2 microM) with a simultaneous increase of the Km value for PMS. The identity of Ki values for PCP under these conditions suggests that the effect of PCP is due to the inhibitor interaction with the same component of the succinate dehydrogenase complex. The type of action of PCP on the succinate-acceptor-reductase activities indicates that the inhibiting effect of PCP on succinate oxidations is similar to that exerted by traditional inhibitors of succinate dehydrogenase--tenoyltrifluoroacetone and carboxins. Since PCP inhibits succinate dehydrogenase at low concentrations, it seems likely that the biological (pesticidal) effect of PCP is provided for not only by its uncoupling action but also by the inhibition of succinate oxidation in the respiratory chain. 相似文献
11.
Tiron as a spin-trap for superoxide radicals produced by the respiratory chain of submitochondrial particles 总被引:1,自引:0,他引:1
I V Grigolava M Iu Ksenzenko A A Konstantinob A N Tikhonov T M Kerimov 《Biokhimii?a (Moscow, Russia)》1980,45(1):75-82
Tiron can be used as a spin-trap for O2 radicals generated by the respiratory chain of submitochondrial particles (SMP). Using this sensitive method, it was shown that the O2 (radical) production by the succinate-oxidizing SMP can be reduced by antimycin or 4-nonyl-2-hydroxyquinoline-N-oxide, the effects of both antibiotics being abolished and prevented by cyanide. It is suggested tht the O2 radicals are produced due to autooxidation of ubisemiquinone which is formed as an intermediate upon one-electron oxidation of CoQH2 by cytochrome c1. The effects of antimycin, 2-nonyl-4-hydroxyquinoline-N-oxide and cyanide on the O2 (radical) generation correlate with the effects of these inhibitors on a steady-state concentration of ubisemiquinone predicted by the Mitchell's Q-cycle hypothesis. 相似文献
12.
Synthesis of the proteins of complex III of the mitochondrial respiratory chain in heme-deficient cells 总被引:1,自引:0,他引:1
The presence of several proteins of complex III of the respiratory chain has been demonstrated in mitochondria from a mutant of Saccharomyces cerevisiae lacking 5-aminolevulinic acid synthase and, hence, devoid of heme. The two 'core' proteins, apocytochrome b and the iron-sulfur protein, were observed in equal amounts in the heme-deficient and heme-sufficient cells with antiserum against complex III and the sensitive immuno-transfer technique. In addition, three other bands were detected with the complex III antiserum in the mitochondria from the cells lacking heme. One of these has a molecular weight similar to that reported for a precursor form of cytochrome c1. By contrast, when mitochondria from the heme-deficient cells were solubilized with mild detergents and treated with the complex III antiserum, almost no immunoprecipitation was obtained above that obtained with control serum. The presence of only one major labeled band with a molecular weight similar to subunit I was observed after gel electrophoresis. These results suggest that heme may be necessary for proper processing of the apoprotein of cytochrome c1 and for the assembly into the membrane of the subunits of complex III, rather than for the synthesis of the proteins. 相似文献
13.
G. C. Jones R. P. van Hille S. T. L. Harrison 《Applied microbiology and biotechnology》2013,97(6):2735-2742
In the tank bioleaching process, maximising solid loading and mineral availability, the latter through decreasing particle size, are key to maximising metal extraction. In this study, the effect of particle size distribution on bioleaching performance and microbial growth was studied through applying knowledge based on medical geology research to understand the adverse effects of suspended fine pyrite particles. Small-scale leaching studies, using pyrite concentrate fractions (106–75, 75–25, ?25 μm fines), were used to confirm decreasing performance with decreasing particle size (D 50 <40 μm). Under equivalent experimental conditions, the generation of the reactive oxygen species (ROS), hydrogen peroxide and hydroxyl radicals from pyrite was illustrated. ROS generation measured from the different pyrite fractions was found to increase with increasing pyrite surface area loading (1.79–74.01 m2 L?1) and Fe2+ concentration (0.1–2.8 g?L?1) in solution. The highest concentration of ROS was measured from the finest fraction of pyrite (0.85 mM) and from the largest concentration of Fe2+ (0.78 mM). No ROS was detected from solutions containing only Fe3+ under the same conditions tested. The potential of ROS to inhibit microbial performance under bioleaching conditions was demonstrated. Pyrite-free Sulfolobus metallicus cultures challenged with hydrogen peroxide (0.5–2.5 mM) showed significant decrease in both cell growth and Fe2+ oxidation rates within the concentration range 1.5–2.5 mM. In combination, the results from this study suggest that conditions of large pyrite surface area loading, coupled with high concentrations of dissolved Fe2+, can lead to the generation of ROS, resulting in oxidative stress of the microorganisms. 相似文献
14.
15.
Belyaeva EA Dymkowska D Wieckowski MR Wojtczak L 《Biochimica et biophysica acta》2006,1757(12):1568-1574
Using AS-30D rat ascites hepatoma cells, we studied the modulating action of various antioxidants, inhibitors of mitochondrial permeability transition pore and inhibitors of the respiratory chain on Cd(2+)-produced cytotoxicity. It was found that Cd(2+) induced both necrosis and apoptosis in a time- and dose-dependent way. This cell injury involved dissipation of the mitochondrial transmembrane potential, respiratory dysfunction and initial increase of the generation of reactive oxygen species (ROS), followed by its decrease after prolonged incubation. Inhibitors of the mitochondrial permeability transition pore, cyclosporin A and bongkrekic acid, and inhibitors of respiratory complex III, stigmatellin and antimycin A, but not inhibitor of complex I, rotenone, partly prevented necrosis evoked by exposure of the cells to Cd(2+). Apoptosis of the cells was partly prevented by free radical scavengers and by preincubation with N-acetylcysteine. Stigmatellin, antimycin A and cyclosporin A also abolished Cd(2+)-induced increase in ROS generation. It is concluded that Cd(2+) toxicity in AS-30D rat ascites hepatoma, manifested by cell necrosis and/or apoptosis, involves ROS generation, most likely at the level of respiratory complex III, and is related to opening of the mitochondrial permeability transition pore. 相似文献
16.
Cardiolipin requirement for electron transfer in complex I and III of the mitochondrial respiratory chain 总被引:12,自引:0,他引:12
Almost complete phospholipid depletion has been achieved for Complex I and III of the mitochondrial respiratory chain using a technique that involves elution on Sephadex LH-20 in the presence of Triton X-100. Enzymic activity may be regenerated by replenishment with phospholipid. However, restoration of enzymic activity in phospholipid-depleted Complex I and III has been shown to require the presence of cardiolipin. These results are, therefore, similar to findings on the absolute catalytic requirement of cardiolipin for cytochrome oxidase activity (Fry, M., and Green, D. E. (1980) Biochem. Biophys. Res. Commun. 93, 1238-1246). At least two roles for phospholipid involvement in electron transfer processes are proposed, a catalytic role provided specifically by cardiolipin and a dispersive role that may be provided by various phospholipids or detergents. The absolute requirement of enzymic activity for cardiolipin suggests that this phospholipid plays a crucial role in the coupled electron transfer process. 相似文献
17.
We have investigated the consequences of permeability transition pore (PTP) opening on the rate of production of reactive oxygen species in isolated rat liver mitochondria. We found that PTP opening fully inhibited H(2)O(2) production when mitochondria were energized both with complex I or II substrates. Because PTP opening led to mitochondrial pyridine nucleotide depletion, H(2)O(2) production was measured again in the presence of various amounts of NADH. PTP opening-induced H(2)O(2) production began when NADH concentration was higher than 50 microm and reached a maximum at over 300 microm. At such concentrations of NADH, the maximal H(2)O(2) production was 4-fold higher than that observed when mitochondria were permeabilized with the channel-forming antibiotic alamethicin, indicating that the PTP opening-induced H(2)O(2) production was not due to antioxidant depletion. Moreover, PTP opening decreased rotenone-sensitive NADH ubiquinone reductase activity, whereas it did not affect the NADH FeCN reductase activity. We conclude that PTP opening induces a specific conformational change of complex I that (i) dramatically increases H(2)O(2) production so long as electrons are provided to complex I, and (ii) inhibits the physiological pathway of electrons inside complex I. These data allowed the identification of a novel consequence of permeability transition that may partly account for the mechanism by which PTP opening induces cell death. 相似文献
18.
Generation of reactive oxygen species by the mitochondrial electron transport chain 总被引:25,自引:0,他引:25
Generation of reactive oxygen species (ROS) by the mitochondrial electron transport chain (ETC), which is composed of four multiprotein complexes named complex I-IV, is believed to be important in the aging process and in the pathogenesis of neurodegenerative diseases such as Parkinson's disease. Previous studies have identified the ubiquinone of complex III and an unknown component of complex I as the major sites of ROS generation. Here we show that the physiologically relevant ROS generation supported by the complex II substrate succinate occurs at the flavin mononucleotide group (FMN) of complex I through reversed electron transfer, not at the ubiquinone of complex III as commonly believed. Indirect evidence indicates that the unknown ROS-generating site within complex I is also likely to be the FMN group. It is therefore suggested that the major physiologically and pathologically relevant ROS-generating site in mitochondria is limited to the FMN group of complex I. These new insights clarify an elusive target for intervening mitochondrial ROS-related processes or diseases. 相似文献
19.
Deficiency of complex III of the mitochondrial respiratory chain in a patient with facioscapulohumeral disease. 总被引:2,自引:0,他引:2 下载免费PDF全文
Facioscapulohumeral disease (FSHD), an inherited neuromuscular disorder, is characterized by progressive wasting of specific muscle groups, particularly the proximal musculature of the upper limbs; the primary defect in this disorder is unknown. We studied a patient with FSHD to determine whether the mitochondrial respiratory chain was functionally abnormal. Muscle biopsy revealed fiber atrophy with patchy staining for oxidative enzymes. Electron microscopy of a liver section showed many enlarged mitochondria with paracrystalline inclusions. Decreased oxidation of the respiratory substrates-alanine and succinate-in skin fibroblasts suggested a deficiency of complex III of the electron-transport chain; cytochrome c oxidase activity (complex IV) was in the normal range. Biochemical analysis of liver supported the fibroblast data, since succinate oxidase activity (electron-transport activity through complexes II-IV) was reduced, whereas complex IV activity was normal. Furthermore, analysis of the cytochrome spectrum in liver revealed typical peaks for cytochromes cc1 and aa3, whereas cytochrome b (a component of complex III) was undetectable. Southern blot analysis of fibroblast mtDNA revealed no major deletions or rearrangements. Our study provides the first documentation of a specific enzyme-complex deficiency associated with FSHD. 相似文献