首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To understand the effect of visible light on the stability of photoactive yellow protein (PYP), urea denaturation experiments were performed with PYP in the dark and with PYP(M) under continuous illumination. The urea concentrations at the midpoint of denaturation were 5.26 +/- 0.29 and 3.77 +/- 0.19 M for PYP and PYP(M), respectively, in 100 mM acetate buffer, and 5.26 +/- 0.24 and 4.11 +/- 0.12 M for PYP and PYP(M), respectively, in 100 mM citrate buffer. The free energy change upon denaturation (DeltaG(D)(H2O)), obtained from the denaturation curve, was 11.0 +/- 0.4 and 7.6 +/- 0.2 kcal/mol for PYP and PYP(M), respectively, in acetate buffer, and 11.5 +/- 0.3 and 7.8 +/- 0.1 kcal/mol for PYP and PYP(M), respectively, in citrate buffer. Even though the DeltaG(D)(H2O) value for PYP(M) is almost identical in the two buffer systems, the urea concentration at the midpoint of denaturation is lower in acetate buffer than in citrate buffer. Although their CD spectra indicate that the protein conformations of the denatured states of PYP and PYP(M) are indistinguishable, the configurations of the chromophores in their denatured structures are not necessarily identical. Both denatured states are interconvertible through PYP and PYP(M). Therefore, the free energy difference between PYP and PYP(M) is 3.4-3.7 kcal/mol for the protein moiety, plus the additional contribution from the difference in configuration of the chromophore.  相似文献   

2.
Auton M  Bolen DW 《Biochemistry》2004,43(5):1329-1342
With knowledge of individual transfer free energies of chemical groups that become newly exposed on protein denaturation and assuming the group transfer free energy contributions are additive, it should be possible to predict the stability of a protein in the presence of denaturant. Unfortunately, several unresolved issues have seriously hampered quantitative development of this transfer model for protein folding/unfolding. These issues include the lack of adequate demonstration that group transfer free energies (DeltaG(tr)) are additive and independent of the choice of model compound, the problem arising from dependence of DeltaG(tr) on concentration scales, the lack of knowledge of activity coefficients, and the validity of the mathematical constructs used in obtaining DeltaG(tr) values. Regarding transfer from water to 1 M concentrations of the naturally occurring osmolytes, trimethylamine-N-oxide (TMAO), sarcosine, betaine, proline, glycerol, sorbitol, sucrose, trehalose, and urea, using cyclic glycylglycine, zwitterionic glycine peptides, and N-acetylglycine amide peptides as models for the peptide backbone of proteins, we set out to address these issues and obtain DeltaG(tr) values for the peptide backbone unit. We demonstrate experimental approaches that obviate the choice of concentration scale and demonstrate additivity in DeltaG(tr) of the peptide backbone unit for all solvent systems studied. Evidence is presented to show that the DeltaG(tr) values are independent of the chemical model studied, and experimental conditions are given to illustrate when the mathematical constructs are valid and when activity coefficients can be ignored. Resolution of the long-standing issues that have stymied development of the transfer model now make it possible to design transfer experiments that yield reliable and quantitative values for the interactions between osmolyte-containing solvents and native and unfolded protein.  相似文献   

3.
To understand trimethylamine N-oxide (TMAO) attenuation of the denaturating effects of urea or guanidine hydrochloride (GdnHCl), we have determined the apparent transfer free energies (DeltaG(tr)(')) of cyclic dipeptides (CDs) from water to TMAO, urea or GdnHCl, and also the blends of TMAO and denaturants (urea or GdnHCl) at a 1:2 ratio as well as various denaturant concentrations in the presence of 1M TMAO, through the solubility measurements, at 25 degrees C. The CDs investigated in the present study included cyclo(Gly-Gly), cyclo(Ala-Ala) and cyclo(Val-Val). The observed DeltaG(tr)(') values indicate that TMAO can stabilize the CDs while urea or GdnHCl can destabilize the CDs. Furthermore, the DeltaG(tr)(') values of the blends of TMAO with urea or GdnHCl revealed that TMAO strongly counteracted the denaturating effects of urea on CDs in all instances, however, TMAO partially counteracted the perturbing effects of GdnHCl on CDs. TMAO counteraction ability of the deleterious effects of denaturants depended on the denaturant-CDs pair. The experimental results were further used to estimate the transfer free energies (Deltag(tr)(')) of the various functional group contributions from water to TMAO, urea or GdnHCl individually and to the combinations of TMAO and the denaturants in various ratios.  相似文献   

4.
5.
R K Bortoleto  R J Ward 《FEBS letters》1999,459(3):438-442
The effects of mildly acidic conditions on the free energy of unfolding (DeltaG(u)(buff)) of the pore-forming alpha-hemolysin (alphaHL) from Staphylococcus aureus were assessed between pH 5.0 and 7.5 by measuring intrinsic tryptophan fluorescence, circular dichroism and elution time in size exclusion chromatography during urea denaturation. Decreasing the pH from 7.0 to 5.0 reduced the calculated DeltaG(u)(buff) from 8.9 to 4.2 kcal mol(-1), which correlates with an increased rate of pore formation previously observed over the same pH range. It is proposed that the lowered surface pH of biological membranes reduces the stability of alphaHL thereby modulating the rate of pore formation.  相似文献   

6.
The conformational stability of RNase Rs was determined with chemical and thermal denaturants over the pH range of 1-10. Equilibrium unfolding with urea showed that values of D(1/2) (5.7 M) and DeltaG(H(2)O) (12.8 kcal/mol) were highest at pH 5.0, its pI and the maximum conformational stability of RNase Rs was observed near pH 5.0. Denaturation with guanidine hydrochloride (GdnHCl), at pH 5.0, gave similar values of DeltaG(H(2)O) although GdnHCl was 2-fold more potent denaturant with D(1/2) value of 3.1 M. The curves of fraction unfolded (f(U)) obtained with fluorescence and CD measurements overlapped at pH 5.0. Denaturation of RNase Rs with urea in the pH range studied was reversible but the enzyme denatured irreversibly >pH 11.0. Thermal denaturation of RNase Rs was reversible in the pH range of 2.0-3.0 and 6.0-9.0. Thermal denaturation in the pH range 4.0-5.5 resulted in aggregation and precipitation of the protein above 55 degrees C. The aggregate was amorphous or disordered precipitate as observed in TE micrographs. Blue shift in emission lambda(max) and enhancement of fluorescence intensity of ANS at 70 degrees C indicated the presence of solvent exposed hydrophobic surfaces as a result of heat treatment. Aggregation could be prevented partially with alpha-cyclodextrin (0.15 M) and completely with urea at concentrations >3 M. Aggregation was probably due to intermolecular hydrophobic interaction favored by minimum charge-charge repulsion at the pI of the enzyme. Both urea and temperature-induced denaturation studies showed that RNase Rs unfolds through a two-state F right arrow over left arrow U mechanism. The pH dependence of stability described by DeltaG(H(2)O) (urea) and DeltaG (25 degrees C) suggested that electrostatic interactions among the charged groups make a significant contribution to the conformational stability of RNase Rs. Since RNase Rs is a disulfide-containing protein, the major element for structural stability are the covalent disulfide bonds.  相似文献   

7.
The temperature dependence of preferential solvent interactions with ribonuclease A in aqueous solutions of 30% sorbitol, 0.6 M MgCl2, and 0.6 M MgSO4 at low pH (1.5 and 2.0) and high pH (5.5) has been investigated. This protein was stabilized by all three co-solvents, more so at low pH than high pH (expect 0.6 M MgCl2 at pH 5.5). The preferential hydration of protein in all three co-solvents was high at temperatures below 30 degrees C and decreased with a further increase in temperature (for 0.6 M MgCl2 at pH 5.5, this was not significant), indicating a greater thermodynamic instability at low temperature than at high temperature. The preferential hydration of denatured protein (low pH, high temperature) was always greater than that of native protein (high pH, high temperature). In 30% sorbitol, the interaction passed to preferential binding at 45% for native ribonuclease A and at 55 degrees C for the denatured protein. Availability of the temperature dependence of the variation with sorbitol concentration of the chemical potential of the protein, (delta mu(2)/delta m3)T,p,m2, permitted calculation of the corresponding enthalpy and entropy parameters. Combination with available data on sorbitol concentration dependence of this interaction parameter gave (approximate) values of the transfer enthalpy, delta H2,tr, and transfer entropy delta S2,tr. Transfer of ribonuclease A from water into 30% sorbitol is characterized by positive values of the transfer free energy, transfer enthalpy, transfer entropy, and transfer heat capacity. On denaturation, the transfer enthalpy becomes more positive. This increment, however, is small relative to both the enthalpy of unfolding in water and to the transfer enthalpy of the native protein from water a 30% sorbitol solution.  相似文献   

8.
Thermal denaturation curves of ribonuclease-A were measured by monitoring changes in the far-UV circular dichroism (CD) spectra in the presence of different concentrations of six sugars (glucose, fructose, galactose, sucrose, raffinose and stachyose) and mixture of monosaccharide constituents of each oligosaccharide at various pH values in the range of 6.0-2.0. These measurements gave values of T(m) (midpoint of denaturation), DeltaH(m) (enthalpy change at T(m)), DeltaC(p) (constant-pressure heat capacity change) under a given solvent condition. Using these values of DeltaH(m), T(m) and DeltaC(p) in appropriate thermodynamic relations, thermodynamic parameters at 25 degrees C, namely, DeltaG(D)(o) (Gibbs energy change), DeltaH(D)(o) (enthalpy change), and DeltaS(D)(o) (entropy change) were determined at a given pH and concentration of each sugar (including its mixture of monosaccharide constituents). Our main conclusions are: (i) each sugar stabilizes the protein in terms of T(m) and DeltaG(D)(o), and this stabilization is under enthalpic control, (ii) the protein stabilization by the oligosaccharide is significantly less than that by the equimolar concentration of the constituent monosaccharides, and (iii) the stabilization by monosaccharides in a mixture is fully additive. Furthermore, measurements of the far- and near-UV CD spectra suggested that secondary and tertiary structures of protein in their native and denatured states are not perturbed on the addition of sugars.  相似文献   

9.
Y V Griko  P L Privalov 《Biochemistry》1992,31(37):8810-8815
Temperature-induced changes of the states of beta-lactoglobulin have been studied calorimetrically. In the presence of a high concentration of urea this protein shows not only heat but also cold denaturation. Its heat denaturation is approximated very closely by a two-state transition, while the cold denaturation deviates considerably from the two-state transition and this deviation increases as the temperature decreases. The heat effect of cold denaturation is opposite in sign to that of heat denaturation and is noticeably larger in magnitude. This difference in magnitude is caused by the temperature-dependent negative heat effect of additional binding of urea to the polypeptide chain of the protein upon its unfolding, which decreases the positive enthalpy of heat denaturation and increases the negative enthalpy of cold denaturation. The binding of urea considerably increases the partial heat capacity of the protein, especially in the denatured state. However, when corrected for the heat capacity effect of urea binding, the partial heat capacity of the denatured protein is close in magnitude to that expected for the unfolded polypeptide chain in aqueous solution without urea but only for temperatures below 10 degrees C. At higher temperatures, the heat capacity of the denatured protein is lower than that expected for the unfolded polypeptide chain. It appears that at temperatures above 10 degrees C not all the surface of the beta-lactoglobulin polypeptide chain is exposed to the solvent, even in the presence of 6 M urea; i.e., the denatured protein is not completely unfolded and unfolds only at temperatures lower than 10 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Differential scanning calorimetry (DSC) provides authentic and accurate value of DeltaC(p)(X), the constant-pressure heat capacity change associated with the N (native state)<-->X (heat denatured state), the heat-induced denaturation equilibrium of the protein in the absence of a chemical denaturant. If X retains native-like buried hydrophobic interaction, DeltaC(p)(X) must be less than DeltaC(p)(D), the constant-pressure heat capacity change associated with the transition, N<-->D, where the state D is not only more unfolded than X but it also has its all groups exposed to water. One problem is that for most proteins D is observed only in the presence of chemical denaturants such as guanidinium chloride (GdmCl) and urea. Another problem is that DSC cannot yield authentic DeltaC(p)(D), for its measurement invokes the existence of putative specific binding sites for the chemical denaturants on N and D. We have developed a non-calorimetric method for the measurements of DeltaC(p)(D), which uses thermodynamic data obtained from the isothermal GdmCl (or urea)-induced denaturation and heat-induced denaturation in the presence of the chemical denaturant concentration at which significant concentrations of both N and D exist. We show that for each of the proteins (ribonuclease-A, lysozyme, alpha-lactalbumin and chymotrypsinogen) DeltaC(p)(D) is significantly higher than DeltaC(p)(X). DeltaC(p)(D) of the protein is also compared with that estimated using the known heat capacities of amino acid residues and their fractional area exposed on denaturation.  相似文献   

11.
This study presents an experimental approach, based on the change of Trp fluorescence between native and denatured states of proteins, which permits to monitor unfolding equilibria and the thermodynamic stability (DeltaG degrees ) of these macromolecules in frozen aqueous solutions. The results obtained by guanidinium chloride denaturation of the azurin mutant C112S from Pseudomonas aeruginosa, in the temperature range from -8 to -16 degrees C, demonstrate that the stability of the native fold may be significantly perturbed in ice depending mainly on the size of the liquid water pool (V(L)) in equilibrium with the solid phase. The data establish a threshold, around V(L)=1.5%, below which in ice DeltaG degrees decreases progressively relative to liquid state, up to 3 kcal/mole for V(L)=0.285%. The sharp dependence of DeltaG degrees on V(L) is consistent with a mechanism based on adsorption of the protein to the ice surface. The reduction in DeltaG degrees is accompanied by a corresponding decrease in m-value indicating that protein-ice interactions increase the solvent accessible surface area of the native fold or reduce that of the denatured state, or both. The method opens the possibility for examining in a more quantitative fashion the influence of various experimental conditions on the ice perturbation and in particular to test the effectiveness of numerous additives used in formulations to preserve labile pharmaco proteins.  相似文献   

12.
Bolen DW  Yang M 《Biochemistry》2000,39(49):15208-15216
The DeltaG degrees (N)(-)(D) value obtained from extrapolation to zero denaturant concentration by the linear extrapolation method (LEM) is commonly interpreted to represent the Gibbs energy difference between native (N) and denatured (D) ensembles at the limit of zero denaturant concentration. For DeltaG degrees (N)(-)(D) to be interpreted solely in terms of N and D, as is common practice, it must be shown to be independent of denaturant concentration. Because DeltaG degrees (N)(-)(D) is often observed to be dependent on the nature of the denaturant, it is necessary to determine the circumstances under which DeltaG degrees (N)(-)(D) can be interpreted as a property solely of the protein. Here, we use proton inventory, a thermodynamic property of both the native and denatured ensembles, to monitor the thermodynamic character of denaturant-dependent aspects of N and D ensembles and the N right arrow over left arrow D transition. Use of a thermodynamic rather than a spectral parameter to monitor denaturation provides insight into the manner in which denaturant affects the meaning of DeltaG degrees (N)(-)(D) and the nature of the N right arrow over left arrow D transition. Three classes of proteins are defined in terms of the thermodynamic behaviors of their N right arrow over left arrow D transition and N and D ensembles. With guanidine hydrochloride as a denaturant, the classification of protein denaturations by these procedures determines when the LEM gives readily interpretable DeltaG degrees (N)(-)(D) values with this denaturant and when it does not.  相似文献   

13.
The unfolding and refolding of creatine kinase (ATP:creatine N-phosphotransferase (CK), EC 2.7.3.2) during denaturation and reactivation by trifluoroethanol (TFE) have been studied. Significant aggregation was observed when CK was denatured at TFE concentrations between 10% and 40% (v/v). 50% TFE (v/v) was used to study the denaturation and unfolding of CK. The activity loss of CK was a very quick process, as was the marked conformational changes during denaturation followed by fluorescence emission spectra and far-ultraviolet CD spectra. DTNB modification and size exclusion chromatography were used to find that CK dissociated and was in its monomer state after denaturation with 50% TFE. Reactivation and refolding were observed after 80-fold dilution of the denatured CK into 0.05 M Tris-HCl buffer, pH 8.0. The denatured CK recovered about 38% activity following a two phase course (k(1)=4.82+/-0.41x10(-3) s(-1), k(2)=0.60+/-0.01x10(-3) s(-1)). Intrinsic fluorescence maximum intensity changes showed that the refolding process also followed biphasic kinetics (k(1)=4.34+/-0.27x10(-3) s(-1), k(2)=0.76+/-0.02x10(-3) s(-1)) after dilution into the proper solutions. The far-ultraviolet CD spectra ellipticity changes at 222 nm during the refolding process also showed a two phase course (k(1)=4.50+/-0.07x10(-3) s(-1), k(2)=1.13+/-0.05x10(-3) s(-1)). Our results suggest that TFE can be used as a reversible denaturant like urea and GuHCl. The 50% TFE induced CK denaturation state, which was referred to as the 'TFE state', and the partially refolded CK are compared with the molten globule state. The aggregation caused by TFE during denaturation is also discussed in this paper.  相似文献   

14.
To interpret effects of urea and guanidinium (GuH(+)) salts on processes that involve large changes in protein water-accessible surface area (ASA), and to predict these effects from structural information, a thermodynamic characterization of the interactions of these solutes with different types of protein surface is required. In the present work we quantify the interactions of urea, GuHCl, GuHSCN, and, for comparison, KCl with native bovine serum albumin (BSA) surface, using vapor pressure osmometry (VPO) to obtain preferential interaction coefficients (Gamma(mu3)) as functions of nondenaturing concentrations of these solutes (0-1 molal). From analysis of Gamma(mu3) using the local-bulk domain model, we obtain concentration-independent partition coefficients K(nat)(P) that characterize the accumulation of these solutes near native protein (BSA) surface: K(nat)(P,urea)= 1.10 +/- 0.04, K(nat)(P,SCN(-)) = 2.4 +/- 0.2, K(nat)(P,GuH(+)) = 1.60 +/- 0.08, relative to K(nat)(P,K(+)) identical with 1 and K(nat)(P,Cl(-)) = 1.0 +/- 0.08. The relative magnitudes of K(nat)(P) are consistent with the relative effectiveness of these solutes as perturbants of protein processes. From a comparison of partition coefficients for these solutes and native surface (K(nat)(P)) with those determined by us previously for unfolded protein and alanine-based peptide surface K(unf)(P), we dissect K(P) into contributions from polar peptide backbone and other types of protein surface. For globular protein-urea interactions, we find K(nat)(P,urea) = K(unf)(P,urea). We propose that this equality arises because polar peptide backbone is the same fraction (0.13) of total ASA for both classes of surface. The analysis presented here quantifies and provides a physical basis for understanding Hofmeister effects of salt ions and the effects of uncharged solutes on protein processes in terms of K(P) and the change in protein ASA.  相似文献   

15.
The effect of methylurea, N,N'-dimethylurea, ethylurea, and butylurea as well as guanidine hydrochloride (GuHCl), urea and pH on the thermal stability, structural properties, and preferential solvation changes accompanying the thermal unfolding of ribonuclease A (RNase A) has been investigated by differential scanning calorimetry (DSC), UV, and circular dichroism (CD) spectroscopy. The results show that the thermal stability of RNase A decreases with increasing concentration of denaturants and the size of the hydrophobic group substituted on the urea molecule. From CD measurements in the near- and far-UV range, it has been observed that the tertiary structure of RNase A melts at about 3 degrees C lower temperature than its secondary structure, which means that the hierarchy in structural building blocks exists for RNase A even at conditions at which according to DSC and UV measurements the RNase A unfolding can be interpreted in terms of a two-state approximation. The far-UV CD spectra also show that the final denatured states of RNase A at high temperatures in the presence of different denaturants including 4.5 M GuHCl are similar to each other but different from the one obtained in 4.5 M GuHCl at 25 degrees C. The concentration dependence of the preferential solvation change delta r23, expressed as the number of cosolvent molecules entering or leaving the solvation shell of the protein upon denaturation and calculated from DSC data, shows the same relative denaturation efficiency of alkylureas as other methods.  相似文献   

16.
Stability of hen lysozyme in the presence of acetonitrile (MeCN) at different pH values of the medium was studied by scanning microcalorimetry with a special emphasis on determination of reliable values of the denaturational heat capacity change. It was found that the temperature of denaturation decreases on addition of MeCN. However, the free energy extrapolation showed that below room temperature the thermodynamic stability increases at low concentrations of MeCN in spite of the general destabilizing effect at higher concentrations and temperatures. Charge-induced contribution to this stabilization was shown to be negligible (no pH-dependence was found); therefore, the most probable cause for the phenomenon is an increase of hydrophobic interactions at low temperatures in aqueous solutions containing small amounts of the organic additive. The difference in preferential solvation of native and denatured states of lysozyme was calculated from the stabilization free energy data. It was found that the change in preferential solvation strongly depends on the temperature in the water-rich region. At the higher MeCN content this dependence decreases until, at 0.06 mole fractions of MeCN, the difference in the preferential solvation between native and denatured lysozyme becomes independent of the temperature over a range of 60 K. The importance of taking into account non-ideality of a mixed solution, when analyzing preferential solvation phenomena was emphasized.  相似文献   

17.
High-pressure (15)N/(1)H NMR techniques were used to characterize the conformational fluctuations of hen lysozyme, in its native state and when denatured in 8 M urea, over the pressure range 30--2000 bar. Most (1)H and (15)N signals of native lysozyme show reversible shifts to low field with increasing pressure, the average pressure shifts being 0.069 +/- 0.101 p.p.m. ((1)H) and 0.51 +/- 0.36 p.p.m. ((15)N). The shifts indicate that the hydrogen bonds formed to carbonyl groups or water molecules by the backbone amides are, on average, shortened by approximately 0.02 A as a result of pressure. In native lysozyme, six residues in the beta domain or at the alpha/beta domain interface have anomalously large nonlinear (15)N and (1)H chemical-shift changes. All these residues lie close to water-containing cavities, suggesting that there are conformational changes involving these cavities, or the water molecules within them, at high pressure. The pressure-induced (1)H and (15)N shifts for lysozyme denatured in 8 M urea are much more uniform than those for native lysozyme, with average backbone amide shifts of 0.081 +/- 0.029 p.p.m. ((1)H) and 0.57 +/- 0.14 p.p.m. ((15)N). The results show that overall there are no significant variations in the local conformational properties of denatured lysozyme with pressure, although larger shifts in the vicinity of a persistent hydrophobic cluster indicate that interactions in this part of the sequence may rearrange. NMR diffusion measurements demonstrate that the effective hydrodynamic radius of denatured lysozyme, and hence the global properties of the denatured ensemble, do not change detectably at high pressure.  相似文献   

18.
The effect of interactions of sorbitol with ribonuclease A (RNase A) and the resulting stabilization of structure was examined in parallel thermal unfolding and preferential binding studies with the application of multicomponent thermodynamic theory. The protein was stabilized by sorbitol both at pH 2.0 and pH 5.5 as the transition temperature, Tm, was increased. The enthalpy of the thermal denaturation had a small dependence on sorbitol concentration, which was reflected in the values of the standard free energy change of denaturation, delta delta G(o) = delta G(o) (sorbitol) - delta G(o)(water). Measurements of preferential interactions at 48 degrees C at pH 5.5, where protein is native, and pH 2.0 where it is denatured, showed that sorbitol is preferentially excluded from the denatured protein up to 40%, but becomes preferentially bound to native protein above 20% sorbitol. The chemical potential change on transferring the denatured RNase A from water to sorbitol solution is larger than that for the native protein, delta mu(2D) > delta mu(2N), which is consistent with the effect of sorbitol on the free energy change of denaturation. The conformity of these results to the thermodynamic expression of the effect of a co-solvent on denaturation, delta G(o)(W) + delta mu(D)(2)delta G(o)(S) + delta mu(2D), indicates that the stabilization of the protein by sorbitol can be fully accounted for by weak thermodynamic interactions at the protein surface that involve water reversible co-solvent exchange at thermodynamically non-neutral sites. The protein structure stabilizing action of sorbitol is driven by stronger exclusion from the unfolded protein than from the native structure.  相似文献   

19.
Photochemically induced dynamic nuclear polarization (photo-CIDNP) techniques have been used to examine denatured states of lysozyme produced under a variety of conditions. 1H CIDNP difference spectra of lysozyme denatured thermally, by the addition of 10 M urea, or by the complete reduction of its four disulfide bonds were found to differ substantially not only from the spectrum of the native protein but also from that expected for a completely unstructured polypeptide chain. Specifically, denatured lysozyme showed a much reduced enhancement of tryptophan relative to tyrosine than did a mixture of blocked amino acids with the same composition as the intact protein. By contrast, the CIDNP spectrum of lysozyme denatured in dimethyl sulfoxide solution was found to be similar to that expected for a random coil. It is proposed that nonrandom hydrophobic interactions are present within the denatured states of lysozyme in aqueous solution and that these reduce the reactivity of tryptophan residues relative to tyrosine residues. Characterization of such interactions is likely to be of considerable significance for an understanding of the process of protein folding.  相似文献   

20.
Felitsky DJ  Record MT 《Biochemistry》2003,42(7):2202-2217
Thermodynamic and structural evidence indicates that the DNA binding domains of lac repressor (lacI) exhibit significant conformational adaptability in operator binding, and that the marginally stable helix-turn-helix (HTH) recognition element is greatly stabilized by operator binding. Here we use circular dichroism at 222 nm to quantify the thermodynamics of the urea- and thermally induced unfolding of the marginally stable lacI HTH. Van't Hoff analysis of the two-state unfolding data, highly accurate because of the large transition breadth and experimental access to the temperature of maximum stability (T(S); 6-10 degrees C), yields standard-state thermodynamic functions (deltaG(o)(obs), deltaH(o)(obs), deltaS(o)(obs), deltaC(o)(P,obs)) over the temperature range 4-40 degrees C and urea concentration range 0 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号