首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stepwise assembly of chromatin during DNA replication in vitro.   总被引:29,自引:6,他引:23  
A cell free system that supports replication-dependent chromatin assembly has been used to determine the mechanism of histone deposition during DNA replication. CAF-I, a human cell nuclear factor, promotes chromatin assembly on replicating SV40 DNA in the presence of a crude cytosol replication extract. Biochemical fractionation of the cytosol extract has allowed separation of the chromatin assembly reaction into two steps. During the first step, CAF-I targets the deposition of newly synthesized histones H3 and H4 to the replicating DNA. This reaction is dependent upon and coupled with DNA replication, and utilizes the newly synthesized forms of histones H3 and H4, which unlike bulk histone found in chromatin, do not bind to DNA by themselves. The H3/H4-replicated DNA complex is a stable intermediate which exhibits a micrococcal nuclease resistant structure and can be isolated by sucrose gradient sedimentation. In the second step, this replicated precursor is converted to mature chromatin by the addition of histones H2A and H2B in a reaction that can occur after DNA replication. The requirement for CAF-I in at least the first step of the reaction suggests a level of cellular control for this fundamental process.  相似文献   

2.
We have fractionated the whole cell extract of Xenopus oocytes (oocyte S-150) and isolated the endogenous components required for DNA supercoiling and nucleosome formation. Histone H2B and the three oocyte-specific H2A proteins were purified as free histones. Histones H3 and H4 were purified 100-fold in a complex with the acidic protein N1. In the presence of DNA topoisomerase I or II, histone H3/H4.N1 complexes supercoil DNA in a reaction that is inhibited by Mg2+, and this inhibition is relieved by NTPs. The supercoiling reaction induced by H3/H4.N1 complexes is enhanced by free histone H2A-H2B dimers, which by themselves do not supercoil DNA. Nuclease digestions and protein analyses indicate that H3/H4.N1 complexes form subnucleosomal particles containing histones H3 and H4. Nucleosomes containing 146-base pair DNA and the four histones are formed when histones H2A and H2B complement the reaction.  相似文献   

3.
The high mobility group proteins 1 and 2 (HMG1/2) and histone B4 are major components of chromatin within the nuclei assembled during the incubation of Xenopus sperm chromatin in Xenopus egg extract. To investigate their potential structural and functional roles, we have cloned and expressed Xenopus HMG1 and histone B4. Purified histone B4 and HMG1 form stable complexes with nucleosomes including Xenopus 5S DNA. Both proteins associate with linker DNA and stabilize it against digestion with micrococcal nuclease, in a similar manner to histone H1. However, neither histone B4 nor HMG1 influence the DNase I or hydroxyl radical digestion of DNA within the nucleosome core. We suggest that HMG1/2 and histone B4 have a shared structural role in organizing linker DNA in the nucleosome.  相似文献   

4.
5.
The interaction of closed circular duplex DNA with the lysine-rich H5 histone fraction of avian erythrocytes has been studied. H5, like H1 histone, interacts preferentially with superhelical DNA. The extent of interaction increases with increasing negative or positive superhelicity. Salt-extracted lysine-rich histones show the same specificity for interaction with superhelices as do acid-extracted preparations. Chicken erythrocyte nuclei contain DNA-relaxing enzyme. This enzyme is extracted from the nuclei at lower salt concentrations than those required to extract H1 and H5 histones and is, therefore, probably a function of a protein distinct from H1 and H5 histones.  相似文献   

6.
Ai X  Parthun MR 《Molecular cell》2004,14(2):195-205
The yeast Hat1p/Hat2p type B histone acetyltransferase complex is localized to both the cytoplasm and nucleus. We isolate the nuclear form of the Hat1p/Hat2p complex and find that it copurifies with the product of the uncharacterized open reading frame YLL022C (named Hif1p). The functional significance of the association of Hif1p with the Hat1p/Hat2p complex is confirmed by the observation that hif1Delta and hat1Delta strains display similar defects in telomeric silencing and DNA double-strand break repair. Hif1p is a histone chaperone that selectively interacts with histones H3 and H4. Hif1p is also a chromatin assembly factor, promoting the deposition of histones in the presence of a yeast cytosolic extract. In vivo, the nuclear Hat1p/Hat2p/Hif1p complex is bound to acetylated histone H4, as well as histone H3. The association of Hif1p with acetylated H4 requires Hat1p and Hat2p providing a link between type B histone acetyltransferases and chromatin assembly.  相似文献   

7.
8.
The particular role of H1 in the structure of histone–DNA associations is shown by means of ir linear dichroism. H1–, H2A–, and H4–DNA complexes are studied for different histone: DNA input ratios and various relative humidities (r.h.). The measurement of the dichroic ratios allows one to determine the secondary structure of DNA in the complexes. It is shown that the progressive addition of histone H2A or H4 to DNA inhibits the structural B → A transition and DNA remains in a B-type form at low r.h. It is found that the B → A transition is inhibited for 19 or 26 base pairs of DNA per molecule of H2A or H4. The stabilization of DNA in a B-conformation by H2A and H4 has been also observed by H2B and H3 but with a different efficiency. In contrast, histone H1, which does not belong to the core of the nucleosomes in chromatin, leaves the DNA in H1–DNA complexes free to adopt an A conformation at low r.h. for H1/DNA ratios below 0.6/1. Thus a major difference in the structural role between histone H1 and histones belonging to the nucleosomal core with respect to the conformational flexibility of DNA in the histone–DNA complexes is demonstrated.  相似文献   

9.
H1 histone, polylysine and spermine facilitate nucleosome assembly in vitro   总被引:1,自引:0,他引:1  
E S Bogdanova 《FEBS letters》1984,175(2):321-324
Nucleosome formation has been studied in a system containing relaxed Col E1 DNA, core histones and an extract of Drosophila embryos. The formation of nucleosomes was established by the introduction of supercoils into DNA. The degree of DNA supercoiling was shown to be higher if nucleosomes were assembled in the presence of the H1 histone, polylysine (Mr 20 000) or spermine. These agents do not stimulate relaxation and are the more effective the earlier they are added to the reaction. Thus, the H1 histone, polylysine and spermine facilitate nucleosome assembly in vitro.  相似文献   

10.
曾庆华  吕延成 《遗传学报》1999,26(4):329-335
采用从鸡红细胞中分离纯化的组蛋白H1,核心组蛋白H2A+H2B和H3+H4,以及从HeLa细胞中萃取的含有RNA聚合酶Ⅱ和多种Ⅱ类基因转录因子的可溶性HeLa细胞核抽提物,通过凝胶迟滞电泳,对组蛋白和HeLa细胞核抽提物中的转录因子在人自泌移动因子受体(Humanautocrinemotilityfactor,简称hAMFR)基因上游启动子序列的相互作用关系进行了初步研究,得到以下结论,组蛋白H1  相似文献   

11.
Kawasaki H  Koyama T  Conlon JM  Yamakura F  Iwamuro S 《Biochimie》2008,90(11-12):1693-1702
Previous studies have led to the isolation of histone H2B with antibacterial properties from an extract of the skin of the Schlegel's green tree frog Rhacophorus schlegelii and it is now demonstrated that the intact peptide is released into norepinephrine-stimulated skin secretions. In order to investigate the mechanism of action of this peptide, a maltose-binding protein (MBP)-fused histone H2B (MBP-H2B) conjugate was prepared and subjected to antimicrobial assay. The fusion protein showed bacteriostatic activity against Escherichia coli strain JCM5491 with a minimum inhibitory concentration of 11 microM. The lysate prepared from JCM5491 cells was capable of fragmenting MBP-H2B within the histone H2B region, but the lysate from the outer membrane proteinase T (OmpT) gene-deleted BL21(DE3) cells was not. FITC-labeled MBP-H2B (FITC-MBP-H2B) penetrated into the bacterial cell membrane of JCM5491 and ompT-transformed BL21(DE3) cells, but not into ompT-deleted BL21(DE3) cells. Gel retardation assay using MBP-H2B-deletion mutants indicated that MBP-H2B bound to DNA at a site within the N-terminal region of histone H2B. Consequently, it is proposed that the antimicrobial action of histone H2B involves, at least in part, penetration of an OmpT-produced N-terminal histone H2B fragment into the bacterial cell membrane with subsequent inhibition of cell functions.  相似文献   

12.
CENP-A is an essential histone H3 variant found in all eukaryotes examined to date. To begin to determine how CENP-A is assembled into chromatin, we developed a binding assay using sperm chromatin in cell-free extract derived from Xenopus eggs. Our data suggest that the catalytic activities of an unidentified deoxycytidine deaminase and UNG2, a uracil DNA glycosylase, are involved in CENP-A assembly. In support of this model, inhibiting deoxycytidine deaminase with zebularine, or uracil DNA glycosylase with Ugi, uracil or UTP results in a lack of detectable CENP-A on sperm DNA. Conversely, inducing DNA damage increases the level of CENP-A detected on sperm chromatin. Our data suggest that base excision repair may be involved in assembly of this histone H3 variant.  相似文献   

13.
The structural unit of eukaryotic chromatin is a nucleosome, comprising two histone H2A/H2B heterodimers and one histone (H3/H4)2 tetramer, wrapped around by ∼146-bp core DNA and linker DNA. Flexible histone tails sticking out from the core undergo posttranslational modifications that are responsible for various epigenetic functions. Recently, the functional dynamics of histone tails and their modulation within the nucleosome and nucleosomal complexes have been investigated by integrating NMR, molecular dynamics simulations, and cryo-electron microscopy approaches. In particular, recent NMR studies have revealed correlations in the structures of histone N-terminal tails between H2A and H2B, as well as between H3 and H4 depending on linker DNA, suggesting that histone tail networks exist even within the nucleosome.  相似文献   

14.
Reactivation of chicken erythrocyte nuclei for DNA replication in Xenopus egg extracts involves two phases of chromatin remodelling: a fast decondensation leading to a small volume increase and chromatin dispersion occurring within a few minutes (termed stage I decondensation), followed by a slower membrane-dependent decondensation and enlargement of up to 40-fold from the initial volume (stage II decondensation). Chromatin decondensation as measured by nuclear swelling and micrococcal nuclease digestion required ATP. We observed a characteristic change in the phosphorylation pattern of erythrocyte proteins upon incubation in egg extract. While histones H5, H2A, and H4 became selectively phosphorylated during decondensation, the phosphorylation of histone H3 and of several nonhistone proteins was prevented. Furthermore, histone H5 was selectively released from erythrocyte nuclei in an energy-dependent reaction. These molecular changes already occurred during stage I decondensation and they persisted during stage II decondensation. DNA replication was confined to nuclei of stage II decondensation which incorporated lamin LIII from the egg extract. These results show that initiation of DNA replication in chicken erythrocytes requires in addition to ATP-dependent chromatin remodelling (stage I), further changes in chromatin structure that correlates with lamin LIII incorporation, and stage II decondensation.  相似文献   

15.
Assembly of nucleosomes on relaxed, covalently closed DNA has been studied in a nuclear extract of Xenopus laevis oocytes. Nucleosomes containing the four histones H3, H4, H2A and H2B but lacking histone H1 are readily assembled on the DNA. The pattern of micrococcal nuclease digestion shows that the nucleosomes assembled in the absence of ATP and Mg (II) are closely packed, with a periodicity of 150 base pairs (bp). In contrast, in the presence of ATP and Mg (II) the spacing of the nucleosomes is 180 bp, similar to that observed for nucleosomes assembled on DNA microinjected into oocyte nuclei. The ATP and Mg (II) requirements for the assembly of correctly spaced nucleosomes are unrelated to the activity of the ATP and Mg (II) dependent DNA topoisomerase II in the extract; addition of specific inhibitors of eukaryotic DNA topoisomerase II has no effect on the spacing of the reconstituted nucleosomes. The ATP requirement in the assembly of correctly spaced nucleosomes can be substituted by adenosine 5'-O-3'-thiotriphosphate (gamma-S-ATP) but not by adenyl-5'-yl imidodiphosphate (AMP-P-(NH)-P).  相似文献   

16.
In eukaryotes cell division is accompanied by phosphorylation of histone H3 at serine 10. In this work we have studied the kinase activity responsible for this histone H3 modification by using cell-free extracts prepared from Xenopus eggs. We have found that the Xenopus aurora-A kinase pEg2, immunoprecipitated from the extract, is able to phosphorylate specifically histone H3 at serine 10. The enzyme is incorporated into chromatin during in vitro chromosome assembly, and the kinetics of this incorporation parallels that of histone H3 phosphorylation. Recombinant pEg2 phosphorylates efficiently histone H3 at serine 10 in reconstituted nucleosomes and in sperm nuclei decondensed in heated extracts. These data identify pEg2 as a good candidate for mitotic histone H3 kinase. However, immunodepletion of pEg2 does not interfere with the chromosome assembly properties of the extract nor with the pattern of H3 phosphorylation, suggesting the existence of multiple kinases involved in this H3 modification in Xenopus eggs. This hypothesis is supported by in gel activity assay experiments using extracts from Saccharomyces cerevisiae.  相似文献   

17.
18.
Wheat core histones and various subfractions of histone H1 modulate differently the action of endonucleases WEN1 and WEN2 from wheat seedlings. The character of this modulation depends on the nature of the histone and the methylation status of the substrate DNA. The modulation of enzyme action occurs at different stages of processive DNA hydrolysis and is accompanied by changes in the site specificity of the enzyme action. It seems that endonuclease WEN1 prefers to bind with protein-free DNA stretches in histone H1-DNA complex. The endonuclease WEN1 does not compete with histone H1/6 for DNA binding sites, but it does compete with histone H1/1, probably for binding with methylated sites of DNA. Unlike histone H1, the core histone H2b binds with endonuclease WEN1 and significantly increases its action. This is associated with changes in the site specificity of the enzyme action that is manifested by a significant increase in the amount of low molecular weight oligonucleotides and mononucleotides produced as a result of hydrolysis of DNA fragments with 120–140-bp length. The WEN2 endonuclease binds with histone-DNA complexes only through histones. The action of WEN2 is increased or decreased depending on the nature of the histone. Histone H1/1 stimulated the exonuclease activity of WEN2. It is supposed that endonucleases WEN1 and WEN2, in addition to the catalytic domain, should have a regulatory domain that is involved in binding of histones. As histone H1 is mainly located in the linker chromatin areas, it is suggested that WEN2 should attack DNA just in the chromatin linker zones. As differentiated from WEN2, DNA hydrolysis with endonuclease WEN1 is increased in the presence of core histones and, in particular, of H2b. Endonuclease WEN1 initially attacks different DNA sites in chromatin than WEN2. Endonuclease WEN2 activity can be increased or diminished depending on presence of histone H1 subfractions. It seems that just different fractions of the histone H1 are responsible for regulation of the stepwise DNA degradation by endonuclease WEN2 during apoptosis. Modulation of the action of the endonucleases by histones can play a significant role in the epigenetic regulation of various genetic processes and functional activity of genes.  相似文献   

19.
20.
The triiodothyronine (T3) nuclear receptor was previously shown to lose rapidly its high affinity hormone-binding property after a partial purification from the nuclear extract. It was then found that histones + DNA added to the incubation medium with labeled T3 could restore, at least in part, the high affinity T3 binding. We now demonstrate that DNA alone increases the high affinity T3 binding site concentration moderately, and only at low ionic strength where it can bind to the receptor. Total histones and all histone fractions studied (total core histones, F2a, H2B, H3, H4, H1) specifically increase, at low concentrations, the level of T3 binding; but higher concentrations of some individualized histones, particularly arginine-rich histones, have an inhibitory effect. DNA, or several other polynucleotides, in the presence of histones increase the stimulating histone effect and reverse the inhibitory effect into a true activation. Histones increase the number of T3 binding sites but decrease the affinity for T3; addition of DNA restores the high affinity for T3 and stabilizes the T3-receptor complexes. Thus, some of the histone molecules could play a role in the maintenance of the T3 binding site, but multiple interactions between histones or with DNA seem necessary to impair the negative effect exerted by other parts of the histone molecules. Whether these positive and negative effects of histones on the T3 binding site are of biological relevance in the regulation of T3 binding to its receptor remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号