首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The signals involved in the initiation of mitogen-induced activation of resting guinea pig T cells were examined. The combination of phytohemagglutinin (PHA) and 4 beta-phorbol 12-myristate 13-acetate (PMA) stimulated DNA synthesis by accessory cell (AC)-depleted T cells cultured at high density, but the use of low density cultures indicated that intact AC were absolutely necessary for PHA-stimulated T cell DNA synthesis even in the presence of PMA, interleukin 1 (IL 1), or interleukin 2 (IL 2). In contrast, AC-depleted T cells were able to respond to the combination of the calcium ionophore, ionomycin, and PMA regardless of the cell density at which they were cultured. Cell cycle analysis by acridine orange staining indicated that neither PHA nor ionomycin, in the absence of AC, activated resting T cells. PMA in the absence of all AC, supported cell cycle entry and progression to the DNA synthetic phase of the majority of ionomycin-stimulated T cells, but permitted only a small number of PHA-triggered T cells to enter the initial stage of the cell cycle (G1a) characterized by a modest increase in cellular RNA content. Although PMA permitted some PHA-stimulated T cells to enter the cell cycle, most required intact AC to enter G1, and all required intact AC to progress through G1 and synthesize maximal amounts of RNA. No PHA-stimulated cells reached the S phase without intact AC. In PHA-stimulated cultures containing intact AC, PMA increased the number of cells entering the cell cycle and increased the rate of their progress to the DNA synthetic phase. IL 1 also augmented PHA-stimulated AC-dependent T cell DNA synthesis in the presence or absence of PMA, but appeared to be most active during the later stage of the first cell cycle, augmenting the number of activated cells that entered the S phase of the cell cycle. These results support the conclusion that intact AC, IL 1, and a PMA-like signal play distinct roles in the progression of mitogen-stimulated T cells through the first round of the cell cycle.  相似文献   

2.
A mitogenic anti-CD3 ("T3") monoclonal antibody (64.1), that stimulates polyclonal T cell activation by a mechanism believed to be similar to antigen via binding to the T cell receptor complex, was utilized in soluble (SOL) and Sepharose-bound (SEPH) forms to dissect the role of accessory cells (AC) and interleukin 1 (IL 1) in supporting T cell activation. The T cell activation pathway was dissected into "early" events including expression of interleukin 2 receptors (IL 2R), increased RNA content, IL 2 release, and "late" (DNA synthesis) events. Unseparated peripheral blood mononuclear cells progressed through all stages of activation when stimulated by either form of 64.1. Stringent AC depletion by plastic adherence, nylon wool adherence, and L-leucine methyl ester (selectively lyses AC) prevented early and late T cell responses to either form of 64.1. The addition of highly purified IL 1 replenished both early and late T cell responses to SEPH-64.1 but not to SOL-64.1. Although SOL-64.1 stimulation of purified T cells induced modulation of the CD3 complex, only SEPH-64.1 induced IL 1 responsiveness, and exogenous IL 1 was then able to support synthesis of RNA, secretion of IL 2, expression of IL 2R, and ultimately, DNA synthesis. Therefore, the stages of early T cell activation owing to stimulation of the CD3-T cell receptor complex and IL 1 responsiveness have been dissected.  相似文献   

3.
Regulation of human T lymphocyte mitogenesis by antibodies to CD3   总被引:3,自引:0,他引:3  
The inhibitory and mitogenic effects of anti-CD3 antibodies (anti-CD3) were examined in cultures of human peripheral blood T cells. Resting T cells required the presence of accessory cells (AC) or phorbol myristate acetate (PMA) to be stimulated by soluble anti-CD3 (OKT3 and 64.1). Anti-CD3 was unable to induce activation of AC-depleted T cells as determined by IL 2 receptor expression, IL 2 production, cell cycle analysis, or detectable DNA synthesis. Although T cell responses to PHA also required AC, far fewer were necessary to generate responses. Anti-CD3 inhibited PHA-stimulated T cell IL 2 production, IL 2 receptor expression and proliferation in partially AC-depleted cultures. Moreover, anti-CD3 was able to inhibit PHA responses when added to culture as late as 24 to 42 hr after the initiation of a 96-hr incubation. Increasing concentrations of PHA reduced the inhibitory effect of anti-CD3 on PHA-stimulated T cell proliferation, whereas IL 2 production remained suppressed. Anti-CD3 linked to Sepharose beads effectively inhibited PHA-stimulated T cell DNA synthesis, indicating that internalization of the CD3 molecule was not required for inhibition of PHA responses. Although inhibition of IL 2 production was a major effect of anti-CD3 in PHA-stimulated cultures, it was not the only apparent inhibitory effect because the addition of exogenous IL 2 could not prevent inhibition completely. Intact AC but not IL 1 also reduced anti-CD3-mediated inhibition of PHA responsiveness, whereas the addition of both IL 2 and AC largely prevented inhibition. Thus, anti-CD3 in the absence of adequate AC signals exerted a number of distinct inhibitory effects on mitogen-induced T cell activation. These results suggest that the CD3 molecular complex may play a role in regulating T cell responsiveness after engagement of the T cell receptor by a number of mechanisms, some of which involve inhibition of IL 2 production.  相似文献   

4.
Recent studies have demonstrated that 1,25-dihydroxyvitamin D3 (calcitriol), the most biologically active metabolite of vitamin D, is a potent inhibitor of both lectin- and antigen-driven human T lymphocyte proliferation. To better characterize this effect, we performed cell cycle analysis of both untreated and calcitriol-treated peripheral blood mononuclear cells after PHA stimulation. By using the metachromatic dye acridine orange and flow cytometry, we found that calcitriol blocks the transition from the early, low RNA compartment of G1 (G1A) to the late, higher RNA compartment of G1 (G1B). Consistent with this observation was the inability of exogenous IL 1 or phorbol myristic acetate to overcome calcitriol's suppression of DNA synthesis. Indomethacin slightly reversed calcitriol's inhibition of transition from early to late G1, suggesting a minor, prostaglandin-dependent component to calcitriol's antiproliferative activity. Finally, by using the monoclonal antibodies anti-Tac and OKT9, we found that calcitriol had no effect on IL 2 receptor expression, an early G1 event, but markedly inhibited transferrin receptor expression, an IL 2-dependent, late G1 event. Thus, analysis of calcitriol's effects on the expression of these T cell activation antigens provides further evidence of the cell cycle specificity of calcitriol's action in regulating human T lymphocyte proliferation.  相似文献   

5.
6.
T cell growth without serum   总被引:5,自引:0,他引:5  
Most in vitro T cell proliferation experiments are performed by using serum-supplemented medium, yet the actual contributions of serum components to cell cycle progression remain ill-defined, thus complicating attempts to fully define requirements for cell division. By utilizing a functional separation between T cell receptor-triggered "competence" and IL 2-promoted "progression" to independently assess serum requirements during each cell cycle stage, it was shown that serum serves an essential, active role only during the early events of the competence phase (G0-G1 transition) of T cell activation. Serum is required for optimal IL 2 production and the cell surface expression of IL 2 receptors after the stimulation of the T3/Ti antigen receptor complex. In contrast, serum does not function actively during IL 2-mediated progression through the G1 phase of the cycle. Serum proteins serve only a passive role at this stage, preventing the adsorption of IL 2. This same effect can be provided by any number of proteins including IL 2 itself, or even a high cell concentration. Supplementation of serum-free T cell cultures solely with IL 2 and transferrin is sufficient for maximal T cell proliferation, although the time of the peak response is delayed owing to a suboptimal rate of IL 2 receptor expression. Accordingly, the realization that serum is only necessary for the earliest stage of T cell activation will now enable studies designed to identify the critical individual serum components and to define their mechanism of action.  相似文献   

7.
The role of the accessory cell in optimizing T cell proliferative responses to mitogens is a well known but poorly understood phenomenon. To further dissect the function of the accessory cell in allowing T cell proliferation, we compared mitogen-induced c-myc, interleukin 2 (IL 2), and IL 2 receptor gene expression in peripheral blood mononuclear cells (PBMC) and in T cells rigorously depleted of accessory cells through differential adherence and anti-Dr (anti-class II major histocompatibility antigen) monoclonal antibody complement-directed cytotoxicity. In cultures stimulated with phytohemagglutinin (PHA), a mitogen that requires accessory cells to induce T cell proliferation, expression of all measured genes was accessory cell dependent, since accumulation of their mRNA in PBMC was greater than that in cultures depleted of accessory cells. These genes varied in their accessory cell dependence, with IL 2 expression most dependent, c-myc expression least dependent, and IL 2 receptor expression intermediate in dependency. Use of 12-O-tetradecanoyl-phorbol-13-acetate (TPA) or ionomycin, mitogens that stimulate T cell proliferation independent of accessory cells, induced equal levels of gene expression in PBMC and in T cells depleted of accessory cells. These results suggest that PHA-stimulated T cells are dependent on an accessory cell signal(s) for optimal expression of the genes for c-myc, IL 2, and IL 2 receptor, and for proliferation. In addition, this signal(s) appears to be delivered early in the course of T cell activation events, since it can be bypassed by mitogens that directly activate protein kinase C (TPA) or induce calcium translocation (ionomycin). In addition, these data provide further evidence that expression of the c-myc protooncogene is insufficient for T cell mitogenesis, since PHA-induced accumulation of c-myc mRNA was only partially accessory cell dependent, whereas proliferation was completely accessory-cell dependent.  相似文献   

8.
Anti-Tac monoclonal antibody identifies the receptor for interleukin 2 (IL 2, or T cell growth factor) present on activated human T lymphocytes. By using tritiated anti-Tac, we now report a sensitive and specific binding assay to evaluate cell surface IL 2 receptor expression. IL 2 receptors on human peripheral blood lymphocytes can be detected within 6 hr after PHA stimulation. PHA-induced receptor expression is inhibited by actinomycin D and cycloheximide, but not by mitomycin C, suggesting a requirement for de novo RNA and protein synthesis, but not DNA synthesis. Scatchard analysis of [3H]-anti-Tac binding to lymphocytes stimulated with PHA for 3 days revealed from 20,000 to 60,000 molecules of antibody bound per cell, and a Kd of 1 to 3 x 10(-10) mol/l. Sequential binding studies of activated human lymphocytes maintained in long-term culture with IL 2 demonstrated a progressive decline in receptor number correlating with diminished growth rate. Restimulation with lectin or antigen increased the number of IL 2 receptors, suggesting that IL 2 dependent immune responses may be regulated, at least in part, by IL 2 receptor expression. Receptor number was also increased by PMA. Moreover, similar effects were produced by incubation with phospholipase C but not interleukin 1. Because both PMA and phospholipase C result in activation of protein kinase C, these data suggest the possibility that activation of protein kinase C may induce IL 2 receptor expression.  相似文献   

9.
We have assessed the inhibitory effects of various monoclonal antibodies on the expression of the IL 2 receptor. Anti-LFA-1, but not anti-Ly-2, markedly inhibited the induction of the IL 2 receptor on the Ly-2+ subset. T-depleted spleen cells, L cells, and B lymphoma cells all functioned as potent accessory cells (AC) for the induction of the IL 2 receptor on L3T4+ T cells. Anti-LFA-1 inhibited the induction of the IL 2 receptor irrespective of the type of AC used. Anti-L3T4 only inhibited the induction of IL 2 receptor expression when L cells were the source of AC. The inhibitory capacity of anti-L3T4 was not related to the expression of Ia on the AC population, because the magnitude of inhibition was comparable in cultures containing either Ia+ or Ia- L cells, whereas no inhibition was seen with either Ia+ or Ia-B lymphoma cells. We conclude from these studies that LFA-1 plays a critical role in mitogen-induced activation of both T cell subsets by promoting both T-AC and T-T interactions. Although anti-L3T4 can inhibit T cell activation in the absence of the recognition of Ia, the mechanism of inhibition and the proposed target molecule for L3T4 on the AC or the T cell have not been determined in our studies. A number of different models for the function of this cell surface antigen are discussed.  相似文献   

10.
Adherent accessory cells (AC) are required for the proliferative response of T lymphocytes to antigens and various mitogens. A current model of AC-T cell cooperation is that commitment to growth of mitogen activated T lymphocytes occurs via sequential action of IL 1 and IL 2. Initial mitogen action on T lymphocytes in the presence of AC is followed by a sequence of metabolic changes which culminate in DNA replication and mitosis. Many of these early events are critical to DNA replication. We studied several of these mitogen-induced events in experiments designed to define the specific influence of AC on T cell metabolism before initiation of DNA replication. By using human peripheral T lymphocytes depleted of AC to the extent that the proliferative response is essentially ablated, we found that the sequence of early events is divided into two phases: an early activated state in which certain events are stimulated directly by mitogen and independently of AC, and an AC-dependent state in which other events occur in mitogen-treated lymphocytes only in the presence of the numbers of AC necessary to support the proliferative response. We partially support the proliferative response. We partially characterized the nature of the metabolic activation that pulse neuraminidase-galactose oxidase treatment induces in lymphocytes in the presence and functional absence of AC. Stimulated uptake of [3H] uridine and [3H]-leucine into cellular precursor pools and incorporation into macromolecules apparently requires the presence of AC, but stimulated influx of both [3H]3-O-methyl glucose and [3H]alpha-amino isobutyric acid are independent of the presence of AC. These data suggest that stimulated influx of glucose and a certain class of essential amino acids are events of the early activated state, whereas increased RNA and protein synthesis are events of the AC-dependent state. All of these events are critical to the T cell's commitment of DNA replication and mitosis. The early activated state is consistent with AC-T cell cooperation via IL 2. It is possible that IL 2 mediates passage of IL 2 receptor-bearing T cells from the early activated state to the AC-dependent state, which then leads directly to DNA replication and mitosis.  相似文献   

11.
The regulation of the first cell cycle of human, activated (G1) PBL was analyzed by flow cytometry and [3H]thymidine incorporation. Endogenous IL 2 production was blocked in situ by pharmacologic concentration of DEX (100 to 1000 nM), resulting in an 80 to 90% reduction of thymidine uptake. Although T lymphocyte activation (G0-G1a transition) by PHA was unaltered, cells remained in the G1a phase of the cell cycle due to insufficient RNA synthesis for proliferation. The addition of IL 2-containing supernatants reversed this inhibitory effect of DEX by allowing the cells to synthesize more RNA (G1a-G1b transition). Such cells could enter the S phase and proliferate. Similar studies were performed on cells treated with a monoclonal antibody (anti-Tac) against the IL 2 receptor. In these studies, IL 2-induced RNA synthesis, and subsequent proliferation of DEX-treated and PHA-stimulated cells was inhibited by anti-Tac. Anti-Tac did not, however, inhibit the effect of endogenous IL 2 (PHA-stimulated PBL without DEX treatment), although it did bind equally well to such cells. Thus, IL 2 directly or indirectly regulates human T cell proliferation at the level of RNA synthesis. Furthermore, anti-Tac can inhibit the mitogenic signal given by endogenous IL 2, but not by in situ produced IL 2, an observation of importance to further investigations of the mechanisms by which IL 2 interacts with specific receptors to elicit proliferation.  相似文献   

12.
Human peripheral blood T cells were purified by a four-step procedure which included depletion of plastic-adherent cells, rosetting with sheep red blood cells, nylon wool passage, and treatment with mouse monoclonal antibodies to human Ia antigens plus complement. The purified T cells completely failed to proliferate to phytohemagglutinin (PHA). Bacterially derived recombinant human interleukin 2 (IL 2) reconstituted the proliferative response of resting T cells to PHA. The optimal concentration of IL 2 required was 100 to 200 U/ml. IL 2 alone caused no T cell proliferation. Both PHA and IL 2 needed to be present together for the proliferation of T cells to occur. Incubation of T cells with either PHA or IL 2 alone for up to 18 hr, followed by washing, then by the addition of the reciprocal reagent, resulted in no T cell proliferation. Expression of IL 2 receptors and of Ia antigens, as assessed by indirect immunofluorescent staining, revealed that both PHA and IL 2 needed to be present for Tac and Ia antigen expression by T cells. T cells incubated with PHA and IL 2 for 18 to 42 hr acquired responsiveness to IL 2. These T cells remained absolutely dependent on IL 2 for proliferation to occur. In contrast to T cells stimulated with PHA in the presence of monocytes, T cells stimulated with PHA and IL 2 released no detectable IL 2. The failure of IL 2 secretion was not caused by down-regulation of IL 2 production by IL 2 itself, because the addition of IL 2 to cultures of T cells stimulated with PHA in the presence of monocytes did not interfere with IL 2 production. These results indicate that IL 2 is a sufficient signal to induce the expression of its receptor in PHA-stimulated T cells and subsequent proliferation but is not sufficient to cause endogenous IL 2 release.  相似文献   

13.
The effects of rapamycin (RAP) on cell cycle progression of human T cells stimulated with PHA were examined. Cell cycle analysis showed that the RNA content of cells stimulated with PHA in the presence of RAP was similar to that of control T cells stimulated with PHA for 12–24 hr in the absence of the drug. This level was substantially higher than that seen in cells stimulated in the presence of cyclosporin A (CsA), an immunosuppressant known to block cell cycle progression at an early point in the cycle. However, the point in the cell cycle at which RAP acted appeared to be well before the G1/S transition, which occurs about 30–36 hr after stimulation with PHA. In an attempt to further localize the point in the cell cycle where arrest occurred, a set of key regulatory events leading to the G1/S boundary were examined, including p110Rb phosphorylation, which occurred at least 6 hr prior to DNA synthesis, p34cdc2 synthesis, and cyclin A synthesis. In control cultures, p110Rb phosphorylation was detected within 24 hr of PHA stimulation; p34cdc2 and cyclin A synthesis were detected within 30 hr. Addition of RAP to the cultures inhibited each of these events. In contrast, early events, including c-fos, IL-2, and IL-4 mRNAs expression, and IL-2 receptor (p55) expression, were only marginally affected, if at all, in PHA-stimulated T cells. Furthermore, the inhibition of cell proliferation by RAP could not be overcome by addition of exogenous IL-2. These results indicate that RAP blocks cell cycle progression of activated T cells after IL-2/IL-2 receptor interaction but prior to p110Rb phosphorylation and other key regulatory events signaling G1/S transition. © 1993 Wiley-Liss, Inc.  相似文献   

14.
We have studied the activation of interleukin 1 (IL 1)-dependent and IL 1-independent T cell lines, specifically their capacity to produce and secrete interleukin 2 (IL 2). The IL 1-dependent T cell lymphoma LBRM33-1A5.47, which requires phytohemagglutinin (PHA) and IL 1 to produce IL 2, was compared with the IL 1-independent T cell lymphoma LBRM33-5A4 and T cell hybridomas DO-11.10/S4.4 and 3DO-54.8. The latter hybridomas do not require exogenous IL 1 to produce IL 2 in response to mitogens or ovalbumin (OVA)/I-Ad. Even though IL 1 is not required by these IL 1-independent T cell lines, we tested whether IL 1 could modulate their response but found no significant effect of exogenous IL 1. We then studied the activation of these T cell lines by the calcium ionophore A23187 and phorbol myristate acetate (PMA). In the case of the IL 1-dependent line LBRM33-1A5.47, there was a strong response when both A23187 and PMA were used simultaneously. We subsequently found that A23187 can replace PHA, and PMA can replace IL 1 in the activation of this cell line to IL 2 production. These observations suggest that the signal(s) provided by PHA and IL 1 involve at least in part a calcium flux, and activation of protein kinase C. Parallel experiments with the use of the IL 1-independent T cell lines showed a strong response to both agents when used simultaneously. A modest response observed to A23187 alone was always enhanced by the addition of PMA. No response was observed to PMA alone. IL 1-rich P388D1 supernatant could replace the enhancing effect of PMA in the response of the IL 1-independent T cell lines. We suggest that the activating signals provided by A23187 and PMA are at least part of the sequence of events that lead to production of IL 2 in either IL 1-dependent or IL 1-independent T cell lines. In IL 1-independent T cell lines, however, both of the activating signals studied may be delivered through stimulation of the Antigen-MHC T cell receptor.  相似文献   

15.
We have analyzed the role of membrane potential on T cell activation and cell proliferation. Depolarization of T lymphocytes, by increasing the extracellular concentration of K+ during a 1-hr exposure to PHA, results in a marked inhibition of cell proliferation. In parallel, depolarization of T cells prevented the normal increase in [Ca2+]i seen after PHA binding. In depolarized cells, PHA failed to induce IL 2 secretion, but, in contrast, IL 2 receptor expression was triggered normally and the cells were subsequently responsive to exogenous IL 2. Increasing [Ca2+]i in depolarized cells with the ionophore ionomycin, or bypassing the requirement for an increase in [Ca2+]i with TPA, restored the PHA-induced proliferative response in depolarized cells. These data confirm that a membrane potential-sensitive step, namely, Ca2+ influx and the resulting change in [Ca2+]i, is triggered by PHA. The inhibitory effects of depolarization are mediated through the impairment of IL 2 secretion, but not IL 2 receptor expression. T cell proliferation can therefore be regulated by altering membrane potential, which in turn modulates the extent of the change in [Ca2+]i. This study suggests a role for transmembrane potential in the regulation of the T cell proliferative response.  相似文献   

16.
We previously demonstrated a two-signal requirement for the activation of the human T cell lines Jurkat and HUT 78. Interleukin 2 (IL 2) production by these lines can be induced by phytohemagglutinin (PHA), T3 antibodies, or calcium ionophores, but only in combination with phorbol myristate acetate (PMA). To obtain further information about surface structures involved in T cell activation, we produced a monoclonal antibody that could substitute for PMA in the activation of HUT 78. This antibody, designated J64, induced IL 2 secretion by HUT 78 in combination with PHA, T3 antibodies, or calcium ionophores, however not by itself. J64 also had other PMA-like effects on HUT 78, such as an increase in IL 2 receptor expression and an inhibition of cell growth. J64 was shown to immunoprecipitate the transferrin receptor (TfR). However, it bound to an epitope different from those recognized by other TfR antibodies and different from the transferrin-binding site. In addition, other previously described TfR antibodies did not, like J64, function as activating stimuli for HUT 78. Possible mechanisms for activation signaling in T cells involving the TfR are discussed.  相似文献   

17.
The role of accessory cells (AC) in the initiation of mitogen-induced T cell proliferation was examined by comparing the effect of intact macrophages (M phi) with that of 4-beta-phorbol 12-myristate 13-acetate (PMA). In high-density cultures, purified guinea pig T cells failed to proliferate in response to stimulation with phytohemagglutinin (PHA), concanavalin A (Con A), or PMA alone. The addition of M phi to PHA or Con A but not PMA-stimulated cultures restored T cell proliferation. The addition of PMA to high-density T cell cultures stimulated with PHA or Con A also permitted [3H]thymidine incorporation, but was less effective than intact M phi in this regard. This action of PMA was dependent on the small number of AC contaminating the T cell cultures as evidenced by the finding that PMA could not support mitogen responsiveness of T cells that had been depleted of Ia-bearing cells by planning, even when these cells were cultured at high density. When PMA was added to T cell cultures supported by optimal numbers of M phi, catalase-reversible suppression of responses was noted. Even in cultures containing catalase, PMA failed to enhance responsiveness above that supported by optimal numbers of M phi. A low-density culture system was used to examine in greater detail the possibility that PMA could completely substitute for M phi in promoting T cells activation. In low-density cultures, mitogen-induced T cell proliferation required intact M phi. PMA could not support responses even in cultures supplemented with interleukin 1-containing M phi supernatants or purified interleukin 2 alone or in combination. Similar results were found in high-density cultures of T cells depleted of Ia-bearing cells. These results support a model of T cell activation in which AC play at least two distinct roles. The initiation of the response requires a signal conveyed by an intact M phi, which cannot be provided by either a M phi supernatant factor or PMA. The response can be amplified by additional M phi or M phi supernatant factors. PMA can substitute for M phi in this regard and can provide the signal necessary for amplification of T cell proliferation supported by small numbers of intact AC.  相似文献   

18.
IL 2 production by T cell variants, which lack the Thy-1 or Ly-1 surface glycoproteins, was studied. Cross-linking of the Thy-1 molecule resulted in IL 2 production by the EL4 thymoma and by a T cell hybridoma, suggesting that Thy-1 may play a role in T lymphocyte triggering. To further study the functional role of this molecule, Thy-1-negative variants were selected and analyzed for IL 2 production in response to phorbol-12-myristate-13-acetate (PMA) or to Con A. It was demonstrated that in spite of their failure to express Thy-1, the Thy-1-negative clones were capable of IL 2 production. These results indicated that although Thy-1 cross-linking triggers cell activation, a signal provided by Thy-1 is not indispensable for cell activation by mitogens. The T cell tumor line LBRM331A5 responds synergistically to IL 1 and PHA by releasing IL 2. It was demonstrated that anti Ly-1 monoclonal antibodies and PHA co-stimulated LBRM331A5 cells, as did IL 1 plus PHA. Thus, anti Ly-1 antibodies mimic the effect of IL 1, suggesting a role for Ly-1 antigen in T cell activation, perhaps by serving as an IL 1 receptor or as an associated molecule. To further study the functional role of Ly-1 and its relation to IL 1 receptor, Ly-1-negative variants of the LBRM331A5 cell line were selected and analyzed for IL 2 production in response to PHA plus IL 1. It was demonstrated that the Ly-1-negative clones were capable of IL 2 production as efficiently as Ly-1-positive clones. These results indicate that the Ly-1 and IL 1 receptor are distinct molecules, which are involved in different activation pathways.  相似文献   

19.
We have examined the requirements for the activation of normal T cells by two anti-T cell receptor antibody preparations, including a rabbit antiserum, R3497, which binds to all normal T cells, and a rat monoclonal antibody, KJ16-133, which binds to about 20% of T cells. The requirements for stimulation of T cells by both antibodies were similar. Soluble antibodies in the absence of accessory cells (AC) failed to induce either proliferation or the expression of IL 2 receptors, and the addition of either IL 2 or PMA failed to synergize with these soluble antibodies for an AC-independent proliferative response. Activation could only be achieved in the presence of Fc receptor-positive AC, although Fc receptor expression alone appeared not to be sufficient for AC activity because some Fc receptor-positive cells did not function in this capacity. Activation with anti-receptor antibody conjugated to Sepharose 4B beads could be demonstrated in the presence of some exogenous cofactors, such as IL 2 and PMA, but not in the presence of recombinant IL 1. When activation by soluble antibody plus AC was compared to activation by bead-conjugated antibody + recombinant IL 2, it was found that the former favored the stimulation of Lyt-2+ cells. The effects of the addition of anti-L3T4 monoclonal antibody was also examined in this system. Anti-L3T4 inhibited the response of L3T4+ cells when used in the presence of Ia+ as well as Ia- AC, and it also inhibited activation in a system in which KJ16-133 conjugated to Sepharose was used in the absence of AC. Because anti-L3T4 had an inhibitory effect in the presence of Ia- AC as well as in the absence of any AC, it is concluded that L3T4 does not necessarily function by interacting with Ia on the surface of AC, and may directly transmit down-regulatory signals when bound by anti-L3T4.  相似文献   

20.
Desferoxamine blocks IL 2 receptor expression on human T lymphocytes   总被引:4,自引:0,他引:4  
Thymidine uptake by PHA-stimulated human lymphocytes is reduced in the presence of 100 microM or greater concentrations of the iron-chelating agent desferoxamine (DF). We assessed expression of IL 2 receptor, 4F2 and Ia antigens, IL 2 production, and cell cycle progression by blood mononuclear cells (MNC) stimulated by PHA in the presence or absence of DF to determine whether the lack of T cell proliferation was a manifestation of inhibition of an earlier activation event. Tac antigen expression on PHA-stimulated MNC was inhibited by DF throughout 8 days of culture, and those cells which were positive had a low density of Tac antigen as compared with controls without DF. Expression of other activation antigens, 4F2 and Ia, was not impaired by DF. The supernatants of the DF-containing and control cultures contained equivalent IL 2 activity, as measured on the HT-2 cell line. Cell cycle analysis of these cultures shows that the addition of DF at the beginning of culture blocks most cells from undergoing G0 to G1 transition, whereas later addition of DF arrests the progression of the T cell blasts through the cell cycle. Separation of cells cultured with PHA and DF into Tac+ and Tac- subsets showed that progression from G0 to G1 was restricted to the former subset. These results suggest that interference with IL 2 receptor expression might contribute to the block in mitogen-induced proliferation caused by DF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号