首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Reactions of rabbit alpha-2-macroglobulin with methylamine and trypsin were studied and the results were compared with those obtained for previously described 2-macroglobulins from other species. Rabbit alpha-2-macroglobulin was cleaved by trypsin at a number of sites, whereas the human homologue was split essentially only in the "bait" region into two fragments of similar sizes. Reaction of native or methylamine-treated rabbit alpha-2-macroglobulin with trypsin resulted in a substantial decrease in the intensity of fluorescence induced by binding of 6-(p-toluidino)-2-naphthalenesulfonate or bis(8-anilino-1-naphthalenesulfonate). Under the same conditions, the fluorescence of the human protein increased. The time course of the reaction of rabbit alpha-2-macroglobulin with methylamine was studied by measuring (i) the generation of thiol groups, (ii) the decrease in trypsin-inhibiting activity with remazol brilliant blue hide powder as the substrate, and (iii) the decrease in trypsin-protein amidase activity. The thiol appearance reaction exhibited a multiphasic time course. The initial phase was found to follow second-order kinetics with an apparent rate constant of 1.2 M-1.s-1. Under the same conditions, the human protein showed monophasic kinetics with a rate constant of 12 M-1.s-1. Both the trypsin-inhibiting activity and the trypsin-protein amidase activity concurrently decreased at a slower rate than the thiol appearance. These results indicate that rabbit alpha-2-macroglobulin is more stable to nucleophilic attack by methylamine but less resistant to proteolysis by trypsin than the human homologue, and that the final conformation induced by methylamine differs considerably from that induced by trypsin.  相似文献   

2.
Two glycoproteins having trypsin-protein esterase activity were purified to apparent homogeneity from murine plasma. One was alpha-macroglobulin, a homologue of human alpha-2-macroglobulin, while the other, tentatively named murinoglobulin, did not correspond to any of the known plasma protease inhibitors that have been well characterized in men or other mammals. Murinoglobulin contained about 7.6% carbohydrate and was composed of a single-polypeptide chain of Mr = 180,000 as judged by the equilibrium sedimentation analysis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. Murinoglobulin did not cross-react immunologically with mouse alpha-macroglobulin nor with human alpha-2-macroglobulin. Protease-inhibiting properties of murinoglobulin were compared with those of mouse alpha-macroglobulin and human alpha-2-macroglobulin. All the three proteins inhibited trypsin, papain, and thermolysin, although they differed considerably in both the degree of inhibition and the binding stoichiometry of protease-inhibitor complexes. The two macroglobulins inhibited pepsin at pH 5.5, whereas murinoglobulin was inactivated at this pH. Murinoglobulin was more sensitive to methylamine than the two macroglobulins. No protein corresponding to murinoglobulin was detected in human plasma.  相似文献   

3.
Murinoglobulin, a newly identified mouse plasma protein with trypsin-protein esterase activity (Saito, A. & Sinohara, H. (1985) J. Biol. Chem. 260, 775-781), was also found in rat plasma and purified to apparent homogeneity. The serum level of rat murinoglobulin was 14.1 mg/ml, amounting to 1/3 of the total serum globulin fraction. Rat murinoglobulin was a monomeric glycoprotein (Mr = 210,000) containing 12% carbohydrate. Rat plasma contained two isoforms of murinoglobulin, termed I and II, which showed complete immunological identity on double diffusion analysis using rabbit antiserum raised against isoform I or II. These antisera also showed partial cross-reactivity towards mouse murinoglobulin and rat alpha-1-macroglobulin but not towards rat or human alpha-2-macroglobulin. The chemical compositions, peptide mapping patterns and electrophoretic mobilities of the two isoforms resembled each other but clearly differed from those of rat alpha-1- or alpha-2-macroglobulin. Rat murinoglobulin inhibited the proteolytic activity of trypsin towards casein and remazol brilliant blue hide powder. The inhibition as to the latter substrate was greater than that as to the former. When molar ratios of inhibitor to trypsin were low, murinoglobulin and the two alpha-macroglobulins stimulated the amidolytic activity of trypsin towards a synthetic substrate. At higher ratios, however, murinoglobulin, but not the alpha-macroglobulins, inhibited the same activity. The trypsin-protein esterase activity of murinoglobulin and the two alpha-macroglobulins was impaired by a molar excess of soybean trypsin inhibitor. Murinoglobulin and the two alpha-macroglobulins were inactivated by methylamine with a concomitant unmasking of the thiol group. Murinoglobulin was much more sensitive to soybean trypsin inhibitor and methylamine than the two alpha-macroglobulins.  相似文献   

4.
We have compared the reactions of trypsin with human alpha 2-macroglobulin (alpha 2M), and three rat plasma protease inhibitors, alpha 1-macroglobulin (alpha 1M), alpha 1-inhibitor III (alpha 1I3), and alpha 2M. All four of these proteins appear to contain reactive thiol esters. The electrophoretic mobility in agarose gels of human and rat alpha 2M is increased by 1 mol of trypsin, while the mobility of alpha 1M and alpha 1I3 is decreased. Treatment with methylamine causes similar mobility changes, except in the case of rat alpha 2M. Titration of human and rat macroglobulins by repeated small additions of trypsin and by assay of liberated SH groups or enhanced ligand fluorescence revealed a stoichiometry of about 1 mol of trypsin/mol of inhibitor. In contrast, addition of macroglobulin to a fixed amount of trypsin and detection of residual amidase or protease activity revealed a stoichiometry of about 2 mol of trypsin for 1 mol of human alpha 2M, about 1.4 mol for rat alpha 1M, and about 1 mol for rat alpha 2M. One mol of trypsin reacted with 2 or more mol of alpha 1I3 by the criteria of SH groups liberated or protease inhibition. Methylamine-treated rat alpha 2M binds a significant amount of trypsin releasing about 2 mol of SH. Radioactive beta-trypsin was covalently bound to subunits of the purified plasma inhibitors. The Mr of the labeled products with rat and human alpha 2M had molecular weights which suggested trypsin was bound to intact as well as cleaved subunit chains and also to multiple chains via cross-linking. Rat alpha 1M also produced a product which may be an intact subunit alpha chain plus trypsin. Greater than 80% of the trypsin was bound covalently to these inhibitors at low molar ratios.  相似文献   

5.
The interaction of horse alpha 2-macroglobulin with methylamine, trypsin and cathepsin D was studied by circular dichroism in the far and near UV region, by polyacrylamide gel electrophoresis and by determination of its inhibitory activity. The CD spectra of horse alpha 2-macroglobulin resemble those of bovine und human alpha 2-macroglobulin. The CD spectra were changed in a different manner after the interaction of alpha 2-macroglobulin with methylamine, trypsin and inactive or active cathepsin D, indicating that more than one conformational change occurs. Cathepsin D activity was not affected by complex formation with horse alpha 2-macroglobulin. In contrast to the action of trypsin, treatment with methylamine did not increase the electrophoretic mobility of alpha 2-macroglobulin.  相似文献   

6.
We report the identification of the first representative of the alpha-2-macroglobulin family identified in terrestrial invertebrates. An abundant acidic glycoprotein was isolated from the plasma of the soft tick Ornithodoros moubata. Its molecular mass is about 420 kDa in the native state, whereas in SDS/PAGE it migrates as one band of 190 kDa under nonreducing conditions and a band of 92 kDa when reduced. Chemical deglycosylation reveals that it is composed of two different subunits, designated A and B. The N-terminal amino-acid sequence of subunit A is similar to the N-terminus of invertebrate alpha-2-macroglobulin. Sequence analysis of several internal peptides confirms that the tick protein belongs to the alpha-2-macroglobulin family, and the protein is therefore referred to as tick alpha-macroglobulin (TAM). Functional analyses strengthen this assignment. TAM inhibits trypsin and thermolysin cleavage of the high-molecular-weight substrate azocoll in a manner similar to that of bovine alpha-2-macroglobulin. This effect is abolished by pre-treatment of TAM with methylamine. In the presence of TAM, trypsin is protected against active-site inhibition by soybean trypsin inhibitor. We cloned and sequenced a PCR product containing sequences from both subunits and spanning the N-terminus of subunit B and the putative 'bait region' (a segment of alpha-2-macroglobulin which serves as target for various proteases). This indicates that the two subunits are generated from a precursor polypeptide by post-translational processing.  相似文献   

7.
S R Feldman  S V Pizzo 《Biochemistry》1985,24(10):2569-2575
Frog alpha-macroglobulin was purified to apparent homogeneity by Ni2+ chelate affinity chromatography. Frog alpha-macroglobulin migrated as an alpha 1-globulin in cellulose acetate electrophoresis. A molecular weight of 730 000 was obtained by equilibrium sedimentation, and in sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE), the protein migrated as a single band of Mr approximately 360 000 before reduction and Mr approximately 180 000 after reduction. Treatment with trypsin resulted in subunit cleavage to yield a fragment of Mr approximately 90 000. After being heated, the protein fragmented, migrating in SDS-PAGE as two bands of Mr approximately 120 000 and 60 000. This fragmentation was inhibited by prior reaction of the protein with methylamine. In native pore-limit electrophoresis the protein exhibited the characteristic "slow" to "fast" conformational change of protease-treated alpha-macroglobulins. In contrast, typical "slow" to "fast" conformational change was not observed in native PAGE with this preparation. Moreover, the protein incorporated approximately 2 mol of [14C]methylamine/mol of inhibitor without demonstrating a change in mobility in native PAGE. In circular dichroism studies, the protein exhibited a spectrum similar to that of human alpha 2M. Reaction with trypsin resulted in a broadening and decrease in the magnitude of the spectrum. Reaction with methylamine resulted in similar changes, but of smaller magnitude. The inhibitor bound approximately 0.7 mol of trypsin in both radiolabeled protease binding and amidolytic titration studies. 125I-Labeled native frog alpha 1M was removed slowly from the circulation of mice with a t1/2 greater than 2h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The inhibitory activity of chicken and crocodilian ovomacroglobulins against trypsin was measured before and after their incubation with methylamine. The result for crocodilian ovomacroglobulin showed that methylamine treatment destroyed half of its activity, in unique contrast to human alpha 2-macroglobulin and chicken ovomacroglobulin for which methylamine either destroys the inhibitory activity of the former completely or does not affect that of the latter at all. Free sulfhydryl groups of chicken and crocodilian ovomacroglobulins were titrated with 5,5'-dithiobis(2-nitrobenzoic acid) before and after incubation with trypsin. Prior to the incubation with trypsin the chicken and crocodilian proteins respectively had 0 and 1 titratable sulfhydryl per molecule of Mr 720,000. After treatment with trypsin the crocodilian protein had 3.5-4 titratable sulfhydryls, whereas there were no titratable sulfhydryls in the chicken protein. After denaturation of the crocodilian protein in sodium dodecyl sulfate at 100 degrees C the number of titratable sulfhydryls was 4. Chicken ovomacroglobulin again did not have an appreciable number of titratable sulfhydryls under similar denaturing conditions. Incubation of crocodilian protein with [14C]methylamine showed an incorporation of at least 2 mol of methylamine per molecule. The result indicated the presence of three intramolecular thiol ester bonds in crocodilian ovomacroglobulin with differential stability against external perturbations.  相似文献   

9.
B J Chen  A I Yuan  D Wang  R D Feinman 《Biochemistry》1990,29(13):3361-3365
The kinetics of reaction of alpha 2-macroglobulin (alpha 2M) with thrombin and with trypsin were studied in the presence and absence of methylamine. The rate of enzyme-induced thiol release was found to be the same whether or not amine was present. The result suggests that covalent bond formation and enzyme-catalyzed amine incorporation proceed via a common (enzyme-dependent) rate-determining step. The reaction of lysyl-modified enzymes (which show poor covalent binding with alpha 2M) was similarly unaffected by amine, indicating that enzyme-catalyzed steps were also rate determining for hydrolysis of the thiol ester. The products of the reactions were analyzed by native and denaturing gel electrophoresis. Methylamine did not affect the total binding of enzyme to alpha 2M but did cause a substantial decrease in covalent binding. Surprisingly, not all covalent complexes were affected by the presence of amine: complexes in which enzyme was covalently bound to one half-molecule increased compared to the reaction with no amine; complexes in which two half-molecules are cross-linked by two bonds to a single enzyme were substantially reduced, however. The results are consistent with a mechanism of reaction in which an enzyme-dependent step is rate determining. This step is accompanied by activation of two thiol esters. One of these reacts immediately with the bound enzyme (or may be hydrolyzed if the enzyme amine groups are blocked). The other activated center is capable of reaction with external nucleophiles such as methylamine.  相似文献   

10.
The unique steric type of inhibition of endopeptidases by human alpha 2-macroglobulin (alpha 2-M) and the inactivation of the latter by methylamine were examined in relation to the internal thioesters in alpha 2M. The present results confirm our previous findings that disruption of the internal thioesters, is not in itself sufficient to cause the conformational change of alpha 2M typical of alpha 2-M-proteinase complexes; the electrophoretically slow form of alpha 2M with [14C]methylamine incorporated was isolated. Moreover, this group is stabilized by derivatization of the exposed cysteine thiol groups. Cyanylation with 2,4-dinitrophenyl thiocyanate during the methylamine reaction was the most effective procedure, yielding essentially only slow-form alpha 2M. Other thiol-specific reagents were less effective. When allowed to react with trypsin the cyanylated derivative (slow-form alpha 2M with thioesters broken) produced anomalous complexes; only half the expected amount of trypsin was bound, whereas the complexes were fully inhibited by soya-bean trypsin inhibitor and were proteolytically active. Despite this, the anomalous complexes were recognized by two highly specific probes: the fibroblast alpha 2M-complex receptor and the monoclonal antibody (F2B2) directed against the receptor-recognition site on alpha 2M complexes. The results show that the internal thioesters in alpha 2M are necessary for the conformational change producing sterically inhibited endoproteinase complexes, but do not participate as such in receptor-mediated endocytosis of these complexes.  相似文献   

11.
The interaction between human fibroblast collagenase and five mammalian alpha-macroglobulins (human alpha 2-macroglobulin and pregnancy zone protein, rat alpha 1- and alpha 2-macroglobulin, and rat alpha 1-inhibitor 3) differing in primary and quaternary structure has been investigated. Complex formation with each of these alpha-macroglobulins follows the course identified for many other proteinases, i.e. specific limited proteolysis in their bait regions inducing a set of conformational changes resulting in activation of the internal beta-cysteinyl-gamma-glutamyl thiol esters and covalent complex formation. At collagenase: alpha-macroglobulin molar ratios of less than 1:1 3.2-3.6 mol of SH groups appear for 1 mol of collagenase bound to human and rat alpha 2-macroglobulin and to rat alpha 1-macroglobulin. For these alpha-macroglobulins it can be estimated that the overall rate constant of complex formation is greater than 1.10(6) M-1 s-1 while it is much lower for human pregnancy zone protein and rat alpha 1-inhibitor 3. More than 95% of the complexed collagenase is covalently bound, and sodium dodecyl sulfate gel electrophoresis shows the typical pattern of bands corresponding to reaction products of very high apparent molecular weight. The same pattern is also seen in the covalent (greater than 98%) complex very slowly formed from Clostridium histolyticum collagenase and human alpha 2-macroglobulin. The identification of the sites of specific limited proteolysis in the bait regions of the five alpha-macroglobulins shows that cleavage may take place in sequences that are not related to those identified earlier in the collagens. These results greatly expand the repertoire of sequences known to be cleaved by fibroblast collagenase and suggest that this proteinase has a primary substrate specificity resembling that of the microbial proteinase thermolysin, as it preferentially cleaves at the NH2-terminal side of large hydrophobic residues. In addition, the results highlight the unique structure of the flexible alpha-macroglobulin bait region in that it can accommodate a conformation required by the highly restrictive fibroblasts collagenase. It is suggested that alpha-macroglobulins may play an important role in locally controlling the activity of collagenases and perhaps other proteinases of the extracellular matrix.  相似文献   

12.
Rat alpha 1-inhibitor-3 is a 180-kDa monomeric proteinase inhibitor found in high concentration in rat plasma. By several criteria it has been shown to be a member of the family of alpha-macroglobulin proteinase inhibitors often exemplified by the tetrameric human alpha 2-macroglobulin. We have used limited proteolysis of rat alpha 1-inhibitor-3 to probe the domain structure of this family of proteins. Proteinases of different specificities, including trypsin, chymotrypsin, thermolysin, and Staphylococcus aureus V8 proteinase, were employed and a common fragmentation pattern was observed when the reaction products were examined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. These fragments were electrotransferred to polyvinylidene difluoride membranes and subjected to NH2-terminal amino acid sequence analysis in order to position them within the context of the primary structure. The fragmentation pattern may define the domain structure of alpha 1-inhibitor-3 and serve as a model for the domain organization of the family of alpha-macroglobulin proteinase inhibitors.  相似文献   

13.
The products generated by the reaction of Limulus alpha 2-macroglobulin with trypsin were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. Unreacted Limulus alpha 2-macroglobulin had a subunit molecular mass of 185 kDa. Trypsin-reacted samples contained two prominent peptides smaller (85 and 100 kDa) and three peptides larger (200, 250, and 300-350 kDa) than the unreacted subunit. Reaction of methylamine-treated Limulus alpha 2-macroglobulin with trypsin resulted in the same two prominent reaction products smaller than 185 kDa, but all of the reaction products larger than 185 kDa were absent. The covalent binding of biotinylated trypsin with Limulus alpha 2-macroglobulin was detected by probing Western blots with horseradish peroxidase-avidin. Surprisingly, the only reaction products that contained trypsin were bands at 100 and 120 kDa. The staining of these bands with horseradish peroxidase-avidin was weak: most of the biotinylated trypsin that remained associated with alpha 2-macroglobulin during gel filtration chromatography was located at the dye front following reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The reaction products larger than 185 kDa did not contain trypsin. Methylamine-reacted Limulus alpha 2-macroglobulin failed to bind any biotinylated trypsin. In contrast to the reaction of trypsin with Limulus alpha 2-macroglobulin, all high molecular mass bands generated by the reaction of human alpha 2-macroglobulin with biotinylated trypsin stained intensely with horseradish peroxidase-avidin. Thus, Limulus alpha 2-macroglobulin forms thiol ester-dependent, high molecular mass products involving isopeptide bonding between trypsin-generated fragments, without the incorporation of trypsin into the complexes. Most of the alpha 2-macroglobulin-associated trypsin is non-covalently trapped rather than covalently cross-linked.  相似文献   

14.
The human protease inhibitor alpha 2-macroglobulin (alpha 2 M) is inactivated by reaction with methylamine. The site of reaction is a protein functional group having the properties of a thiol ester. To ascertain the relationship between thiol ester cleavage and protein inactivation, the rates of methylamine incorporation and thiol release were measured. As expected for a concerted reaction of a nucleophile with a thiol ester, the rates were identical. Furthermore, both rates were first order with respect to methylamine and second order overall. The methylamine inactivation of alpha 2M was determined by measuring the loss of total protease-binding capacity. This rate was slower than the thiol ester cleavage and had a substantial initial lag. However, the inactivation followed the same time course as a conformational change in alpha 2M that was measured by fluorescent dye binding, ultraviolet difference spectroscopy, and limited proteolysis. Thus, the methylamine inactivation of alpha 2M is a sequential two-step process where thiol ester cleavage is followed by a protein conformational change. It is the latter that results in the loss of total protease-binding capacity. A second assay was used to monitor the effect of methylamine on alpha 2M. The assay measures the fraction of alpha 2M-bound protease (less than 50%) that is resistant to inactivation by 100 microM soybean trypsin inhibitor. In contrast to the total protease-binding capacity, this subclass disappeared with a rate coincident with methylamine cleavage of the thiol ester. alpha 2M-bound protease that is resistant to a high soybean trypsin inhibitor concentration may reflect the fraction of the protease randomly cross-linked to alpha 2M. Both the thiol ester cleavage and the protein conformational change rates were dependent on methylamine concentration. However, the thiol ester cleavage depended on methylamine acting as a nucleophile, while the conformational change was accelerated by the ionic strength of methylamine. Other salts and buffers that do not cleave the thiol ester increased the rate of the conformational change. A detailed kinetic analysis and model of the methylamine reaction with alpha 2M is presented. The methylamine reaction was exploited to study the mechanism of protease binding by alpha 2M. At low ionic strength, the protein conformational change was considerably slower than thiol ester cleavage by methylamine. Thus, at some time points, a substantial fraction of the alpha 2M had all four thiol esters cleaved, yet had not undergone the conformational change. This fraction (approximately 50%) retained full protease-binding capacity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The unique steric inhibition of endopeptidases by human alpha(2)M (alpha(2)-macroglobulin) and the inactivation of the latter by methylamine were examined in relation to each other. Progressive binding of trypsin by alpha(2)M was closely correlated with the loss of the methylamine-reactive sites in alpha(2)M: for each trypsin molecule bound, two such sites were inactivated. The results further showed that, even at low proteinase/alpha(2)M ratios, no unaccounted loss of trypsin-binding capacity occurred. As alpha(2)M is bivalent for trypsin binding and no trypsin bound to electrophoretic slow-form alpha(2)M was observed, this indicates that the two sites must react (bind trypsin) in rapid succession. Reaction of [(14)C]methylamine with alpha(2)M was biphasic in time; in the initial rapid phase complex-formation with trypsin caused a largely increased incorporation of methylamine. In the subsequent slow phase trypsin had no such effect. These results prompted further studies on the kinetics of methylamine inactivation of alpha(2)M with time of methylamine treatment. It was found that conformational change of alpha(2)M and decrease in trypsin binding (activity resistant to soya-bean trypsin inhibitor) showed different kinetics. The latter decreased rapidly, following pseudo-first-order kinetics. Conformational change was much slower and followed complex kinetics. On the other hand, binding of (125)I-labelled trypsin to alpha(2)M did follow the same kinetics as the conformational change. This discrepancy between total binding ((125)I radioactivity) and trypsin-inhibitor-resistant binding of trypsin indicated formation of anomalous complexes, in which trypsin could still be inhibited by soya-bean trypsin inhibitor. Further examination confirmed that these complexes were proteolytically active towards haemoglobin and bound (125)I-labelled soya-bean trypsin inhibitor to the active site of trypsin. The inhibition by soya-bean trypsin inhibitor was slowed down as compared with reaction with free trypsin. The results are discussed in relation to the subunit structure of alpha(2)M and to the mechanism of formation of the complex.  相似文献   

16.
Efforts to characterize the receptor recognition domain of alpha-macroglobulins have primarily focused on human alpha 2-macroglobulin (alpha 2M). In the present work, the structure and function of the alpha-macroglobulin receptor recognition site were investigated by amino acid sequence analysis, plasma clearance, and cell binding studies using several nonhuman alpha-macroglobulins: bovine alpha 2M, rat alpha 1-macroglobulin (alpha 1M), rat alpha 1-inhibitor 3 (alpha 1I3), and proteolytic fragments derived from these proteins. Each alpha-macroglobulin bound to the murine peritoneal macrophage alpha-macroglobulin receptor with comparable affinity (Kd approximately 1 nM). A carboxyl-terminal 20-kDa fragment was isolated from each of these proteins, and this fragment bound to alpha-macroglobulin receptors with Kd values ranging from 10 to 125 nM. The amino acid identity between the homologous carboxyl-terminal 20-kDa fragments of human and bovine alpha 2M was approximately 90%, while the overall sequence homology between all carboxyl-terminal fragments studied was 75%. The interchain disulfide bond present in the human alpha 2M carboxyl-terminal 20-kDa fragment was conserved in bovine alpha 2M and rat alpha 1I3, but not in rat alpha 1M. The clearance of each intact alpha-macroglobulin-proteinase complex was significantly retarded following treatment with cis-dichlorodiammineplatinum(II) (cis-DDP). cis-DDP treatment, however, did not affect receptor recognition of purified carboxyl-terminal 20-kDa fragments of these alpha-macroglobulins. A carboxyl-terminal 40-kDa subunit, which can be isolated from rat alpha 1M, bound to the murine alpha-macroglobulin receptor with a Kd of 5 nM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Intra-chain thiol ester bonds are present in a limited number of proteins. The thiol ester class of proteins includes vertebrate alpha 2-macroglobulin and the complement proteins C3 and C4. We report here the first instance of a thiol ester protein from an invertebrate, the alpha 2-macroglobulin proteinase-inhibitor homologue present in the plasma of the American horseshoe crab Limulus polyphemus. Our evidence is of three kinds: (1) the proteinase-binding activity of Limulus alpha 2-macroglobulin is inactivated by the low-molecular-mass primary amine methylamine; (2) the native protein is subject to autolytic fragmentation during mild thermal denaturation, yielding fragments of approx. 125 kDa and 55 kDa, whereas the methylamine-treated protein is stable under these conditions of thermal treatment; (3) new thiol groups are generated rapidly during reaction of the protein with trypsin. The demonstration of the thiol ester bond in a protein from an ancient invertebrate provides evolutionary evidence for the importance of this bond in the function of plasma forms of the alpha 2-macroglobulin-like proteinase inhibitors.  相似文献   

18.
The conformational changes around the thioester-bond region of human or bovine alpha 2M (alpha 2-macroglobulin) on reaction with methylamine or trypsin were studied with the probe AEDANS [N-(acetylaminoethyl)-8-naphthylamine-1-sulphonic acid], bound to the liberated thiol groups. The binding affected the fluorescence emission and lifetime of the probe in a manner indicating that the thioester-bond region is partially buried in all forms of the inhibitor. In human alpha 2M these effects were greater for the trypsin-treated than for the methylamine-treated inhibitor, which both have undergone similar, major, conformational changes. This difference may thus be due to a close proximity of the thioester region to the bound proteinase. Reaction of trypsin with thiol-labelled methylamine-treated bovine alpha 2M, which retains a near-native conformation and inhibitory activity, indicated that the major conformational change accompanying the binding of proteinases involves transfer of the thioester-bond region to a more polar environment without increasing the exposure of this region at the surface of the protein. Labelling of the transglutaminase cross-linking site of human alpha 2M with dansylcadaverine [N-(5-aminopentyl)-5-dimethylaminonaphthalene-1-sulphonamide] suggested that this site is in moderately hydrophobic surroundings. Reaction of the labelled inhibitor with methylamine or trypsin produced fluorescence changes consistent with further burial of the cross-linking site. These changes were more pronounced for trypsin-treated than for methylamine-treated alpha 2M, presumably an effect of the cleavage of the adjacent 'bait' region. Solvent perturbation of the u.v. absorption and iodide quenching of the tryptophan fluorescence of human alpha 2M showed that one or two tryptophan residues in each alpha 2M monomer are buried on reaction with methylamine or trypsin, with no discernible change in the exposure of tyrosine residues. Together, these results indicate an extensive conformational change of alpha 2M on reaction with amines or proteinases and are consistent with several aspects of a recently proposed model of alpha 2M structure [Feldman, Gonias & Pizzo (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 5700-5704].  相似文献   

19.
Hyperimmune sera against human alpha 2 macroglobulin were raised in rabbits following immunization with 's' alpha 2-macroglobulin over half a year. Immunoglobulins were prepared by DEAE-Sephacel anion exchange chromatography. The immunoglobulin preparations showed a remarkably high and equal titer for 's' and 'f' alpha 2-macroglobulin (plasma alpha 2-macroglobulin fully saturated with pig pancreas trypsin), which amounted to 6.4 X 10(-6) as revealed by passive hemagglutination. Immunoimmobilization experiments revealed that at equilibrium, 's' alpha 2-macroglobulin and both 'f' alpha 2-macroglobulins (27 and 82% saturation of 's' alpha 2-macroglobulin with trypsin) had been bound to the same degree from the fluid phase to the monospecific antibodies that had been adsorbed to polystyrene tubes. Comparison of quantitative gel scans for disappearance of the intact alpha 2-macroglobulin subunit (Mr 182000) with 125I-labeled trypsin binding capacity of immunoimmobilized alpha 2-macroglobulin-trypsin complexes showed conspicuous agreement. Rocket immunoelectrophoresis did not give significant differences between 's' alpha 2-macroglobulin and 'f' alpha 2-macroglobulin. In the fluid phase, a binding ratio of 2.4 mol trypsin/mol alpha 2-macroglobulin was observed. Saturation of solid phase immunoimmobilized 's' alpha 2-macroglobulin with trypsin could be accomplished by incubation with a 100-200-fold molar excess of enzyme for 10 min. The solid-phase experiments showed a binding ratio of 2.0 mol trypsin/mol alpha 2-macroglobulin. The high molar excess of trypsin needed to saturate solid-phase immunoimmobilized alpha 2-macroglobulin, which binds 20% less trypsin than in the liquid phase, is partially explained by an enhancement of the negative cooperativity of trypsin binding to alpha 2-macroglobulin found in the liquid-phase system. Assessment of the trypsin-binding capacity of alpha 2-macroglobulin immunoadsorbed from synovial fluids (n = 19) of patients with seropositive rheumatoid arthritis yielded an inactive alpha 2-macroglobulin of 0-53% when compared to the trypsin-binding capacity of normal plasma alpha 2-macroglobulin.  相似文献   

20.
Circular dichroism spectroscopy, sedimentation velocity and ultraviolet difference spectroscopy were used to compare alpha 2-macroglobulin, alpha 2-macroglobulin-trypsin complex and alpha 2-macroglobulin-methylamine complex. The circular dichroic spectrum of native alpha 2-macroglobulin is significantly changed in shape and magnitude following reaction with either trypsin or methylamine. The spectra of alpha 2-macroglobulin-trypsin and alpha 2-macroglobulin-methylamine are, however, indistinguishable. The ultraviolet difference spectrum between alpha 2-macroglobulin-methylamine and native alpha 2-macroglobulin displays a tyrosine blue shift consistent with the exposure of several tyrosine residues to solvent. The conformational change which occurs in alpha 2-macroglobulin during reaction with methylamine follows pseudo-first-order kinetics. T 1/2 was 10.5 min for the reaction with 200 mM methylamine at pH 8.0 and 45 min for the reaction with 50 mM methylamine, also at pH 8.0. Reaction of methylamine with alpha 2-macroglobulin results in loss of trypsin-binding activity which appears to be a direct consequence of the conformational change induced by methylamine. A sedimentation coefficient (S0(20),W) of 20.5 was determined for alpha 2-macroglobulin-methylamine compared to a value of 18.5 for unreacted alpha 2-macroglobulin. This increase in sedimentation velocity is attributed to a 10% decrease in alpha 2-macroglobulin Stokes radius. alpha 2-Macroglobulin-trypsin complex prepared by reaction of the protease at a 2-fold molar excess with the inhibitor was a S0(20),W of 20.3. Although this sedimentation coefficient does reflect compacting of the alpha 2-macroglobulin structure compared to native alpha 2-macroglobulin, it is not large enough to rule out significant protrusion of the proteases from pockets in the alpha 2-macroglobulin structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号