共查询到20条相似文献,搜索用时 15 毫秒
1.
Zucchi OL Moreira S de Jesus EF Neto HS Salvador MJ 《Biological trace element research》2005,103(3):277-290
In this work, synchrotron radiation total reflection X-ray fluorescence spectrometry (SRTXRF) was used to determine trace
elements in eight hypoglycemiant plants (Trigonella foenum graecum, Panax ginseng, Pfaffia paniculata, Myrcia speciosa, Zea mays, Harpagophytum procumbens, Syzygium
jambolona, and Bauhinia forficate). The elements P, K, Ca, Ti, Mn, Fe, Cu, Zn, Rb, and Sr were detected in all medicinal plants investigated, whereas Si, S,
Sc, V, Cr, Co, Ni, Se, Nb, Mo, Sn, Sb, Ba, Hg, and Pb were detected only in some of the samples. The concentration of elements
in hypoglycemiant plants varied from 0.15 μg/g of Co to 3.0×104 μg/g of K and the mean of experimental limit of detection for these elements were 0.14 and 3.6 μg/g, respectively. 相似文献
2.
Fred J. Molz 《Journal of theoretical biology》1976,59(2):277-292
A detailed quantitative analysis of water flow through the apoplasm and symplasm of plant tissue is presented. The analysis results in two coupled diffusion equations which describe water transport in the two pathways. Various parameters entering the analysis identify the physical properties of the tissue which control the transport process as the resistance to water flow per cell in the two parallel pathways, the resistance per cell between pathways, and the water capacity per cell in the two pathways. Values for the several resistances and water capacities are estimated from available data, and a model problem is solved wherein a sheet of tissue at an initial water potential of — δ bars is immersed in a container of water. The resulting solutions show that depending on the values assigned to the controlling parameters, local water potential equilibrium between each cell and its cell wall may or may not obtain. In the special case of local equilibrium (water potential in the symplasm and apoplasm pathways essentially equal), the transport process can be described by a single diffusion equation which is derived along with an expression for the tissue diffusivity. It is concluded that the weakest link in the analysis is the estimated value for the permeability of the plasmodesma membrane, and that a logical extension of the theory would be to include the effects of a diffusable solute. 相似文献
3.
The apoplasmic and symplasmic iron pools were determined in roots and leaves of Lycopersicon esculentum Mill. cv. Bonner Beste and its mutant chloronerva. The mutant is auxotrophic for the ubiquitous plant constituent nicotianamine (NA) and exhibits an impaired iron metabolism. Formation of apoplasmic iron pools in roots was dependent on the iron source in the nutrient solution. With Fe-ethylenediaminedi-(2-hydroxyphenylacetate) (FeEDDHA) only a very small apoplasmic iron pool was formed in the roots of both genotypes. Plants grown with FeEDTA increased their apoplasmic iron pool with increasing exogenous iron concentrations in the nutrient solution. The size of the apoplasmic pools in roots did not differ between the wild-type and the mutant (about 85 mol Fe · g–1 DW). By contrast, the symplasmic iron concentrations in roots and leaves of the mutant were significantly higher when compared to the wild-type. An exogenous NA supply to the leaves of the mutant reduced the high symplasmic iron concentrations to the level of the wild-type. Mutant leaves exhibited a gradient of symplasmic iron concentrations depending on the developmental age of the leaves. The oldest leaves contained considerably more symplasmic iron than the youngest. The results demonstrate that the apparent iron deficiency of the mutant is not the consequence of an impaired iron transport from the apoplasm to the symplasm. Therefore, it is concluded that NA is not required for the transport of Fe(II) through the plasmalemma into the cell.Abbreviations BPDS
bathophenanthroline disulfonic acid, Na2 salt
- FeEDDHA
ferric N-N-ethylenediaminedi-(2-hydroxy-phenylacetate)
- NA
nicotianamine
Part 40 in the series The normalizing factor for the tomato mutant chloronerva. For part 39 see Pich et al. (1991)The valuable technical assistance of Mrs. Christa Kallas and Mr. Günter Faupel is gratefully acknowledged. 相似文献
4.
Three-dimensional characterization of tethered microspheres by total internal reflection fluorescence microscopy 下载免费PDF全文
Tethered particle microscopy is a powerful tool to study the dynamics of DNA molecules and DNA-protein complexes in single-molecule experiments. We demonstrate that stroboscopic total internal reflection microscopy can be used to characterize the three-dimensional spatiotemporal motion of DNA-tethered particles. By calculating characteristic measures such as symmetry and time constants of the motion, well-formed tethers can be distinguished from defective ones for which the motion is dominated by aberrant surface effects. This improves the reliability of measurements on tether dynamics. For instance, in observations of protein-mediated DNA looping, loop formation is distinguished from adsorption and other nonspecific events. 相似文献
5.
Telgmann L Holtkamp M Künnemeyer J Gelhard C Hartmann M Klose A Sperling M Karst U 《Metallomics : integrated biometal science》2011,3(10):1035-1040
A simple and rapid method to determine gadolinium (Gd) concentrations in urine and blood plasma samples by means of total reflection X-ray fluorescence (TXRF) was developed. With a limit of detection (LOD) of 100 μg L(-1) in urine and 80 μg L(-1) in blood plasma and a limit of quantification (LOQ) of 330 μg L(-1) in urine and 270 μg L(-1) in blood plasma, it allows analyzing urine samples taken from magnetic resonance imaging (MRI) patients during a period of up to 20 hours after the administration of Gd-based MRI contrast agents by means of TXRF. By parallel determination of the urinary creatinine concentration, it was possible to monitor the excretion kinetics of Gd from the patient's body. The Gd concentration in blood plasma samples, taken immediately after an MRI examination, could be determined after rapid and easy sample preparation by centrifugation. All measurements were validated with inductively coupled plasma mass spectrometry (ICP-MS). TXRF is considered to be an attractive alternative for fast and simple Gd analysis in human body fluids during daily routine in clinical laboratories. 相似文献
6.
Subcellular and single-molecule imaging of plant fluorescent proteins using total internal reflection fluorescence microscopy (TIRFM) 总被引:1,自引:0,他引:1
Vizcay-Barrena G Webb SE Martin-Fernandez ML Wilson ZA 《Journal of experimental botany》2011,62(15):5419-5428
Total internal reflection fluorescence microscopy (TIRFM) has been proven to be an extremely powerful technique in animal cell research for generating high contrast images and dynamic protein conformation information. However, there has long been a perception that TIRFM is not feasible in plant cells because the cell wall would restrict the penetration of the evanescent field and lead to scattering of illumination. By comparative analysis of epifluorescence and TIRF in root cells, it is demonstrated that TIRFM can generate high contrast images, superior to other approaches, from intact plant cells. It is also shown that TIRF imaging is possible not only at the plasma membrane level, but also in organelles, for example the nucleus, due to the presence of the central vacuole. Importantly, it is demonstrated for the first time that this is TIRF excitation, and not TIRF-like excitation described as variable-angle epifluorescence microscopy (VAEM), and it is shown how to distinguish the two techniques in practical microscopy. These TIRF images show the highest signal-to-background ratio, and it is demonstrated that they can be used for single-molecule microscopy. Rare protein events, which would otherwise be masked by the average molecular behaviour, can therefore be detected, including the conformations and oligomerization states of interacting proteins and signalling networks in vivo. The demonstration of the application of TIRFM and single-molecule analysis to plant cells therefore opens up a new range of possibilities for plant cell imaging. 相似文献
7.
Understanding the mechanism of actin polymerization and its regulation by associated proteins requires an assay to monitor polymerization dynamics and filament topology simultaneously. The only assay meeting these criteria is total internal reflection fluorescence microscopy (Amann and Pollard, 2001; Fujiwara et al., 2002). The fluorescence signal is fourfold stronger with actin labeled on Cys-374 with Oregon green rather than rhodamine. To distinguish growth at barbed and pointed ends we used image drift correction and maximum intensity projections to reveal points where single N-ethylmaleimide inactivated myosins attach filaments to the glass coverslip. We estimated association rates at high actin concentrations and dissociation rates near and below the critical actin concentration. At the barbed end, the association rate constant for Mg-ATP-actin is 7.4 microM(-1) s(-1) and the dissociation rate constant is 0.89 s(-1). At the pointed end the association and dissociation rate constants are 0.56 microM(-1) s(-1) and 0.19 s(-1). When vitamin D binding protein sequesters all free monomers, ADP-actin dissociates from barbed ends at 1.4 s(-1) and from pointed ends at 0.16 s(-1) regardless of buffer nucleotide. 相似文献
8.
A new approach is presented for measuring the three-dimensional orientation of individual macromolecules using single molecule fluorescence polarization (SMFP) microscopy. The technique uses the unique polarizations of evanescent waves generated by total internal reflection to excite the dipole moment of individual fluorophores. To evaluate the new SMFP technique, single molecule orientation measurements from sparsely labeled F-actin are compared to ensemble-averaged orientation data from similarly prepared densely labeled F-actin. Standard deviations of the SMFP measurements taken at 40 ms time intervals indicate that the uncertainty for individual measurements of axial and azimuthal angles is approximately 10 degrees at 40 ms time resolution. Comparison with ensemble data shows there are no substantial systematic errors associated with the single molecule measurements. In addition to evaluating the technique, the data also provide a new measurement of the torsional rigidity of F-actin. These measurements support the smaller of two values of the torsional rigidity of F-actin previously reported. 相似文献
9.
Topography of cell-glass apposition revealed by total internal reflection fluorescence of volume markers 总被引:4,自引:0,他引:4 下载免费PDF全文
We have developed a new method based on total internal reflection fluorescence to map the shape of the region between glass and the lower surface of a living cell spread upon it. Fluorescently labeled nonadsorbing volume marker molecules that cannot penetrate into the cell are locally stimulated so that they fluoresce only very near the glass/medium interface. The total fluorescence intensity at any point beneath the cell depends on the cell-to-glass separation. Focal contacts appear as dark areas owing to dye exclusion, whereas when the gap exceeds approximately 150 nm, fluorescence asymptotes to the bright background level. Our technique provides greater contrast than does interference reflection microscopy and is free from errors due to cytoplasmic thickness and refractive index inhomogeneities arising from cytoplasmic inclusions. We have shown that sufficiently large molecules suffer steric exclusion from regions accessible to small molecules, which gives new information about lateral penetrability in the apposition region. 相似文献
10.
Actin dynamics at the living cell submembrane imaged by total internal reflection fluorescence photobleaching 下载免费PDF全文
Although reversible chemistry is crucial to dynamical processes in living cells, relatively little is known about relevant chemical kinetic rates in vivo. Total internal reflection/fluorescence recovery after photobleaching (TIR/FRAP), an established technique previously demonstrated to measure reversible biomolecular kinetic rates at surfaces in vitro, is extended here to measure reversible biomolecular kinetic rates of actin at the cytofacial (subplasma membrane) surface of living cells. For the first time, spatial imaging (with a charge-coupled device camera) is used in conjunction with TIR/FRAP. TIR/FRAP imaging produces both spatial maps of kinetic parameters (off-rates and mobile fractions) and estimates of kinetic correlation distances, cell-wide kinetic gradients, and dependences of kinetic parameters on initial fluorescence intensity. For microinjected rhodamine actin in living cultured smooth muscle (BC3H1) cells, the unbinding rate at or near the cytofacial surface of the plasma membrane (averaged over the entire cell) is measured at 0.032 +/- 0.007 s(-1). The corresponding rate for actin marked by microinjected rhodamine phalloidin is very similar, 0.033 +/- 0.013 s(-1), suggesting that TIR/FRAP is reporting the dynamics of entire filaments or protofilaments. For submembrane fluorescence-marked actin, the intensity, off-rate, and mobile fraction show a positive correlation over a characteristic distance of 1-3 microm and a negative correlation over larger distances greater than approximately 7-14 microm. Furthermore, the kinetic parameters display a statistically significant cell-wide gradient, with the cell having a "fast" and "slow" end with respect to actin kinetics. 相似文献
11.
Sampling, storing, sample pretreatment, and experimental conditions for selenium (Se) determination in human serum, plasma, and whole blood by X-ray emission spectrometric (XRS) methods are described. Concentration levels in these biological fluids, found by this technique, are discussed and compared to values found by other techniques for the same healthy population group in the same area. XRS analysis of blood from patients with various pathological conditions is reviewed, with special attention to the relation of Se with the concentration level of other essential or nonessential trace elements. 相似文献
12.
D.V. Rao M. Swapna R. Cesareo A. Brunetti T. Akatsuka T. Yuasa T. Takeda G. Tromba G.E. Gigante 《Journal of trace elements in medicine and biology》2009,23(4):251-257
In this study, synchrotron-based micro-beam was utilized for elemental mapping of a small animal shell. A thin X-ray spot of the order of 10 μm was focused on the sample. With this spatial resolution and high flux throughput, the X-ray fluorescent intensities for Ca, Mn, Fe, Ni, Zn, Cr and Cu were measured using a liquid-nitrogen-cooled 13-element energy-dispersive HpGe detector. The sample is scanned in a ‘step-and-repeat’ mode for fast elemental mapping and generated elemental maps at 8, 10 and 12 keV. All images are of 10 μm resolution and the measurement time was 1 s per point. The accumulation of trace elements was investigated from the soft-tissue in small areas. Analysis of the small areas will be better suited to establish the physiology of metals in specific structures like small animal shell and the distribution of other trace elements. 相似文献
13.
To study the orientation and dynamics of myosin, we measured fluorescence polarization of single molecules and ensembles of myosin decorating actin filaments. Engineered chicken gizzard regulatory light chain (RLC), labeled with bisiodoacetamidorhodamine at cysteine residues 100 and 108 or 104 and 115, was exchanged for endogenous RLC in rabbit skeletal muscle HMM or S1. AEDANS-labeled actin, fully decorated with labeled myosin fragment or a ratio of approximately 1:1000 labeled:unlabeled myosin fragment, was adhered to a quartz slide. Eight polarized fluorescence intensities were combined with the actin orientation from the AEDANS fluorescence to determine the axial angle (relative to actin), the azimuthal angle (around actin), and RLC mobility on the <10 ms timescale. Order parameters of the orientation distributions from heavily labeled filaments agree well with comparable measurements in muscle fibers, verifying the technique. Experiments with HMM provide sufficient angular resolution to detect two orientations corresponding to the two heads in rigor. Experiments with S1 show a single orientation intermediate to the two seen for HMM. The angles measured for HMM are consistent with heads bound on adjacent actin monomers of a filament, under strain, similar to predictions based on ensemble measurements made on muscle fibers with electron microscopy and spectroscopic experiments. 相似文献
14.
Winheim S Hieb AR Silbermann M Surmann EM Wedig T Herrmann H Langowski J Mücke N 《PloS one》2011,6(4):e19202
Quantitative imaging of intermediate filaments (IF) during the advanced phase of the assembly process is technically difficult, since the structures are several μm long and therefore they exceed the field of view of many electron (EM) or atomic force microscopy (AFM) techniques. Thereby quantitative studies become extremely laborious and time-consuming. To overcome these difficulties, we prepared fluorescently labeled vimentin for visualization by total internal reflection fluorescence microscopy (TIRFM). In order to investigate if the labeling influences the assembly properties of the protein, we first determined the association state of unlabeled vimentin mixed with increasing amounts of labeled vimentin under low ionic conditions by analytical ultracentrifugation. We found that bona fide tetrameric complexes were formed even when half of the vimentin was labeled. Moreover, we demonstrate by quantitative atomic force microscopy and electron microscopy that the morphology and the assembly properties of filaments were not affected when the fraction of labeled vimentin was below 10%. Using fast frame rates we observed the rapid deposition of fluorescently labeled IFs on glass supports by TIRFM in real time. By tracing their contours, we have calculated the persistence length of long immobilized vimentin IFs to 1 μm, a value that is identical to those determined for shorter unlabeled vimentin. These results indicate that the structural properties of the filaments were not affected significantly by the dye. Furthermore, in order to analyze the late elongation phase, we mixed long filaments containing either Alexa 488- or Alexa 647-labeled vimentin. The 'patchy' structure of the filaments obtained unambiguously showed the elongation of long IFs through direct end-to-end annealing of individual filaments. 相似文献
15.
Spinach (Spinacia oleracea L.), broad bean (Vicia faba L.) and beech (Fagus sylvatica L.) plants were exposed to ozone at concentrations often measured in air during the summer months (120–300 g·m–3) and antioxidants were determined in the leaf tissue and in the aqueous phase of the cell wall, the apoplasm. Concentrations of both reduced ascorbate (AA) and its oxidized form, dehydroascorbate (DHA), showed the tendency to increase transiently in the apoplasm of spinach leaves 6–24 h after starting fumigation with ozone. In beech leaves, apoplasmic AA and DHA increased 3–7 d after beginning of treatment. At the very high concentration of 1600 g O3·m–3, an increase of apoplasmic AA was already measured after 1 d in beech leaves. Apparently, spinach and beech leaves respond to oxidative stress by increasing AA transport into the apoplasm and by accelerating DHA export. In contrast to these observations, DHA accumulated during 3 d of fumigation with only 120 g O3·m–3 in the apoplasm of broad bean leaves, while AA contents did not increase. After termination of fumigation, the extracellular redox state of ascorbate normalized within 1 d. Glutathione could not be detected in the apoplasm of any of the three leaf species. Intracellular AA changed its redox state in response to exposure to elevated concentrations of ozone. After 4–6 weeks of fumigation with 200–300 g O3·m–3 an increase of intracellular DHA was measured in beech leaves. At the same time, chlorophyll contents decreased and characteristic symptoms of ozone damage could be observed. However, no significant change in the redox state of apoplasmic ascorbate could be detected in beech leaves. Evidently, detoxification of ozone by apoplasmic AA was insufficient to protect the leaf tissue. Fumigation with a high ozone concentration (1600 g·m–3) caused an appreciable increase in the cellular contents of the oxidized forms of ascorbate and glutathione in beech leaves. Whereas in spinach leaves intracellular antioxidant contents and redox states were not altered during fumigation with 120–240 g O3·m–3, in broad bean leaves the intracellular DHA concentration increased and intracellular ascorbate became more oxidized after fumigation of the plants with 120 g O3·m–3. Apparently, broad bean leaves are more sensitive to ozone than beech and spinach leaves.Abbreviations AA
ascorbate, reduced form
- DHA
ascorbate, oxidized form (dehydroascorbate)
- FW
fresh weight
- GSH
glutathione, reduced form
- GSSG
glutathione, oxidized form
- IWF
intercellular washing fluid
- Vair
intercellular air space volume of leaves
- Vapo
apoplasmic water volume of leaves
This work was supported within the Sonderforschungsbereich 251 of the University of Würzburg. 相似文献
16.
Structural organization of interphase 3T3 fibroblasts studied by total internal reflection fluorescence microscopy 总被引:6,自引:0,他引:6
We studied the laminar organization of 3T3 fibroblast cells growing on glass slides by use of total internal reflection illumination to excite fluorescence emission (TIRF) from labeled molecules and stained cellular compartments that are very close to the cell-substrate contact region. Mitochondria, distant from the contact regions and stained with the water-soluble cationic dye, dil-C3-(3), fluoresced only as the glass/cytoplasm critical angle was approached. A similar result was obtained when the nuclei were stained with Hoechst dye 33342. From this measured angle a cytoplasmic refractive index in the range 1.358-1.374 was computed. The plasma membrane of 3T3 cells was stained with dil-C18-(3), and the cytoplasmic compartment was stained with fluoresceinyl-dextran (FTC-dextran) or with carboxyfluorescein. We have demonstrated a high degree of correspondence between the low-reflectance zones in the reflection interference image of a live cell and the TIRF images of both the plasma membrane and cytoplasmic compartment. TIRF photometry of selected contact regions of cells provided data from which the absolute separation of cell and substrate was computed. From a population of 3T3 cells microinjected with fluorescein-labeled actin, motile and adherent interphase cells were selected for study. For adherent cells, which displayed fluorescent stress fibers, the TIRF image was composed of intense patches and less intense regions that corresponded, respectively, to the focal contact and close-contact zones of the reflection-interference image. The intense patches corresponded to the endpoints of the stress fibers. Cells of motile morphology, which formed some focal contacts and extensive close-contact zones, gave AF-actin TIRF images of relatively even intensity. Thin lamellar regions of the cytoplasm were found to contain concentrations of actin not significantly different from other close-contact regions of the cell. The major analytical problem of TIRF microscopy is separation of the effects of proximity to substrate, refractive index, and fluorescent probe concentration on the local brightness of the TIRF image. From our results, it appears possible to use TIRF microscopy to measure the proximity of different components of substrate contact regions of cells. 相似文献
17.
Most eukaryotes utilize a single pool of clathrin to assemble clathrin-coated transport vesicles at different intracellular locations. Coat assembly is a cyclical process. Soluble clathrin triskelia are recruited to the membrane surface by compartment-specific adaptor and/or accessory proteins. Adjacent triskelia then pack together to assemble a polyhedral lattice that progressively invaginates, budding off the membrane surface encasing a nascent transport vesicle that is quickly uncoated. Using total internal reflection fluorescence microscopy to follow clathrin dynamics close to the cell surface, we find that the majority of labeled clathrin structures are relatively static, moving vertically in and out of the evanescent field but with little lateral motion. A small minority shows rapid lateral and directed movement over micrometer distances. Adaptor proteins, including the alpha subunit of AP-2, ARH, and Dab2 are also relatively static and exhibit virtually no lateral movement. A fluorescently labeled AP-2 beta2 subunit, incorporated into both AP-2 and AP-1 adaptor complexes, exhibits both types of behavior. This suggests that the highly motile clathrin puncta may be distinct from plasma membrane-associated clathrin structures. When endocytosed cargo molecules, such as transferrin or low density lipoprotein, are followed into cells, they exhibit even more lateral motion than clathrin, and gradually concentrate in the perinuclear region, consistent with classical endosomal trafficking. Importantly, clathrin partially colocalizes with internalized transferrin, but diverges as the structures move longitudinally. Thus, highly motile clathrin structures are apparently distinct from the plasma membrane, accompany transferrin, and contain AP-1, revealing an endosomal population of clathrin structures. 相似文献
18.
Lene Jorgensen Grith Krøyer Wood Ida Rosenkrands Charlotte Petersen Dennis Christensen 《Journal of liposome research》2013,23(2):99-104
In many drug delivery systems such as liposomes, the adsorption of interstitial proteins upon administration can have a huge effect on the elimination, release, and stability of the delivery system. For example, it is assumed that PEGylated liposomes prevent the adsorption of opsonins and thereby prolong the circulation time in vivo, and EMEA guidelines recommend that more than 80% of the protein antigen is adsorbed in the formulation of adjuvant systems. However, few methods exist to elucidate this protein adsorption. The present study indicates that total internal reflection fluorescence (TIRF) is a possible method to examine the adsorption and exchange of proteins at lipid surfaces. In the TIRF set-up, a lipid layer can be formed [exemplified with dimethyldioctadecylammonium bromide (DDA) and D-(+)-trehalose 6,6’-dibehenate (TDB)] whereafter protein (i.e., ovalbumin or an antigen, Ag85B-ESAT-6) is adsorbed, and these proteins can subsequently be displaced by the abundant interstitial protein (i.e., serum albumin). 相似文献
19.
Andrey Tronin Ann M Edwards Wayne W Wright Jane M Vanderkooi J Kent Blasie 《Biophysical journal》2002,82(2):996-1003
The formation of chemisorbed monolayers of yeast cytochrome c on both uncharged polar and nonpolar soft surfaces of organic self-assembled monolayers (SAM) on solid inorganic substrates was followed in situ by polarized total internal reflection fluorescence. Two types of nonpolar surfaces and one type of uncharged polar surface were used. The first type of nonpolar surface contained only thiol endgroups, while the other was composed of a mixture of thiol and methyl endgroups. The uncharged polar surface was provided by the mixture of thiol and hydroxyl endgroups. The thiol endgroups were used to form a covalent disulfide bond with the unique surface-exposed cysteine residue 102 of the protein. The mean tilt angle of the protein's zinc-substituted porphyrin was found to be 41 degrees and 50 degrees for the adsorption onto the nonpolar and uncharged polar surfaces, respectively. The distribution widths for the pure thiol and the thiol/methyl and thiol/hydroxyl mixtures were 9 degrees, 1 degrees, and 18 degrees, respectively. The high degree of the orientational order and good stability achieved for the protein monolayer on the mixed thiol/methyl endgroup SAM makes this system very attractive for studies of both intramolecular and intermolecular electron transfer processes. 相似文献
20.
Total internal reflection fluorescence microscopy (TIRF-Microscopy) allows the observation of individual secretory vesicles in real-time during exocytosis. In contrast to electrophysiological methods, such as membrane capacitance recording or carbon fiber amperometry, TIRF-Microscopy also enables the observation of vesicles as they reside close to the plasma membrane prior to fusion. However, TIRF-Microscopy is limited to the visualization of vesicles that are located near the membrane attached to the glass coverslip on which the cell grows. This has raised concerns as to whether exocytosis measured with TIRF-Microscopy is comparable to global secretion of the cell measured with membrane capacitance recording. Here we address this concern by combining TIRF-Microscopy and membrane capacitance recording to quantify exocytosis from adrenal chromaffin cells. We found that secretion measured with TIRF-Microscopy is representative of the overall secretion of the cells, thereby validating for the first time the TIRF method as a measure of secretion. Furthermore, the combination of these two techniques provides a new tool for investigating the molecular mechanism of synaptic transmission with combined electrophysiological and imaging techniques. 相似文献