首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Pyrolysis mass spectrometry (PyMS) was used to produce biochemical fingerprints from replicate frozen cell cultures of mouse macrophage hybridoma 2C11-12, human leukaemia K562, baby hamster kidney BHK 21/C13, and mouse tumour BW-O, and a fresh culture of Chinese hamster ovary CHO cells. The dimensionality of these data was reduced by the unsupervised feature extraction pattern recognition technique of auto-associative neural networks. The clusters observed were compared with the groups obtained from the more conventional statistical approaches of hierarchical cluster analysis. It was observed that frozen and fresh cell line cultures gave very different pyrolysis mass spectra. When only the frozen animal cells were analysed by PyMS, auto-associative artificial neural networks (ANNs) were employed to discriminate between them successfully. Furthermore, very similar classifications were observed when the same spectral data were analysed using hierarchical cluster analysis. We demonstrate that this approach can detect the contamination of cell lines with low numbers of bacteria and fungi; this approach could plausibly be extended for the rapid detection of mycoplasma infection in animal cell lines. The major advantages that PyMS offers over more conventional methods used to type cell lines and to screen for microbial infection, such as DNA fingerprinting, are its speed, sensitivity and the ability to analyse hundreds of samples per day. We conclude that the combination of PyMS and ANNs can provide a rapid and accurate discriminatory technique for the authentication of animal cell line cultures.  相似文献   

2.
A simple, but stringent, three group model of bacterial interstrain identity (two cultures of the same strain ofEscherichia coli) and difference (a culture of a serologically distinct strain) was used in multiple serial weekly subcultures for five weeks to demonstrate the effect of both growth-related (phenotypic) and machine-related variation on pyrolysis mass spectra. An aliquot of serum from a single sample was included in each pyrolysis batch to distinguish machine drift from culture drift. Conventional principal component (PC) canonical variate (CV) analysis was successful within each pyrolysis batch but the variations between batches precluded the use of data from more than one batch in successful PCCV analysis. In contrast, artificial neural networks (ANNs) trained with data from one batch could be successfully used to identify groups in data from non-contemporaneous pyrolysis batches. Although the ANN method will require validation in more complex settings than this simple model, it is a promising approach to the problem of batch constraint in pyrolysis mass spectrometry.  相似文献   

3.
Pyrolysis mass spectrometry (PyMS) and multivariate calibration were used to show the high degree of relatedness between Escherichia coli HB101 and E. coli UB5201. Next, binary mixtures of these two phenotypically closely related E. coli strains were prepared and subjected to PyMS. Fully interconnected feedforward artificial neural networks (ANNs) were used to analyse the pyrolysis mass spectra to obtain quantitative information representative of the level of E. coli UB5201 in E. coli HB101. The ANNs exploited were trained using the standard back propagation algorithm, and the nodes used sigmoidal squashing functions. Accurate quantitative information was obtained for mixtures with >3% E. coli UB5201 in E. coli HB101. To remove noise from the pyrolysis mass spectra and so lower the limit of detection, the spectra were reduced using principal components analysis (PCA) and the first 13 principal components used to train ANNs. These PCA-ANNs allowed accurate estimates at levels as low as 1% E. coli UB5201 in E. coli HB101 to be predicted. In terms of bacterial numbers, it was shown that the limit of detection for PyMS in conjunction with ANNs was 3 × 104 E. coli UB5201 cells in 1·6 × 107 E. coli HB101 cells. It may be concluded that PyMS with ANNs provides a powerful and rapid method for the quantification of mixtures of closely related bacterial strains.  相似文献   

4.
Abstract An artificial neural network was trained to distinguish between three putatively novel species of Streptomyces using normalised, scaled pyrolysis mass spectra from three representative strains of each of the taxa, each sampled in triplicate. Once trained, the artificial neural network was challenged with spectral data from the original organisms, the 'training set', from additional members of the putative novel taxa and from over a hundred strains representing six other actinomycete genera. All of the streptomycetes were correctly identified but many of the other actinomycetes were mis-identified. A modified network topology was developed to recognise the mass spectral patterns of the non-streptomycete strains. The resultant neural network correctly identified the streptomycetes, whereas all of the remaining actinomycetes were recognised as unknown organisms. The improved artificial neural network provides a rapid, reliable and cost-effective method of identifying members of the three target streptomycete taxa.  相似文献   

5.
Curie-point pyrolysis mass spectra were obtained from reference Propionibacterium strains and canine isolates. Artificial neural networks (ANNs) were trained by supervised learning (with the back-propagation algorithm) to recognize these strains from their pyrolysis mass spectra; all the strains isolated from dogs were identified as human wild type P. acnes. This is an important nosological discovery, and demonstrates that the combination of pyrolysis mass spectrometry and ANNs provides an objective, rapid and accurate identification technique. Bacteria isolated from different biopsy specimens from the same dog were found to be separate strains of P. acnes , demonstrating a within-animal variation in microflora. The classification of the canine isolates by Kohonen artificial neural networks (KANNs) was compared with the classical multivariate techniques of canonical variates analysis and hierarchical cluster analysis, and found to give similar results. This is the first demonstration, within microbiology, of KANNs as an unsupervised clustering technique which has the potential to group pyrolysis mass spectra both automatically and relatively objectively.  相似文献   

6.
Bone injures (BI) represents one of the major health problems, together with cancer and cardiovascular diseases. Assessment of the risks associated with BI is nontrivial since fragility of human cortical bone is varying with age. Due to restrictions for performing experiments on humans, only a limited number of fracture resistance curves (R-curves) for particular ages have been reported in the literature. This study proposes a novel decision support system for the assessment of bone fracture resistance by fusing various artificial intelligence algorithms. The aim was to estimate the R-curve slope, toughness threshold and stress intensity factor using the two input parameters commonly available during a routine clinical examination: patients age and crack length. Using the data from the literature, the evolutionary assembled Artificial Neural Network was developed and used for the derivation of Linear regression (LR) models of R-curves for arbitrary age. Finally, by using the patient (age)-specific LR models and diagnosed crack size one could estimate the risk of bone fracture under given physiological conditions. Compared to the literature, we demonstrated improved performances for estimating nonlinear changes of R-curve slope (R2 = 0.82 vs. R2 = 0.76) and Toughness threshold with ageing (R2 = 0.73 vs. R2 = 0.66).  相似文献   

7.
8.
Linear regression (LR) has been used to predict the amino acid (AA) profiles of feed ingredients, given proximate analysis (PA) input. Artificial neural networks (ANN) have also been trained to predict AA levels, generally with better results. Past projects have indicated that ANN more effectively identified the complex relationship between nutrients and feed ingredients than did LR. It was shown that the maximum R2 value, a measurement of the amount of variability explained by the model, was highest when a general regression neural network (GRNN) with iterative calibration (GRNNIT) was used to train the ANN. This was in comparison to LR, Ward backpropagation (WBP) or 3-layer backpropagation (3BP) architectures. The current study investigated the potential of a new, advanced method of calibration using the genetic algorithm (GA) to optimize GRNN smoothing values. Calibration of an ANN allows the neural network to generalize well and therefore provide good results on new data. A GRNN architecture (NeuroShell 2® Software) with GA calibration (GRNNGA) was used to train an ANN to predict AA levels in maize, soya bean meal (SBM), meat and bone meal, fish meal and wheat, based on proximate analysis input. Within the GRNNGA architecture, ANN were trained with either an Euclidean or City Block distance metric and a (0,1), (−1,1), (logistic) or (tanh) input scale. Predictive performance was judged on the basis of the maximum R2 value. In general, maximum R2 values were higher when the GA calibration was used in comparison to LR. For example, the highest methionine (MET) R2 value for SBM was 0.54 (LR), 0.81 (3BP), 0.87 (WBP), 0.92 (GRNNIT) and 0.98 (GRNNGA). Genetic algorithm calibration of GRNN architecture led to further improvements in ANN performance for AA level predictions in most of the cases studied. Exceptions were the TSAA level in SBM (0.94 with GRNNIT vs. 0.90 with GRNNGA) and the TRY level in maize (0.88 with GRNNIT vs. 0.61 with GRNNGA).  相似文献   

9.
Herbicides such as atrazine are widely used in the biosphere. Urine analysis is usually performed to evaluate the toxicological effects associated with atrazine exposure. A simple procedure based on the extractive electrospray ionization mass spectrometry (EESI-MS) method was established to detect atrazine and its metabolites in undiluted raw urine without sample pretreatment. A 4.3 × 10−14 g atrazine in spiked raw urine was detected and identified by EESI/MS/MS/MS. The detection limit was found to be 0.4 fg for atrazine (m/z 174) and 0.2 fg for 2-chloro-4, 6-diamino-S-triazine (DACT) (m/z 129) (S/N = 3) in EESI/MS/MS. A linear dynamic range of 4–5 orders of magnitude (r = 0.996) was determined for both atrazine and DACT. A single sample analysis was completed using tandem EESI-MS/MS within 1 min, providing a practical convenient method for rapid analysis of trace amounts of targeted metabolites present in complex matrices. Thus, tandem EESI-MS is potentially useful for previously discovered biomarker detection in multiple applications such as clinical diagnosis, drug discovery and forensic science.  相似文献   

10.
In this study, a nanoemulsion containing mebudipine [composed of ethyl oleate (oil phase), Tween 80 (T80), Span 80 (S80) (surfactants), polyethylene glycol 400, ethanol (cosurfactants), and deionized water] was prepared with the aim of improving its bioavailability for an effective antihypertensive therapy. Particle size of the formulation was measured by dynamic light scattering. Then, artificial neural networks were used in identifying factors that influence the particle size of the nanoemulsion. Three variables, namely, amount of surfactant system (T80?+?S80), amount of polyethylene glycol, and amount of ethanol as cosurfactants, were considered as input values and the particle size was used as output. The developed model showed that all the three inputs had some degrees of effect on particles size: increasing the value of each input decreased the size. Furthermore, amount of surfactant was found to be the dominant factor in controlling the final particle size of nanoemulsion.

Communicated by Ramaswamy H. Sarma  相似文献   


11.
Pyrolysis mass spectrometry was investigated for rapid characterization of bacteria. Spectra of Salmonella were compared to their serovars, pulsed-field gel electrophoresis (PFGE) patterns, antibiotic resistance profiles, and MIC values. Pyrolysis mass spectra generated via metastable atom bombardment were analyzed by multivariate principal component-discriminant analysis and artificial neural networks (ANNs). Spectral patterns developed by discriminant analysis and tested with Leave-One-Out (LOO) cross-validation distinguished Salmonella strains by serovar (97% correct) and by PFGE groups (49%). An ANN model of the same PFGE groups was cross-validated, using the LOO rule, with 92% agreement. Using an ANN, thirty previously unseen spectra were correctly classified by serotype (97%) and at the PFGE level (67%). Attempts by ANN to model spectra grouped by resistance profile-but ignoring PFGE or serotype-failed (10% correct), but ANNs differentiating ten samples of the same serotype/PFGE class were more successful. To assess the information content of PyMS data serendipitously associated with or directly related to resistance character, the ten isolates were grouped into four, three, or two categories. The four categories corresponded to four resistance profiles. The four class and three class ANNs showed much improved but insufficient modeling power. The two-class ANN and a corresponding multivariate model maximized inferential power for a coarse antibiotic-resistance-related distinction. They each cross-validated by LOO at 90%. This is the first direct correlation of pyrolysis metastable atom bombardment mass spectrometry with immunological (e.g. serology) or molecular biology (e.g. PFGE) based techniques.  相似文献   

12.
Feature extraction is a crucial part of advanced image recognition systems. In this research, an autonomous detection device was designed and developed for insect pest detection to improve the ability of intelligent systems in order to annihilate harmful insect pests in agricultural crop fields. Device included a dark chamber, a CCD digital camera, a LDR lightening module and a personal computer. The proposed programme for precise insect pest detection was based on an image processing algorithm and artificial neural networks (ANNs). After image acquisition, the insect pests’ images were extracted from original images with Canny filtration. Afterwards, four morphological and three textural features from the obtained images were measured and normalised. Performance of ANN model was tested successfully for Beet armyworm (Spodoptera exigua) recognition in images using back-propagation supervised learning method and inspection data. Results showed that proposed system was able to identify S. exigua in the images from other species. Such this machine vision system can be used in autonomous field robots to achieve a modern farmer’s assistant.  相似文献   

13.
A thorough understanding of the relationship between the biological and mechanical functions of articular cartilage is necessary to develop diagnostics and treatments for arthritic diseases. A key step in developing this understanding is the establishment of models which utilize large numbers of biomarkers to create comprehensive models of the interplay between cartilage biology and biomechanics, which will more accurately demonstrate the complex etiology and progression of tissue adaptation and degradation. It is the goal of this study to demonstrate the ability of artificial neural networks (ANNs) to utilize biomarkers to create predictive models of articular cartilage biomechanics, which will provide a basis for more sophisticated research in the future. Osteochondral plugs were collected from patients undergoing total knee arthroplasty, cultured, then analyzed to collect proteomic, compositional, and histologic biomarker data. Samples were subjected to stress relaxation testing as well as computational simulations using finite element analysis (FEA) modeling and optimization to determine key mechanical properties. The acquired data was fed into an ANN to generate a model which predicts the biomechanical properties of cartilage from given biomarkers. Using all significant inputs, the developed neural network predicted the ground substance modulus with a moderate degree of accuracy, but had difficulty predicting the collagen fiber modulus and cartilage permeability. Using only clinically attainable biomarkers, the best-performing model produced comparably accurate and more consistent predictions of all three mechanical properties. These models demonstrate the potential for ANNs to be included in clinical studies of articular cartilage.  相似文献   

14.
15.
The new technique of tandem accelerator mass spectrometry (TAMS) has improved the sensitivity for measurement of several long-lived radioisotopes and certain stable isotopes by many orders of magnitude. Nuclear physics tandems and new small dedicated accelerators are now able to measure14C,10Be,26Al,32Si,36Cl,41Ca, and129I in natural materials. Sensitivities down to 105 atoms per sample can be achieved in favorable cases. By accelerating ions to MeV energies, one can eliminate molecules and uniquely identify the atomic numbers below 20. Although most applications to date have been in the earth sciences, the opportunity now exists for important new applications in biology and toxicology. Trace elements can be measured at the parts per billion (109) level using a secondary ion mass spectrometry (SIMS) ion source. Radioactive tracer measurements can be made for elements, such as aluminum, for which there are no isotopes with suitable half-lives for conventional decay counting methods. For14C, counting times become much shorter and dose levels can be reduced.  相似文献   

16.
Chen X  Zhang ZG  Feng K  Chen L  Han SM  Zhu GJ 《生理学报》2011,63(4):377-386
本文旨在研究儿童青少年肺通气功能预测的后向传播神经网络(backpropagation neural network,BPNN)方法,以期得到更准确的肺通气功能预计值。样本数据包括内蒙古自治区10~18岁汉族健康儿童青少年999人(男性500人,女性499人),测量身高和体重,使用肺功能仪检测肺通气功能。利用BPNN和多元逐步回归,对用力肺活量(forced vital capacity,FVC)、用力呼气一秒量(forced expiratory volume in one second,FEV1)、最大呼气流量(peak expiratory flow,PEF)、用力呼出25%肺活量时呼气流量(forced expiratory flow at25%of forced vital capacity,FEF25%)、用力呼出50%肺活量时呼气流量(forced expiratoryflow at50%of forced vital capacity,FEF50%)、最大呼气中段流量(maximal mid-expiratory flow,MMEF)、用力呼出75%肺活量时呼气流量(forced expira...  相似文献   

17.
Dohnal V  Li H  Farková M  Havel J 《Chirality》2002,14(6):509-518
Quantitation of optical isomers can be achieved even from incompletely resolved peaks with a multivariate calibration applying a combination of experimental design and artificial neural networks (ANN). Using the proposed approach, method development can be more efficient and analysis time shortened while quantitation of optical isomers with acceptable precision (+/-1-3%) can be achieved.  相似文献   

18.
Baoxin Li  Yuezhen He 《Luminescence》2007,22(4):317-325
In this study, a simple continuous-flow chemiluminescence (CL) system was developed for simultaneous determination of glucose, fructose and lactose in ternary mixtures of reducing sugars without previous separation. This method was based on the different kinetics of the individual sugars in the oxidation reaction with potassium ferricyanide. The known luminol-K(3)Fe(CN)(6) CL system was used to measure the kinetic data of the system. The CL intensity was measured and recorded every second from 1 to 300 s. The data obtained were processed chemometrically using an artificial neural network. The relative standard errors of prediction for three analytes were <5%. The proposed method was successfully applied to the simultaneous determination of the three sugars in some food samples.  相似文献   

19.
Here, we present a new approach for protein ligand screening based on the use of limited exoproteolysis coupled to MALDI-TOF mass spectrometry, combined with computational modelling and prediction of binding energies. As a test for this combined approach, we have screened a combinatorial library containing 8000 peptides (organized in 60 peptide samples) based on positional scanning format. This library is attached to a poly-Pro framework, and screened against the Abl-SH3 domain. The results obtained demonstrated the validity of the experimental and theoretical approaches in identifying better ligands and in rationalizing the changes in affinity. Exoproteolysis coupled to MALDI-TOF mass spectrometry could be used to screen complex libraries in a fast and efficient way.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号