首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The delivery of fermentable substrate(s) to subsurface environments stimulates Fe(III)-bioreduction and achieves detoxification of organic/inorganic contaminants. Although, much research has been conducted on the microbiology of such engineered systems at lab and field scales, little attention has been given to the phage-host interactions and virus community dynamics in these environments. The objective was to determine the responses of soil bacterial communities and viral assemblages to stimulated anaerobic Fe(III)-bioreduction following electron donor (e.g. acetate) addition. Microbial communities, including viral assemblages, were investigated after 60 days of Fe(III)-bioreduction in laboratory-scale columns continuously fed with acetate-amended artificial groundwater. Viral abundances were greatest in the influent section and decreased along the flow path. Acetate availability was important in influencing bacterial diversity, microbial interactions and viral abundance and community composition. The impact of acetate addition was most evident in the influent section of the columns. The increased relative abundance of Fe(III)-reducing bacteria coincided with an increase in viral abundance in areas of the columns exhibiting the most Fe(III) reduction. The genetic composition of viruses in these column sections also differed from the control column and distal sections of acetate-treated columns suggesting viral communities responded to biostimulated Fe(III)-bioreduction.  相似文献   

2.
土壤冻融会影响土壤氮的有效性。氮的转化与土壤微生物密不可分,而土壤冻融对温带土壤细菌群落的影响并不十分清楚。假设: 冻融影响细菌群落结构多样性及其组成,从而改变土壤可溶氮含量和氮转化过程。为了验证这一假设,本研究设计了不同冻融循环次数(分别为6次和15次循环)的培养试验,并以2 ℃恒温培养作为对照。结果表明: 随着冻融循环次数的增加,可溶性全氮、可溶性无机氮、微生物生物量氮和净氮矿化率均显著降低。冻融循环次数对细菌α多样性(包括Chao1和Shannon指数)无显著影响,恒温培养的培养周期数与细菌的α多样性呈显著正相关。冻融处理显著影响细菌群落功能和组成,但冻融循环次数对细菌群落结构的影响较小。偏冗余分析表明,冻融处理下细菌群落结构和功能多样性与土壤可溶氮含量和氮转化过程密切相关。  相似文献   

3.
In a chain of lakes along which nutrient availability varies in a gradient, we performed factorial nutrient enrichment experiments to determine if nitrogen limitation was the principal factor controlling the differences in phytoplankton biomass, photosynthetic productivity, diversity, and species composition among two of the lakes in the chain. In the least productive lake, East Graham Lake, P and C enrichments (in the absence of N enrichment) had no effect on biomass and diversity, whereas within two weeks the N enrichments (alone or in any combination with P and/or C) increased the biomass and decreased the diversity of East Graham Lake phytoplankton to levels similar or identical to those in more productive Shoe Lake. Short-term 14C photosynthetic rates in East Graham Lake water also responded only to N in the third week. However, photosynthesis was stimulated by P in the first week, and a few species did increase in numbers with P enrichment, suggesting that some degree of P limitation remains in addition to the strong N limitation in East Graham Lake. A number of species responded individually to the enrichments in a manner similar to that of the overall community, and a strong overlapping of discriminant analysis scores for N-enriched East Graham Lake with those of Shoe Lake was consistent with our prediction that the community structure of N-enriched East Graham Lake water would shift toward that of Shoe Lake. However, many species did not respond consistently with these results, and the nutrients tested were clearly not a major factor in the differences in abundance of those species among the two lakes. The results support the argument that overall biomass production and diversity of the phytoplankton community in a lake can be a relatively simple function of a single most-limiting nutrient. However, many of the species responses also confirm that, while nutrient availability is an important factor in the control of the species composition of the community, other factors are likely to prevent reliable predictions of all species effects on the basis of nutrient availability alone.  相似文献   

4.
大气氮沉降量持续增加已经成为当前关注的热点.土壤细菌群落作为土壤环境中大量存在的微生物,在养分循环过程中发挥着不可忽视的作用.在福建三明森林生态系统与全球变化研究站陈大观测点,我们在野外模拟大气氮沉降试验,通过16S rDNA扩增子测序,研究中亚热带地区杉木幼林土壤细菌群落多样性和组成对氮沉降的响应.结果表明:短期施氮对研究区的土壤细菌群落多样性和组成并未产生显著影响,但高氮处理显著改变敏感菌群相对丰度,如富营养型类群丰度增加、贫营养型类群丰度降低.土壤细菌群落的营养策略发生变化,这可能是受到了养分有效性的驱动.因此,了解土壤细菌群落和养分分配格局对氮沉降的响应,有助于提高我们对未来环境的预测能力.  相似文献   

5.
Lytic and lysogenic viral infection was investigated throughout the Southern Ocean at sites spanning the sub-Antarctic zone, the Antarctic Circumpolar Current, and an Antarctic continental sea. Higher lytic virus activity was recorded in the more productive sub-Antarctic zone than in the iron-limited waters of the Antarctic Circumpolar Current during two transects. Reduced lytic viral activity in the Antarctic Circumpolar Current was combined with a shift toward lysogenic infection, probably resulting from the lower concentration of potential prokaryotic hosts. Superimposed on this variation, lytic viral production was lower in a transect completed in the Drake Passage in autumn (1.8 × 10(8) to 1.5 × 10(9) liter(-1) day(-1)) than over the Greenwich Meridian during summer (5.1 × 10(8) to 2.0 × 10(10) cells liter(-1) day(-1)), indicating that viral activity is linked to the overall seasonal fluctuations in biotic activity. Interestingly, while prokaryotic abundance was lowest in the coastal Weddell Sea, levels of bacterial and lytic viral production (4.3 × 10(8) to 1.7 × 10(10) cells liter(-1) day(-1)) in this area were similar to those of the other zones. This may explain the weak relationship between the distribution of prokaryotes and chlorophyll in the Weddell Sea, as a high turnover of prokaryotic biomass may have been stimulated by the availability of substrates in the form of viral lysate. With estimated carbon and iron releases of 0.02 to 7.5 μg liter(-1) day(-1) and 1.5 to 175.7 pg liter(-1) day(-1), respectively, viral activity in the Southern Ocean is shown to be a major contributor to satisfying the elemental requirements of microbes, notably prokaryotes in the Weddell Sea and phytoplankton in the sub-Antarctic zone.  相似文献   

6.
A general model of species diversity predicts that the latter is maximized when productivity and disturbance are balanced. Based on this model, we hypothesized that the response of bacterial diversity to the ratio of viral to bacterial production (VP/BP) would be dome-shaped. In order to test this hypothesis, we obtained data on changes in bacterial communities (determined by terminal restriction fragment length polymorphism of 16S rRNA gene) along a wide VP/BP gradient (more than two orders of magnitude), using seawater incubations from NW Mediterranean surface waters, i.e., control and treatments with additions of phosphate, viruses, or both. In December, one dominant Operational Taxonomic Unit accounted for the major fraction of total amplified DNA in the phosphate addition treatment (75±20%, ± S.D.), but its contribution was low in the phosphate and virus addition treatment (23±19%), indicating that viruses prevented the prevalence of taxa that were competitively superior in phosphate-replete conditions. In contrast, in February, the single taxon predominance in the community was held in the phosphate addition treatment even with addition of viruses. We observed statistically robust dome-shaped response patterns of bacterial diversity to VP/BP, with significantly high bacterial diversity at intermediate VP/BP. This was consistent with our model-based hypothesis, indicating that bacterial production and viral-induced mortality interactively affect bacterial diversity in seawater.  相似文献   

7.
覃光莲  杜国祯 《生态学杂志》2005,24(11):1303-1307
通过对高寒草甸植物群落中采集的群落数据进行分析,探讨了物种构成的相似性、统计平均、种群变异性和净协方差等机制对形成高寒草甸植物群落中多样性与群落地上生物量变异性之间关系的影响。结果表明,地上生物量的年际变异性随着多样性的增加而减小。物种构成相似性是多样性一变异性负关系产生的原因之一,而相似性与多样性之间并无显著相关关系;统计平均效应是另一个多样性一变异性负关系的主要决定者;净协方差效应、种群变异性对多样性一变异性关系产生的影响不显著或非常有限。  相似文献   

8.
Galveston Bay, Texas, is a large shallow estuary with a watershed that includes 60% of the major industrial facilities of Texas. However, the system exhibits low to moderate (2-20 μg l−1) microalgal biomass with sporadic phytoplankton blooms. Both nitrogen (N) and phosphate (P) limitation of phytoplankton growth have been proposed for the estuary. However, shifts between N and P limitation of algae growth may occur due to annual fluctuations in nutrient concentrations. The primary goal of this work was to determine the primary limiting nutrient for phytoplankton in Galveston Bay. Nutrient addition bioassays were used to assess short-term (1-2 days) phytoplankton responses (both biomass and community composition) to potentially limiting nutrients. The experimental bioassays were conducted over an annual cycle using natural water collected from the center to lower part of the estuary. Total phytoplankton biomass increased in the nitrate (10 μM) additions in 11 of the 13 bioassays, but no significant increases were detected in the phosphate (3 μM)-only additions. Bioassay results suggest that the phytoplankton community was usually not phosphate limited. All major groups increased in biomass following nitrate additions but diatoms increased in biomass at a faster rate than other groups, shifting the community composition toward higher relative abundance of diatoms. The results of this study suggest that pulsed N input events preferentially favor increases in diatom biomass in this estuary. The broader implications of this study are that N pulsing events, primarily due to river discharge, play an important role in structuring the phytoplankton community in the Galveston Bay estuary.  相似文献   

9.
Microbial communities will experience novel climates in the future. Dispersal is now recognized as a driver of microbial diversity and function, but our understanding of how dispersal influences responses to novel climates is limited. We experimentally tested how the exclusion of aerially dispersed fungi and bacteria altered the compositional and functional response of soil microbial communities to drought. We manipulated dispersal and drought by collecting aerially deposited microbes after precipitation events and subjecting soil mesocosms to either filter-sterilized rain (no dispersal) or unfiltered rain (dispersal) and to either drought (25% ambient) or ambient rainfall for 6 months. We characterized community composition by sequencing 16S and ITS rRNA regions and function using community-level physiological profiles. Treatments without dispersal had lower soil microbial biomass and metabolic diversity but higher bacterial and fungal species richness. Dispersal also altered soil community response to drought; drought had a stronger effect on bacterial (but not fungal) community composition, and induced greater functional loss, when dispersal was present. Surprisingly, neither immigrants nor drought-tolerant taxa had higher abundance in dispersal treatments. We show experimentally that natural aerial dispersal rate alters soil microbial responses to disturbance. Changes in dispersal rates should be considered when predicting microbial responses to climate change.  相似文献   

10.
开展川西亚高山相似土壤母质背景下天然次生林土壤微生物群落结构及其多样性探究,可加深次生林更新过程中土壤微生物群落结构变化的认知。选取川西米亚罗林区20世纪60年代采伐后经自然更新恢复形成的3种天然次生林(槭-桦阔叶林,ABB;桦-槭-冷杉针阔混交林,BAA;岷江冷杉林,AFF),分析林下表层(0-20 cm)土壤微生物群落结构变化及其影响因素,结果显示:(1)3种林型土壤细菌Chao1和Shannon指数均极显著高于真菌,但仅真菌群落的Shannon指数差异显著,表现为BAA > ABB > AFF;(2)细菌群落优势门主要为变形杆菌门、酸杆菌门、疣微菌门、拟杆菌门、绿弯菌门,相对丰度占比超过82%;真菌群落则为子囊菌门和担子菌门,占比超过85%,AFF担子菌门相对丰度最高而子囊菌门最低。(3) RDA分析显示,土壤pH和乔木物种多样性(Shannon指数)是影响微生物群落结构变化的主导因子;土壤养分元素对细菌群落影响不显著,真菌群落主要受TN、TP含量显著影响。总体上,林型间乔木层物种多样性、土壤酸碱度及其氮磷含量是导致微生物群落结构变化的关键因素。  相似文献   

11.
镜泊湖岩溶台地不同植被类型土壤微生物群落特征   总被引:6,自引:3,他引:6  
为了探讨不同演替阶段植被类型土壤微生物群落特征,分别选取镜泊湖岩溶台地草本、矮灌木、高灌木、小乔木与灌木混生(简称混生)群落、落叶阔叶林及针阔混交林6种典型植被类型,进行植物群落调查和对土壤微生物生物量、群落结构和多样性指标、土壤物理化学性质的测定。结果表明:从土壤微生物量、土壤微生物群落组成、土壤微生物代谢动力学过程和代谢功能多样性的角度来看,各种植被类型土壤微生物群落具有明显的差异。演替前期的草本群落土壤微生物量碳氮、细菌生物量、真菌生物量,代谢活性及丰富度指数均最低,但Shannon-Wiener多样性指数和均匀度指数显著(P<0.05)高于其他植被类型。矮灌木土壤微生物群落组成显著受植被类型的影响。高灌木群落和混生(小乔木与灌木混生)群落具有极强的相似性, 但在碳源利用类型上两者表现出一定的差异。落叶阔叶林代谢活性最高,碳源利用能力最强,能利用BIOLOG微孔板中的所有31种碳源,这与其具有较高的微生物量碳氮和细菌生物量一致,其代谢功能丰富度最高。演替后期的针阔混交林下的土壤pH最低,真菌比例升高,在碳源丰富的条件下具有极强的竞争优势(仅次于落叶阔叶林),但在碳源贫瘠的条件下其利用碳源能力较弱(仅高于草本)。植被可能主要通过土壤全磷和有机质影响土壤微生物代谢功能多样性。  相似文献   

12.
Wastewater treatment plants (WWTPs) contain high density and diversity of viruses which can significantly impact microbial communities in aquatic systems. While previous studies have investigated viruses in WWTP samples that have been specifically concentrated for viruses and filtered to exclude bacteria, little is known about viral communities associated with bacterial communities throughout wastewater treatment systems. Additionally, differences in viral composition between attached and suspended growth wastewater treatment bioprocesses are not well characterized. Here, shotgun metagenomics was used to analyse wastewater and biomass from transects through two full-scale WWTPs for viral composition and associations with bacterial hosts. One WWTP used a suspended growth activated sludge bioreactor and the other used a biofilm reactor (trickling filter). Myoviridae, Podoviridae and Siphoviridae were the dominant viral families throughout both WWTPs, which are all from the order Caudovirales. Beta diversity analysis of viral sequences showed that samples clustered significantly both by plant and by specific sampling location. For each WWTP, the overall bacterial community structure was significantly different than community structure of bacterial taxa associated with viral sequences. These findings highlight viral community composition in transects through different WWTPs and provide context for dsDNA viral sequences in bacterial communities from these systems.  相似文献   

13.
The effects of herbivores and their interactions with nutrient availability on primary production and plant community composition in grassland systems is expected to vary with herbivore type. We examined the effects of invertebrate and small vertebrate herbivores and their interactions with nutrient availability on grassland plant community composition and aboveground biomass in a tallgrass prairie ecosystem. The abundance of forbs relative to grasses increased with invertebrate herbivore removals. This increase in forb abundance led to a shift in community composition, where invertebrate removals resulted in greater plant species evenness as well as a divergence in composition among plots. In contrast, vertebrate herbivore removals did not affect plant community composition or aboveground biomass. Nutrient additions alone resulted in a decrease in plant species richness and an increase in the abundance of the dominant grass, but the dominant grass species did not greatly increase in abundance when nutrient additions were combined with invertebrate removals. Rather, several subdominant forbs came to dominate the plant community. Additionally, the combined nutrient addition and invertebrate herbivore removal treatment increased forb biomass, suggesting that invertebrate herbivores suppress the responses of forb species to chronic nutrient additions. Overall, the release of forbs from invertebrate herbivore pressure may result in large shifts in species composition, with consequences for aboveground biomass and forage quality due to altered grass:forb ratios in grassland systems.  相似文献   

14.
Bacteria modulate glycoside hydrolase expression in response to the changes in the composition of lignocellulosic biomass. The response of switchgrass-adapted thermophilic bacterial consortia to perturbation with a variety of biomass substrates was characterized to determine if bacterial consortia also responded to changes in biomass composition. Incubation of the switchgrass-adapted consortia with these alternative substrates produced shifts in glycoside hydrolase activities and bacterial community composition. Substantially increased endoglucanase activity was observed upon incubation with microcrystalline cellulose and trifluororacetic acid-pretreated switchgrass. In contrast, culturing the microbial consortia with ionic liquid-pretreated switchgrass increased xylanase activity dramatically. Microbial community analyses of these cultures indicated that the increased endoglucanase activity correlated with an increase in bacteria related to Rhodothermus marinus. Inclusion of simple organic substrates in the culture medium abrogated glycoside hydrolase activity and enriched for bacteria related to Thermus thermophilus. These results demonstrate that the composition of biomass substrates influences the glycoside hydrolase activities and community composition of biomass-deconstructing bacterial consortia.  相似文献   

15.
To evaluate the role of bacteria in the transformation of organic matter in subarctic waters, we investigated the effect of mineral nutrients (ammonia and phosphate) and organic carbon (glucose) enrichment on heterotrophic bacterial processes and community structure. Eight experiments were done in the Norwegian Sea during May and June 2008. The growth-limiting factor (carbon or mineral nutrient) for heterotrophic bacteria was inferred from the combination of nutrient additions that stimulated highest bacterial oxygen consumption, biomass, production, growth rate and bacterial efficiency. We conclude that heterotrophic bacteria were limited by organic carbon and co-limited by mineral nutrients during the prevailing early nano-phytoplankton (1–10 μm) bloom conditions. High nucleic acid (HNA) bacteria became dominant (>80%) only when labile carbon and mineral nutrient sources were available. Changes in bacterial community structure were investigated using denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR)-amplified 16S ribosomal RNA genes. The bacterial community structure changed during incubation time, but neither carbon nor mineral nutrient amendment induced changes at the end of the experiments. The lack of labile organic carbon and the availability of mineral nutrients are key factors controlling bacterial activity and the role of the microbial food web in carbon sequestration.  相似文献   

16.
Dissolved substances released during decomposition of the white water lily (Nymphaea odorata) can alter the growth rate of Okefenokee Swamp bacterioplankton. In microcosm experiments dissolved compounds released from senescent Nymphaea leaves caused a transient reduction in the abundance and activity of water column bacterioplankton, followed by a period of intense bacterial growth. Rates of [H]thymidine incorporation and turnover of dissolved d-glucose were depressed by over 85%, 3 h after the addition of Nymphaea leachates to microcosms containing Okefenokee Swamp water. Bacterial activity subsequently recovered; after 20 h [H]thymidine incorporation in leachate-treated microcosms was 10-fold greater than that in control microcosms. The recovery of activity was due to a shift in the composition of the bacterial population toward resistance to the inhibitory compounds present in Nymphaea leachates. Inhibitory compounds released during the decomposition of aquatic macrophytes thus act as selective agents which alter the community structure of the bacterial population with respect to leachate resistance. Soluble compounds derived from macrophyte decomposition influence the rate of bacterial secondary production and the availability of microbial biomass to microconsumers.  相似文献   

17.
We investigated the effects of realistic variation in plant species and functional group composition, with species occurring at realistic abundances, on ecosystem processes in exotic-dominated California grassland communities. Progressive species removals from microcosm communities, designed to mimic nested variation in diversity observed in the field, reduced grassland production, resistance to intentional invasions, and resistance to natural colonization by new species. Three lines of evidence point to the particular importance of intensified competition within a single functional group—late-active forbs—in explaining the observed effects of realistic species loss order on community resistance. First, reduced success of naturally colonizing species in more diverse assemblages was dominated by declining colonization by late-active forbs. Second, increasing late-active forb biomass appeared to reduce the biomass of intentionally introduced yellow starthistle (Centaurea solstitialis, a late-season forb) both within and across diversity levels. Finally, starthistle addition reduced biomass of resident late-season forbs but not of any other functional group. Increasing diversity increased light levels and soil moisture availability in spring and summer, providing a proximate mechanism linking our realistic species loss order to decreased community resistance. Starthistle addition reduced light and soil moisture availability but not N across richness levels, mirroring the apparent effects of the additional late-active forb species present in higher diversity treatments. Species losses that entail the early loss of whole or key functional groups could, through mechanisms like those we explore, have greater ecosystem consequences than those suggested by randomized-loss experiments.  相似文献   

18.
将农牧废弃物进行资源化处置制成生物质调理剂,用于沙化土壤改良是目前川西北沙化草地生态治理的有效途径之一.为了阐明不同原料调理剂在川西北高寒沙化草地上的实际应用效果,本研究以不施用调理剂为对照(CK),设置施用量均为12 t·hm-2的菌渣(JZ)、秸秆(JG)和生物炭(SWT)3种调理剂,分析了调理剂施用对土壤养分和微...  相似文献   

19.
土壤微生物群落结构沿海拔梯度的变异是微生物生物地理学分异和群落空间分布的重要内容,然而,热带森林土壤微生物多样性及其群落特征的海拔模式尚不明确。研究海南省尖峰岭自然保护区0—20cm和20—40cm土壤细菌多样性和群落组成沿海拔梯度(400—1410m)的变化及其与环境因子的关系。结果表明:在0—20cm土壤微生物生物量碳、生物量氮和生物量磷随海拔升高(峰顶降低)而增加,20—40cm土壤微生物生物量碳、生物量氮和生物量磷随海拔升高呈先升高后降低趋势;整体上,变形菌门、放线菌门、酸杆菌门、拟杆菌门、厚壁菌门在0—20cm中占优势,丰度总和占该层细菌总量的88.17%;变形菌门、放线菌门、酸杆菌门、厚壁菌门、绿弯菌门在20—40cm中占优势,丰度总和占该层细菌总量的90.82%;随海拔增加,0—20cm细菌多样性线性减少,20—40cm细菌多样性变化不显著;沿海拔梯度,0—20cm细菌群落组成可分为低(409—1018m),中(1018—1357m)和高(1410m)三个海拔聚集群落,20—40cm细菌群落组成随海拔无显著性变化;两土层细菌多样性与土壤pH显著正相关,土壤细菌群落组成在0...  相似文献   

20.
Climate change has profound influences on plant community composition and ecosystem functions. However, its effects on plant community composition and biomass production are not well understood. A four-year field experiment was conducted to examine the effects of warming, nitrogen (N) addition, and their interactions on plant community composition and biomass production in a temperate meadow ecosystem in northeast China. Experimental warming had no significant effect on plant species richness, evenness, and diversity, while N addition highly reduced the species richness and diversity. Warming tended to reduce the importance value of graminoid species but increased the value of forbs, while N addition had the opposite effect. Warming tended to increase the belowground biomass, but had an opposite tendency to decrease the aboveground biomass. The influences of warming on aboveground production were dependent upon precipitation. Experimental warming had little effect on aboveground biomass in the years with higher precipitation, but significantly suppressed aboveground biomass in dry years. Our results suggest that warming had indirect effects on plant production via its effect on the water availability. Nitrogen addition significantly increased above- and below-ground production, suggesting that N is one of the most important limiting factors determining plant productivity in the studied meadow steppe. Significant interactive effects of warming plus N addition on belowground biomass were also detected. Our observations revealed that environmental changes (warming and N deposition) play significant roles in regulating plant community composition and biomass production in temperate meadow steppe ecosystem in northeast China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号