首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Rho G‐proteins are critical for polarized growth, yet little is known about the dynamics of their activation during fungal filamentous growth. We first investigated the roles of Rho1 and Rho2 during Candida albicans filamentous growth. Our results show that Rho1 is required for invasive filamentous growth and that Rho2 is not functionally redundant with Rho1. Using fluorescent reporters, we examined the dynamics of the active form of Rho1 and Cdc42 during initiation and maintenance of hyphal growth. Quantitative analyses indicated that the distribution, but not the level, of these active G‐proteins is altered during initial polarization upon germ tube emergence. A comparison of the dynamics of these active G‐proteins during budding and hyphal growth indicates that a higher concentration of active Cdc42 was recruited to the germ tube tip than to the bud tip. During hyphal elongation, active Cdc42 remained tightly restricted to the hyphal tip, whereas active Rho1 was broadly associated with the apex and subsequently recruited to the cell division site. Furthermore, our data suggest that phosphoinositide‐bis‐phosphates are critical to stabilize active Rho1 at the growth site. Together, our results point towards different regulation of Cdc42 and Rho1 activity during initiation and maintenance of filamentous growth.  相似文献   

4.
5.
The precise regulation of morphogenesis is a key mechanism by which cells respond to a variety of stresses, including those encountered by microbial pathogens in the host. The polarity protein Cdc42 regulates cellular morphogenesis throughout eukaryotes, and we explore the role of Cdc42 proteins in the host survival of the human fungal pathogen Cryptococcus neoformans. Uniquely, C. neoformans has two functional Cdc42 paralogues, Cdc42 and Cdc420. Here we investigate the contribution of each paralogue to resistance to host stress. In contrast to non‐pathogenic model organisms, C. neoformans Cdc42 proteins are not required for viability under non‐stress conditions but are required for resistance to high temperature. The paralogues play differential roles in actin and septin organization and act downstream of C. neoformans Ras1 to regulate its morphogenesis sub‐pathway, but not its effects on mating. Cdc42, and not Cdc420, is upregulated in response to temperature stress and is required for virulence in a murine model of cryptococcosis. The C. neoformans Cdc42 proteins likely perform complementary functions with other Rho‐like GTPases to control cell polarity, septin organization and hyphal transitions that allow survival in the environment and in the host.  相似文献   

6.
7.
Establishment of cell polarity in animal and fungal cells involves localization of the conserved Rho-family guanosine triphosphatase, Cdc42, to the cortical region destined to become the “front” of the cell. The high local concentration of active Cdc42 promotes cytoskeletal polarization through various effectors. Cdc42 accumulation at the front is thought to involve positive feedback, and studies in the budding yeast Saccharomyces cerevisiae have suggested distinct positive feedback mechanisms. One class of mechanisms involves localized activation of Cdc42 at the front, whereas another class involves localized delivery of Cdc42 to the front. Here we show that Cdc42 activation must be localized for successful polarity establishment, supporting local activation rather than local delivery as the dominant mechanism in this system.  相似文献   

8.
In budding yeast, the Rho-type GTPase Cdc42p is essential for cell division and regulates pseudohyphal development and invasive growth. Here, we isolated novel Cdc42p mutant proteins with single-amino-acid substitutions that are sufficient to uncouple functions of Cdc42p essential for cell division from regulatory functions required for pseudohyphal development and invasive growth. In haploid cells, Cdc42p is able to regulate invasive growth dependent on and independent of FLO11 gene expression. In diploid cells, Cdc42p regulates pseudohyphal development by controlling pseudohyphal cell (PH cell) morphogenesis and invasive growth. Several of the Cdc42p mutants isolated here block PH cell morphogenesis in response to nitrogen starvation without affecting morphology or polarity of yeast form cells in nutrient-rich conditions, indicating that these proteins are impaired for certain signaling functions. Interaction studies between development-specific Cdc42p mutants and known effector proteins indicate that in addition to the p21-activated (PAK)-like protein kinase Ste20p, the Cdc42p/Rac-interactive-binding domain containing Gic1p and Gic2p proteins and the PAK-like protein kinase Skm1p might be further effectors of Cdc42p that regulate pseudohyphal and invasive growth.  相似文献   

9.
Cdc42p is a member of the RAS superfamily of GTPases and plays an essential role in polarized growth in many eukaryotic cells. We cloned the Candida albicans CaCDC42 by functional complementation in Saccharomyces cerevisiae and analyzed its function in C. albicans. A double deletion of CaCDC42 was made in a C. albicans strain containing CaCDC42 under the control of the PCK1 promoter. When expression of the heterologous copy of CaCDC42 was repressed in this strain, the cells ceased proliferation. These arrested cells were large, round, and unbudded and contained predominantly two nuclei. The PCK1-mediated overexpression of wild-type CaCdc42p had no effect on cells. However, in cells overexpressing CaCdc42p containing the dominant-negative D118A substitution, proliferation was blocked and the arrested cells were large, round, unbudded, and multinucleated, similar to the phenotype of the cdc42 double-deletion strain. Cells overexpressing CaCdc42p containing the hyperactive G12V substitution also ceased proliferation in yeast growth medium; in this case the arrested cells were multinucleated and multibudded. An intact CAAX box is essential for the phenotypes associated with either CaCdc42pG12V or CaCdc42pD118A ectopic expression, suggesting that membrane attachment is involved in CaCdc42p function. In addition, the lethality caused by ectopic expression of CaCdc42pG12V was suppressed by deletion of CST20 but not by deletion of CaCLA4. CaCdc42p function was also examined under hypha-inducing conditions. Cdc42p depletion prior to hyphal induction trapped cells in a round, unbudded state, while depletion triggered at the same time as hyphal induction permitted the initiation of germ tubes that failed to be extended. Ectopic expression of either the G12V or D118A substitution protein modified hyphal formation in a CAAX box-dependent manner. Thus, CaCdc42p function appears important for polarized growth of both the yeast and hyphal forms of C. albicans.  相似文献   

10.
The human fungal pathogen Candida albicans can switch between yeast, pseudohyphal, and hyphal morphologies. To investigate whether the distinctive characteristics of hyphae are due to increased activity of the Cdc42 GTPase, strains lacking negative regulators of Cdc42 were constructed. Unexpectedly, the deletion of the Cdc42 Rho guanine dissociation inhibitor RDI1 resulted in reduced rather than enhanced polarized growth. However, when cells lacking both Cdc42 GTPase-activating proteins, encoded by RGA2 and BEM3, were grown under pseudohyphal-promoting conditions the bud was highly elongated and lacked a constriction at its base, so that its shape resembled a hyphal germ tube. Moreover, a Spitzenk?rper was present at the bud tip, a band of disorganized septin was present at bud base, true septin rings formed within the bud, and nuclei migrated out of the mother cell before the first mitosis. These are all characteristic features of a hyphal germ tube. Intriguingly, we observed hyphal-specific phosphorylation of Rga2, suggesting a possible mechanism for Cdc42 activation during normal hyphal development. In contrast, expression of Cdc42(G12V), which is constitutively GTP bound because it lacks GTPase activity, resulted in swollen cells with prominent and stable septin bars. These results suggest the development of hyphal-specific characteristics is promoted by Cdc42-GTP in a process that also requires the intrinsic GTPase activity of Cdc42.  相似文献   

11.
GTPase-activating proteins for Cdc42   总被引:2,自引:0,他引:2       下载免费PDF全文
The Rho-type GTPase, Cdc42, has been implicated in a variety of functions in the yeast life cycle, including septin organization for cytokinesis, pheromone response, and haploid invasive growth. A group of proteins called GTPase-activating proteins (GAPs) catalyze the hydrolysis of GTP to GDP, thereby inactivating Cdc42. At the time this study began, there was one known GAP, Bem3, and one putative GAP, Rga1, for Cdc42. We identified another putative GAP for Cdc42 and named it Rga2 (Rho GTPase-activating protein 2). We confirmed by genetic and biochemical criteria that Rga1, Rga2, and Bem3 act as GAPs for Cdc42. A detailed characterization of Rga1, Rga2, and Bem3 suggested that they regulate different subsets of Cdc42 function. In particular, deletion of the individual GAPs conferred different phenotypes. For example, deletion of RGA1, but not RGA2 or BEM3, caused hyperinvasive growth. Furthermore, overproduction or loss of Rga1 and Rga2, but not Bem3, affected the two-hybrid interaction of Cdc42 with Ste20, a p21-activated kinase (PAK) kinase required for haploid invasive growth. These results suggest Rga1, and possibly Rga2, facilitate the interaction of Cdc42 with Ste20 to mediate signaling in the haploid invasive growth pathway. Deletion of BEM3 resulted in cells with severe morphological defects not observed in rga1Δ or rga2Δ strains. These data suggest that Bem3 and, to a lesser extent, Rga1 and Rga2 facilitate the role of Cdc42 in septin organization. Thus, it appears that the GAPs play a role in modulating specific aspects of Cdc42 function. Alternatively, the different phenotypes could reflect quantitative rather than qualitative differences in GAP activity in the mutant strains.  相似文献   

12.
Polarized growth is a fundamental property of cell growth and development. It requires the delivery of post‐Golgi secretory vesicles to the site of polarized growth. This process is mediated by Rab GTPases activated by their guanine exchange factors (GEFs). The human fungal pathogen, Candida albicans, can grow in a budded yeast form or in a highly polarized hyphal form, and thus provides a model to study this phenomenon. During hyphal, but not yeast growth, secretory vesicles accumulate in an apical body called a Spitzenkörper, which acts to focus delivery of the vesicles to the tip. Post‐Golgi transport of secretory vesicles is mediated by the Rab GTPase Sec4, activated by its GEF Sec2. Using a combination of deletion mapping, in vitro mutagenesis, an analogue‐sensitive allele of Cdc28 and an in vitro kinase assay, we show that localization of Sec2 to the Spitzenkörper and normal hyphal development requires phosphorylation of Serine 584 by the cyclin‐dependent kinase Cdc28. Thus, as well as controlling passage through the cell cycle, Cdc28 has an important function in controlling polarized secretion.  相似文献   

13.
The fungal kingdom is extremely diverse – comprised of over 1.5 million species including yeasts, molds and mushrooms. Essentially, all fungi have cell walls that contain chitin and the cells of most fungi grow as tube-like filaments called hyphae. These filamentous fungi, such as the mold Neurospora crassa, develop branched radial networks of hyphae referred to as mycelium. In contrast, non-filamentous fungi do not form radial mycelia, but grow as single cells, which reproduce by either budding or fission such as Saccharomyces cerevisiae or Schizosaccharomyces pombe, respectively. Finally, there are fungi that are capable of switching between single cell, yeast form growth and filamentous growth such as Candida albicans. The switch from yeast to filamentous growth in these so-called dimorphic fungi is a virulence trait in many human and plant pathogens. Highly conserved master regulators of all three fungal growth modes – filamentous, non-filamentous and dimorphic – are the Ras and Rho small GTPases, which spatially and temporally control cell polarity establishment and maintenance. This review summarizes the key roles of the Ras and Rho GTPases during hyphal morphogenesis in a range of fungi.  相似文献   

14.
Cdc42, a conserved Rho GTPase, plays a central role in polarity establishment in yeast and animals. Cell polarity is critical for asymmetric cell division, and asymmetric cell division underlies replicative aging of budding yeast. Yet how Cdc42 and other polarity factors impact life span is largely unknown. Here we show by live-cell imaging that the active Cdc42 level is sporadically elevated in wild type during repeated cell divisions but rarely in the long-lived bud8 deletion cells. We find a novel Bud8 localization with cytokinesis remnants, which also recruit Rga1, a Cdc42 GTPase activating protein. Genetic analyses and live-cell imaging suggest that Rga1 and Bud8 oppositely impact life span likely by modulating active Cdc42 levels. An rga1 mutant, which has a shorter life span, dies at the unbudded state with a defect in polarity establishment. Remarkably, Cdc42 accumulates in old cells, and its mild overexpression accelerates aging with frequent symmetric cell divisions, despite no harmful effects on young cells. Our findings implicate that the interplay among these positive and negative polarity factors limits the life span of budding yeast.  相似文献   

15.
Heat shock proteins are best known for their role as chaperonins involved in general proteostasis, but they can also participate in specific cellular regulatory pathways, e.g. via their post-translational modification. Hsp70/Ssa1 is a central cytoplasmic chaperonin in eukaryotes, which also participates in cell cycle regulation via its phosphorylation at a specific residue. Here we analyze the role of Ssa1 phosphorylation in the morphogenesis of the fungus Candida albicans, a common human opportunistic pathogen. C. albicans can assume alternative yeast and hyphal (mold) morphologies, an ability that contributes to its virulence. We identified 11 phosphorylation sites on C. albicans Ssa1, of which 8 were only detected in the hyphal cells. Genetic analysis of these sites revealed allele-specific effects on growth or hyphae formation at 42 °C. Colony morphology, which is normally wrinkled or crenellated at 37 °C, reverted to smooth in several mutants, but this colony morphology phenotype was unrelated to cellular morphology. Two mutants exhibited a mild increase in sensitivity to the cell wall-active compounds caspofungin and calcofluor white. We suggest that this analysis could help direct screens for Ssa1-specific drugs to combat C. albicans virulence. The pleiotropic effects of many Ssa1 mutations are consistent with the large number of Ssa1 client proteins, whereas the lack of concordance between the phenotypes of the different alleles suggests that different sites on Ssa1 can affect interaction with specific classes of client proteins, and that modification of these sites can play cellular regulatory roles, consistent with the “chaperone code” hypothesis.  相似文献   

16.
Cells of the budding yeast Saccharomyces cerevisiae are born carrying localized transmembrane landmark proteins that guide the subsequent establishment of a polarity axis and hence polarized growth to form a bud in the next cell cycle. In haploid cells, the relevant landmark proteins are concentrated at the site of the preceding cell division, to which they recruit Cdc24, the guanine nucleotide exchange factor for the conserved polarity regulator Cdc42. However, instead of polarizing at the division site, the new polarity axis is directed next to but not overlapping that site. Here, we show that the Cdc42 guanosine triphosphatase–activating protein (GAP) Rga1 establishes an exclusion zone at the division site that blocks subsequent polarization within that site. In the absence of localized Rga1 GAP activity, new buds do in fact form within the old division site. Thus, Cdc42 activators and GAPs establish concentric zones of action such that polarization is directed to occur adjacent to but not within the previous cell division site.  相似文献   

17.
Zheng XD  Lee RT  Wang YM  Lin QS  Wang Y 《The EMBO journal》2007,26(16):3760-3769
Cyclin-dependent kinases (CDKs) control yeast morphogenesis, although how they regulate the polarity machinery remains unclear. The dimorphic fungus Candida albicans uses Cdc28/Hgc1, a CDK/cyclin complex, to promote persistent actin polarization for hyphal growth. Here, we report that Rga2, a GTPase-activating protein (GAP) of the central polarity regulator Cdc42, undergoes Hgc1-dependent hyperphosphorylation. Using the analog-sensitive Cdc28as mutant, we confirmed that Cdc28 controls Rga2 phosphorylation in vitro and in vivo. Deleting RGA2 produced elongated yeast cells without apparent effect on hyphal morphogenesis. However, deleting it or inactivating its GAP activity restored hyphal growth in hgc1Delta mutants, suggesting that Rga2 represses hyphal development and Cdc28/Hgc1 inactivates it upon hyphal induction. We provide evidence that Cdc28/Hgc1 may act to prevent Rga2 from localizing to hyphal tips, leading to localized Cdc42 activation for hyphal extension. Rga2 also undergoes transient Cdc28-dependent hyperphosphorylation at bud emergence, suggesting that regulating a GAP(s) of Cdc42 by CDKs may play an important role in governing different forms of polarized morphogenesis in yeast. This study reveals a direct molecular link between CDKs and the polarity machinery.  相似文献   

18.
Hepatocytes differ from columnar epithelial cells by their multipolar organization, which follows the initial formation of central lumen-sharing clusters of polarized cells as observed during liver development and regeneration. The molecular mechanism for hepatocyte polarity establishment, however, has been comparatively less studied than those for other epithelial cell types. Here, we show that the tight junction protein Par3 organizes hepatocyte polarization via cooperating with the small GTPase Cdc42 to target atypical protein kinase C (aPKC) to a cortical site near the center of cell–cell contacts. In 3D Matrigel culture of human hepatocytic HepG2 cells, which mimics a process of liver development and regeneration, depletion of Par3, Cdc42, or aPKC results in an impaired establishment of apicobasolateral polarity and a loss of subsequent apical lumen formation. The aPKC activity is also required for bile canalicular (apical) elongation in mouse primary hepatocytes. The lateral membrane-associated proteins Lgl1 and Lgl2, major substrates of aPKC, seem to be dispensable for hepatocyte polarity establishment because Lgl-depleted HepG2 cells are able to form a single apical lumen in 3D culture. On the other hand, Lgl depletion leads to lateral invasion of aPKC, and overexpression of Lgl1 or Lgl2 prevents apical lumen formation, indicating that they maintain proper lateral integrity. Thus, hepatocyte polarity establishment and apical lumen formation are organized by Par3, Cdc42, and aPKC; Par3 cooperates with Cdc42 to recruit aPKC, which plays a crucial role in apical membrane development and regulation of the lateral maintainer Lgl.  相似文献   

19.
Candida albicans is a human fungal pathogen capable of causing lethal systemic infections. The plasma membrane plays key roles in virulence because it not only functions as a protective barrier, it also mediates dynamic functions including secretion of virulence factors, cell wall synthesis, invasive hyphal morphogenesis, endocytosis, and nutrient uptake. Consistent with this functional complexity, the plasma membrane is composed of a wide array of lipids and proteins. These components are organized into distinct domains that will be the topic of this review. Some of the plasma membrane domains that will be described are known to act as scaffolds or barriers to diffusion, such as MCC/eisosomes, septins, and sites of contact with the endoplasmic reticulum. Other zones mediate dynamic processes, including secretion, endocytosis, and a special region at hyphal tips that facilitates rapid growth. The highly organized architecture of the plasma membrane facilitates the coordination of diverse functions and promotes the pathogenesis of C. albicans.  相似文献   

20.
The highly conserved small Rho G-protein, Cdc42p plays a critical role in cell polarity and cytoskeleton organization in all eukaryotes. In the yeast Saccharomyces cerevisiae, Cdc42p is important for cell polarity establishment, septin ring assembly, and pheromone-dependent MAP-kinase signaling during the yeast mating process. In this study, we further investigated the role of Cdc42p in the mating process by screening for specific mating defective cdc42 alleles. We have identified and characterized novel mating defective cdc42 alleles that are unaffected in vegetative cell polarity. Replacement of the Cdc42p Val36 residue with Met resulted in a specific cell fusion defect. This cdc42[V36M] mutant responded to mating pheromone but was defective in cell fusion and in localization of the cell fusion protein Fus1p, similar to a previously isolated cdc24 (cdc24-m6) mutant. Overexpression of a fast cycling Cdc42p mutant suppressed the cdc24-m6 fusion defect and conversely, overexpression of Cdc24p suppressed the cdc42[V36M] fusion defect. Taken together, our results indicate that Cdc42p GDP-GTP cycling is critical for efficient cell fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号