首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of novel 2-azetidinones (β-lactams) bearing short alkenyl chains at C3 and N1 have been prepared and evaluated in vitro as inhibitors of human FAAH. Compound 9c (1-(4′-pentenoyl-3-(4′-pentenyl)-2-azetidinone)) featured an IC50 value of 4.5 μM and a good selectivity for FAAH versus MGL.  相似文献   

2.
Synthesis and anti-inflammatory effects of certain furo[3′,2′:3,4]naphtho[1,2-d]imidazole derivatives 1218 were studied. These compounds were synthesized from naphtho[1,2-b]furan-4,5-dione (10) which in turn was prepared from the known 2-hydoxy-1,4-naphthoquinone (7) in a one pot reaction. Furo[3′,2′:3,4]naphtho[1,2-d]imidazole (12) was inactive (IC50 value of >30 μM) while its 5-phenyl derivative 13, with an IC50 value of 16.3 and 11.4 μM against lysozyme and β-glucuronidase release, respectively, was comparable to the positive trifluoperazine. The same potency was observed for 5-furan derivative 16 with an IC50 value of 19.5 and 11.3 μM against lysozyme and β-glucuronidase release, respectively. An electron-withdrawing NO2 substituted on 5-phenyl or 5-furanyl group led to the devoid of activity as in the cases of 14 and 17. Among them, compound 15 exhibited significant inhibitory effects, with an IC50 value of 7.4 and 5.0 μM against lysozyme and β-glucuronidase release, respectively.For the LPS-induced NO production, the phenyl derivatives 12–15 were inactive while the nitrofuran counterparts 17 and 18 suppress LPS-induced NO production significantly, with an IC50 value of 1.5 and 1.3 μM, respectively, which are more active than that of the positive 1400 W. Compounds 16–18 were capable of inhibiting LPS-induced iNOS protein expression at a dose-dependent manner in which compound 18, with an IC50 of 0.52 μM in the inhibition of iNOS expression, is approximately fivefold more potent than that of the positive 1400 W. In the CLP rat animal model, compound 18 was found to be more active than the positive hydrocortisone in the inhibition of the iNOS mRNA expression in rat lung tissue. The sepsis-induced PGE2 production in rat serum decreased 150% by the pretreatment of 18 in a dose of 10 mg/kg.  相似文献   

3.
Seven estradiol (E2) derivatives with an alkynylamide side chain at the 17α position were synthesized starting from ethynylestradiol (EE2). The main chemical step was the coupling reaction of the acetylide ion of EE2 with carbon dioxide, glutaric anhydride or bromoalkyl ortho ester. The synthesis of these compounds is fast (3–6 steps according to the compound) and is easily achieved with good yield. Five compounds with different side chain lenghts were evaluated for uterotrophic and antiuterotrophic activity in the CD-1 mouse. None of the tested compounds shows estrogenic activity in this sensitive in vitro system. At low doses (1 and 3 μg), a 14–57% inhibition of E2-induced uterine growth was observed while no additional inhibition was observed at the 10, 20 and 30 μg doses. In human breast carcinoma cells in culture, all compounds show estrogenic activity at high concentrations while only compound 39 (N-buty,N-methyl-8-[3′,17′β-dihydroxy estra-1′,3′,5′(10′)-trien-17′α-yl]-7-octynamide) possesses antiproliferative or antiestrogenic effects. No significant correlation could be demonstrated between alkynylamide side chain length and estrogenic or antiestrogenic activity. Among the compounds tested, the derivative of EE2 possessing a five-methylene (CH2) side chain (compound 39) possesses the best antiestrogenic activity (44 ± 7% in the CD-1 mouse uterus assay at the 3μg dose and 57 ± 4% at 0.1 nM in human ZR-75-1 cancer cells in culture).  相似文献   

4.
In order to identify potential calpain and cathepsin inhibitors we prepared 12 dihydroxychalcone analogues and tested their ability to inhibit μ-calpain, m-calpain, cathepsins B and L. In the calpain inhibition test, compound 10 exhibited the most active inhibitory activity against m-calpain with an IC50 value of 25.25 ± 0.901 μM. With respect to inhibition of cathepsins B and L, compound 13 exhibited the most potent inhibitory activity on cathepsin L and moderate inhibitory activity on cathepsin B with IC50 values of 2.80 ± 0.100 and 11.47 ± 0.087 μM, respectively. Our results suggest the possibility of developing dual calpain and cathepsin inhibitors by properly modulating structures and/or combining the essential aspects of the functional group effective for specific calpain and cathepsin inhibition.  相似文献   

5.
Our recent studies with 2-(3′-hydroxypropylidene) analogs of 1α,25-dihydroxy-19-norvitamin D3 showed that this 2-substituent creates compounds with very potent biological activity. In the continuing search for vitamin D compounds with selective activity profiles, we prepared a series of 1α-hydroxy-19-norvitamin D analogs characterized by the presence of a 3′-hydroxypropylidene substituent at C-2 and a truncated side chain. These vitamin D compounds were efficiently prepared using convergent syntheses. The C,D-fragments, namely the Grundmann ketones 19, 20, 27, 36 and 37 were synthesized from the known 8β-benzoyloxy-22-aldehydes 12 and 29. These hydrindanones were subjected to Lythgoe type Wittig–Horner coupling with phosphine oxide 21, prepared by us previously, and after hydroxyl deprotection the set of 19-norvitamins 711 was successfully obtained. According to our expectations, all analogs (with an exception of the 20R-compound 7) have pronounced in vitro activity. When compared to the natural hormone 1α,25-(OH)2D3 (1), they show the same or only slightly reduced affinity for the vitamin D receptor while being similarly effective as 1 in differentiation of HL-60 cells into monocytes.  相似文献   

6.
Inhibition of aromatase is an efficient approach for the prevention and treatment of breast cancer. New 6β,19-bridged steroid analogs of androstenedione, 6β,19-epithio- and 6β,19-methano compounds 11 and 17, were synthesized starting from 19-hydroxyandrostenedione (6) and 19-formylandrost-5-ene-3β,17β-yl diacetate (12), respectively, as aromatase inhibitors. All of the compounds including known steroids 6β,19-epoxyandrostenedione (4) and 6β,19-cycloandrostenedione (5) tested were weak to poor competitive inhibitors of aromatase and, among them, 6β,19-epoxy steroid 4 provided only moderate inhibition (Ki: 2.2 μM). These results show that the 6β,19-bridged groups of the inhibitors interfere with binding in active site of aromatase.  相似文献   

7.
The multiple coordination possibilities of 1,8-naphthyridine-2-one (HOnapy) and 5,7-dimethyl-1,8-napthyridine-2-one (HOMe2napy) ligands allow the synthesis of a variety of tri- di- and mononuclear complexes, showing fluxional behaviour and frequent exchange of the coordinated ML2 fragments. Thus, reactions of [M2(μ-OMe)2(cod)2] (cod = 1,5-cyclooctadiene) with HOnapy and HOMe2napy yield the compounds of the general formula [M(μ-OR2napy) (cod)]n (M = Ir, R = Me (1a, 1b, H (2); M = Rh, R = Me (3a, 3b). They crystallise as inconvertible yellow (a) and purple/orange (b) forms and also show a puzzling behaviour in solution. X-ray diffraction studies on both forms (3a, 3b) and spectroscopic data reveal that the yellow forms are mononuclear complexes whilst the dark-coloured crystals contain dinuclear complexes. In solution, the nuclearity of the complexes depends on the solvent. In addition both types of complexes are fluxional. The mixed-ligand complexes [M2(μ-OMe2napy)2(CO)2(cod)] M = Ir (5), Rh (6) have been isolated and characterised; they are found to be intermediates in the synthesis of the trinuclear complexes [M33-OMe2napy)2(CO)2(cod)2]+ M = Rh (8), Ir (9). Reactions of [IrCl(CO)2(NH2-p-tolyl] with the complexes [Rh(μ-OR2napy)(diolefin)]n followed by addition of a poor donor anion is a general one-pot synthesis for the hetertrinuclear complexes [Rh2Ir(μ3-OR2napy)2(CO)2(diolefin)2]+ (R=Me, DIOLEFIN = cod (10), tetrafluorobenzo-barrelene (tfbb) (11), 2,5-norbornadiene (nbd) (12); R=H, DIOLEFIN=cod (13)). This synthesis follows a stepwise mechanism from the mononuclear to the trinuclear complexes in which mixed-ligand heterodinuclear complexes are involved as intermediates of the type [(diolefin)Rh(μ-OMe2napy)2Ir(CO)2]. Heteronuclear complexes which possess the core [RhIr2]3+, such as [RhIr23-OR2napy)2(CO)2(cod)2]BF4 (R=Me (14), H (15)), result from the reaction of 1 or 2 with [Rh(CO)2Sx]+ (S = solvent). The trinuclear complexes undergo two chemically reversible one-electron oxidation processes. The chemical oxidation of 10, 14 and 9 with silver salts gives the mixed-valence trinuclear radicals [Rh2Ir(μ3-OMe2napy)2(CO)2(cod)2]2+ (16), [RhIr23-OMe2napy)2(CO)2(cod)2]2+ (17) and [Ir33-OMe2napy)2(CO)2(cod)2]2+ (18), which have been isolated as the perchlorate and tetrafluoroborate salts. The EPR spectrum of 16 indicates that the unpaired electron is essentially in an orbital delocalised on the metals. The molecular structures of the complexes 3a, 3b, 6, 10b and 16a are described. Crystals of 3a are triclinic, P-1, with a = 9.7393(2), b = 14.0148(4), c = 16.0607(4) Å, α = 88.122(3), β = 83.924(3), γ = 87.038(3)°, Z = 4; 3b crystallises in the Pna2i orthorhhombic space group, with a = 16.7541(3), B = 11.7500(8), c = 17.7508(7) Å, Z = 4; complex 6 is packed in the monoclinic space group P2i/c, a = 9.6371(1), b = 11.8054(4), c = 27.2010(9) Å, β = 90.556(4)°, Z = 4; crystals of 10b are monoclinic, P21/n, with a = 17.546(7), b = 13.232(6), c = 17.437(8) Å, β = 106.18(1)°, Z = 4; crystals of 16a are triclinic, P-1, with a = 10.318(4), b = 12.562(6), C = 19.308(8) Å, α = 92.12(8), β = 97.65(9), γ = 90.68(5)°, Z = 2. The five different structures show the coordination versatility of the OMe2napy molecule as ligand, which behaves as a N,N′-chelating (3a), bidentate N,O-donor (3b, 6), or as a tridentate N,N′,O-donor bridging ligand (10b, 16a).  相似文献   

8.
The complex [Eu(tpy)3](ClO4)3 where TPY=2,2′; 6,2″-terpyridine, has been prepared and reexamined. The complex appears to be stable in acetonitrile solution with respect to decomplexation of the ligands but the addition of water does cause partial replacement of tpy. Analogous complexes have been prepared with 3,3′; 5,3″-polymethylene bridged derivatives of tpy having two or three carbons in the bridge. The bridging enforces a cisoid geometry of the ligand and prohibits its replacement by added water. An X-ray determination was carried out for [Eu(3b)3](ClO4)3, where 3b=3,3′; 5,3″-dimethylene tpy, which crystallizes in the monoclinic space group P21/c with a=11.908(4), b=15.768(5), c=29.513(9) Å, β=93.60(2)°, μ=13.5 cm−1 and Z=4. The complex forms a tricapped trigonal prism with each of the ligands adopting the same dl conformation. Variable temperature NMR analysis of the bridged ligand complexes indicates that conformational inversion of the bound ligand is not a concerted process and barriers for inversion of individual methylene units can be estimated from coalescence of the signals from the geminal methylene protons. The luminescence properties of the bridged tpy complexes are similar to the parent unbridged system.  相似文献   

9.
Recent pharmacological data strongly support the hypothesis of δ receptor subtypes as mediators of both supraspinal and spinal antinociception (δ1 and δ2 receptors). In vitro ligand binding data, which are fully supportive of the in vivo data, are still lacking. A previous study indicated that [3H][ -Ala2, -Leu5]enkephalin labels two binding sites in membranes depleted of μ binding sites by pretreatment with the site-directed acylating agent, 2-(p-ethoxybenzyl)-1-diethylaminoethyl-5-isothiocyanatobenzimidazole-HCI (BIT). The main goal of the present study was to develop a ligand-selectivity profile of the two δncx binding sites. The data indicated that naltrindole and oxymorphindole were relatively selective for site 1 (20-fold). [ -Ser2,Thr6]Enkephalin and deltorphin-II were only 2.7-fold and 2.2-fold selective for site 1. [ -Pen2, -Pen5]Enkephalin and deltorphin-I were 80-fold and 38-fold selective for site 2.3-Iodo-Tyr- -Ala-Gly-Phe- -Leu was 52-fold selective for site 1. Morphine had moderate affinity for site 1 (Ki = 16 nM), and was about 11-fold selective for site 1. Thus, of the 10 drugs studied, only DPDPE and DELT-I were selective for site 2. Viewed collectively with other data, it is likely that the δ1 receptor and the δncx binding site are synonymous.  相似文献   

10.
1H-Pyrazole-1-carboxamidines were prepared as potential inhibitors of the three isozymes of nitric oxide synthase. All of the compounds were found to be competitive inhibitors of all three isoforms. The most selective compound prepared was 1H-pyrazole-N-(3-aminomethylanilino)-1-carboxamidine (14), which is 100-fold selective for nNOS over eNOS with a Ki value of 2 μM.  相似文献   

11.
Six novel isoflavone derivatives along with four known isoflavones were isolated from a culture of a highly nickel-resistant strain of Streptomyces mirabilis from a former uranium mining area. The structures of 7-hydroxy-3′,5′-dihydroxyisoflavone (5), 5,7-dihydroxy-3′,5′-dihydroxyisoflavone (6), 2′-hydroxy-3′-methoxygenistein (7), as well as hydroisoflavones A–C (810) were elucidated by MS and NMR analyses. Compounds 810 feature yet unprecedented types of non-aromatic, hydroxylated B rings, which result from plant isoflavone biotransformation. All new compounds display weak cytotoxic but potent antiproliferative activities. The anti-oestrogenic properties of 8 against MCF-7 human breast cancer cell line (GI50: 6 μM) is even higher than the reference compound genistein.  相似文献   

12.
Mitochondria of chloroquine-resistant Plasmodium falciparum (K1 strain) were isolated from mature trophozoites by differential centrifugation. The mitochondrial marker enzyme cytochrome c reductase was employed to monitor the steps of mitochondria isolation. Partial purification of DNA polymerase from P. falciparum mitochondria was performed using fast protein liquid chromatography (FPLC). DNA polymerase of P. falciparum mitochondria was characterized as a γ-like DNA polymerase based on its sensitivity to the inhibitors aphidicolin, N-ethylmaleimide and 9-β- -arabinofuranosyladenine-5′-triphosphate. In contrast, the enzyme was found to be strongly resistant to 2′,3′-dideoxythymidine-5′-triphosphate (IC50>400 μM) and differed in this aspect from the human homologue, possibly indicating structural differences between human and P. falciparum DNA polymerase γ. In addition, the DNA polymerase of parasite mitochondria was shown to be resistant (IC50>1 mM) to the nucleotide analogue (S)-1-[3-hydroxy-2-phosphonylmethoxypropyl]adenine diphosphate (HPMPApp).  相似文献   

13.
Complexes [M(η12-C8H12OMe)((2,6-(R)2---C6H3)N=C(R′)---C(R′)=N((2,6-(R)2---C6H3))]PF6 (where M=Pd, R=H and R′2=Me2 (1), M=Pd, R=Me and R′2=Me2 (2), M=Pd, R=Et and R′2=Me2 (3), M=Pd, R=iPr and R′2=Me2 (4), M=Pd, R=iPr and R′2=An (5), M=Pt, R=iPr and R′2=An (6)) were synthesized by the reaction of [M(η12-C8H12OMe)Cl]2 with the appropriate α-diimine ligand in the presence of NH4PF6. Their ion pair structure in solution was investigated by detecting dipolar interactions between protons belonging to the cation and fluorine nuclei of the anion (interionic contacts) in the 19F, 1H-HOESY NMR spectra. In complexes 14, the anion in solution is located close to the peripheral protons of the α-diimine ligand and it interacts with the R′ protons and with the R protons that point toward the R′ groups. The steric protection of apical position exerted by the R substituents is clearly illustrated by the absence of interionic contacts between any protons of the cycloctenylmethoxy-moiety and the anion for R≥Me in 14. In complexes 5 and 6 the interactions between the anion and the peripheral N,N protons also predominate but other anion–cation orientations are significantly present and, consequently, the interionic structure is less specific.  相似文献   

14.
Phospholipid methylation in isolated hepatocytes was inhibited in the presence of 3-deazaadenosine (ID50 = 1.7 μM) 9-β-d-arabinofuranosyladenine (ID50 = 6.0 μM), S-tubercidinylhomocysteine (ID50 = 30 μM), and 5′-deoxy-5′-isobutylthioadenosine (ID50 = 177 μM). A transient inhibitory effect was observed with adenosine, whereas S-adenosyl-l-homocysteine and Sinefungin were essentially without effect. The inhibition of phospholipid methylation by S-tubercidinylhomocysteine and 9-β-d-arabinofuranosyladenine showed a lag-phase, whereas the effect of the other inhibitors was apparent within a few minutes. Cells exposed to 9-β-d-arabinofuranosyladenine or 3-deazaadenosine accumulated large amounts of AdoHcy, and adenosine induced a transient increase in the AdoHcy level. In addition, 3-deazaadenosine served as a precursor for the formation of S-3-deazaadenosylhomocysteine, which accumulated rapidly in cells exposed to this agent. The inhibitory effects of 3-deazaadenosine, 9-β-d-arabinofuranosyladenine and adenosine could be explained by the increase in total nucleosidylhomocysteine induced by these agents. In contrast, only a slight (less than 2-fold) increase in S-adenosyl-l-homocysteine content was observed in hepatocytes treated with 5′-deoxy-5′-isobutylthioadenosine, and this metabolic effect could not explain the inhibition of phospholipid methylation induced by this agent. None of the compounds tested reduced the amount nor the specific radioactivity of S-adenosylmethionine. Biological processes determining the inhibitory effects of adenosine, S-adenosyl-l-homocysteine and their analogues on phospholipid methylation in intact cells are discussed.  相似文献   

15.
Di-nor-benzofuran neolignan aldehydes, Δ7-3,4-methylenedioxy-3′-methoxy-8′,9′-dinor-4′,7-epoxy-8,3′-neolignan-7′-aldehyde (ocophyllal A) 1, Δ7-3,4,5,3′-tetramethoxy-8′,9′-dinor-4′,7-epoxy-8,3′-neolignan-7′-aldehyde (ocophyllal B) 2, and macrophyllin-type bicyclo[3.2.1]octanoid neolignans (7R, 8R, 3′S, 4′S, 5′R)-Δ8′-4′-hydroxy-5′-methoxy-3,4-methylenedioxy-2′,3′,4′,5′-tetrahydro-2′-oxo-7.3′,8.5′-neolignan (ocophyllol A) 3, (7R, 8R, 3′S, 4′S, 5′R)-Δ8′-4′-hydroxy-3,4,5′-trimethoxy-2′,3′,4′,5′-tetrahydro-2′-oxo-7.3′,8.5′-neolignan (ocophyllol B) 4, (7R, 8R, 3′S, 4′S, 5′R)-Δ8′-4′-hydroxy-3,4,5,5′-tetramethoxy-2′,3′,4′,5′-tetrahydro-2′-oxo-7.3′,8.5′-neolignan (ocophyllol C) 5, as well as 2′-epi-guianin 6 and (+)-licarin B 7, were isolated and characterized from leaves of Ocotea macrophylla (Lauraceae). The structures and configuration of these compounds were determined by extensive spectroscopic analyses. Inhibition of platelet activating factor (PAF)-induced aggregation of rabbit platelets were tested with neolignans 1–7. Although compound 6 was the most potent PAF-antagonist, compounds 3–5 showed some activity.  相似文献   

16.
Three series of new cannabinoids were prepared and their affinities for the CB1 and CB2 cannabinoid recptors were determined. These are the 1-methoxy-3-(1′,1′-dimethylalkyl)-, 1-deoxy-11-hydroxy-3-(1′,1′-dimethylalkyl)- and 11-hydroxy-1-methoxy-3-(1′,1′-dimethylalkyl)-Δ8-tetrahydrocannabinols, which contain alkyl chains from dimethylethyl to dimethylheptyl appended to C-3 of the cannabinoid. All of these compounds have greater affinity for the CB2 receptor than for the CB1 receptor, however only 1-methoxy-3-(1′,1′-dimethylhexyl)-Δ8-THC (JWH-229, 6e) has effectively no affinity for the CB1 receptor (Ki=3134±110 nM) and high affinity for CB2 (Ki=18±2 nM).  相似文献   

17.
2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-α,β-D-glucopyranosylammonium phosphate was prepared by the action of crystalline phosphoric acid on 2-acetamido-1,3,4,6-tetra-O-acetyl-β-D-glucopyranose. The α-D anomer (3) was the main product, and was isolated pure by preparative thin-layer chromatography or by removal of the β-D anomer (6) by selective acid hydrolysis. Ficaprenyl phosphate was prepared from ficaprenol, obtained as an isomeric mixture (mainly C55) from an extract of Ficus elastica. Compound 3 was converted into the free acid and then into the tributyl-ammonium salt, which was treated with P1-diphenyl P2-ficaprenyl pyrophosphate to give the acetylated pyrophosphate diester 8, characterized by analytical, spectral, and hydrogenolytic studies. Deacetylation of 8 gave the synthetic “lipid intermediate”, P1-(2-acetamido-2-deoxy-D-glucopyranosyl) P2-ficaprenyl pyrophosphate (9), the properties of which were compared with those of natural substances considered to be active in the biosynthesis of teichoic acids.  相似文献   

18.
Hancornia speciosa Gomes (Apocynaceae) is a Brazilian plant traditionally employed to treat inflammatory conditions, among other uses. The chemopreventive effect of an ethanol extract from H. speciosa leaves (EHS) was evaluated in a battery of in vitro tests [inhibition of aromatase, NF-κB and ornithine decarboxylase (ODC), antioxidant response elements (ARE) induction and cell proliferation assays]. Bioassay-directed fractionation of EHS following by inhibition of 12-O-tetradecanoyl-13-acetate (TPA)-mediated NF-kB activation led to the isolation of the cyclitols quinic acid (1) (85.0±12.3 μM) and l-(+)-bornesitol (2) (IC50=27.5±3.8 μM), along with rutin (26.8±6.3 μM). Based on these lead compounds, the cyclitols per-O-acetyl-1l-(+)-bornesitol (3) (IC50=38.4±6.2 μM), myo-inositol (4) (>180.2 μM), scyllo-inositol (5) (83.0±13.7 μM) and β-d-galactoside-myo-inositol (6) (52.4±8.4 μM) were evaluated in the assay, but found to be somewhat less active than 1 and 2. None of the compounds was active in the ARE, aromatase or ODC assays and did not inhibit proliferation of MCF-7, LNCaP, HepG2 or LU-1 cell lines at a final concentration of 20 μg/ml (equivalent to 104.07–32.76 μM).This work identifies l-(+)-bornesitol, quinic acid and rutin as NF-κB inhibitors of H. speciosa and suggests cyclitols, in addition to myo-inositol, are potentially useful as chemopreventive agents.  相似文献   

19.
A ionization technique in mass spectrometry called Direct Analysis in Real Time Mass Spectrometry (DART TOF-MS) coupled with a Direct Binding Assay was used to identify and characterize anti-viral components of an elderberry fruit (Sambucus nigra L.) extract without either derivatization or separation by standard chromatographic techniques. The elderberry extract inhibited Human Influenza A (H1N1) infection in vitro with an IC50 value of 252 ± 34 μg/mL. The Direct Binding Assay established that flavonoids from the elderberry extract bind to H1N1 virions and, when bound, block the ability of the viruses to infect host cells. Two compounds were identified, 5,7,3′,4′-tetra-O-methylquercetin (1) and 5,7-dihydroxy-4-oxo-2-(3,4,5-trihydroxyphenyl)chroman-3-yl-3,4,5-trihydroxycyclohexanecarboxylate (2), as H1N1-bound chemical species. Compound 1 and dihydromyricetin (3), the corresponding 3-hydroxyflavonone of 2, were synthesized and shown to inhibit H1N1 infection in vitro by binding to H1N1 virions, blocking host cell entry and/or recognition. Compound 1 gave an IC50 of 0.13 μg/mL (0.36 μM) for H1N1 infection inhibition, while dihydromyricetin (3) achieved an IC50 of 2.8 μg/mL (8.7 μM). The H1N1 inhibition activities of the elderberry flavonoids compare favorably to the known anti-influenza activities of Oseltamivir (Tamiflu®; 0.32 μM) and Amantadine (27 μM).  相似文献   

20.
Enzymes AKR1C regulate the action of oestrogens, androgens, and progesterone at the pre-receptor level and are also associated with chemo-resistance. The activities of these oestrone halides were investigated on recombinant AKR1C enzymes. The oestrone halides with halogen atoms at both C-2 and C-4 positions (13β-, 13α-methyl-17-keto halogen derivatives) were the most potent inhibitors of AKR1C1. The lowest IC50 values were for the 13α-epimers 2_2I,4Br and 2_2I,4Cl (IC50, 0.7 μM, 0.8 μM, respectively), both of which selectively inhibited the AKR1C1 isoform. The 13α-methyl-17-keto halogen derivatives 2_2Br and 2_4Cl were the most potent inhibitors of AKR1C2 (IC50, 1.5 μM, 1.8 μM, respectively), with high selectivity for the AKR1C2 isoform. Compound 1_2Cl,4Cl showed the best AKR1C3 inhibition, and it also inhibited AKR1C1 (Ki: AKR1C1, 0.69 μM; AKR1C3, 1.43 μM). These data show that halogenated derivatives of oestrone represent a new class of potent and selective AKR1C inhibitors as lead compounds for further optimisations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号