首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In cells, stable microtubules (MTs) are covalently modified by a carboxypeptidase, which removes the C-terminal Tyr residue of α-tubulin. The significance of this selective detyrosination of MTs is not understood. In this study, we report that tubulin detyrosination in fibroblasts inhibits MT disassembly. This inhibition is relieved by overexpression of the depolymerizing motor mitotic centromere-associated kinesin (MCAK). Conversely, suppression of MCAK expression prevents disassembly of normal tyrosinated MTs in fibroblasts. Detyrosination of MTs suppresses the activity of MCAK in vitro, apparently as the result of a decreased affinity of the adenosine diphosphate (ADP)–inorganic phosphate- and ADP-bound forms of MCAK for the MT lattice. Detyrosination also impairs MT disassembly in neurons and inhibits the activity of the neuronal depolymerizing motor KIF2A in vitro. These results indicate that MT depolymerizing motors are directly inhibited by the detyrosination of tubulin, resulting in the stabilization of cellular MTs. Detyrosination of transiently stabilized MTs may give rise to persistent subpopulations of disassembly-resistant polymers to sustain subcellular cytoskeletal differentiation.  相似文献   

2.
V I Gel'fand 《Tsitologiia》1984,26(4):362-370
The role of nucleotides in microtubular assembly and disassembly has been reviewed. Two possible functions of GTP hydrolysis during assembly are discussed: (1) hydrolysis renders sensitivity to factor(s) regulating microtubule depolymerization; (2) the energy of GTP hydrolysis is utilized for the subunit flow from one end of the microtubule to the other. In the second part of the review, experiments are considered showing that microtubular disassembly takes place in the cells only in the presence of ATP, and, therefore, this process is regulated via some ATP-dependent mechanism (most probably, phosphorylation of microtubule-associated proteins).  相似文献   

3.
We have examined the mechanism of calcium induced microtubule dissasembly by combined kinetic and steady state analysis. Our results indicate that calcium induces microtubule disassembly by binding directly to the wall of the microtubule and promoting dissociation of subunits from the ends.  相似文献   

4.
Lung endothelial barrier function is regulated by multiple signaling pathways, including mitogen-activated protein kinases (MAPK) extracellular signal-regulated kinases (ERK) 1/2 and p38. We have recently shown involvement of microtubule (MT) disassembly in endothelial cell (EC) barrier failure. In this study, we examined potential involvement of ERK1/2 and p38 MAPK in lung EC barrier dysfunction associated with MT disassembly. MT inhibitors nocodazole (0.2 microM) and vinblastine (0.1 microM) induced sustained activation of Ras-Raf-MEK1/2-ERK1/2 and MKK3/6-p38-MAPKAPK2 MAPK cascades in human and bovine pulmonary EC, as detected by phosphospecific antibodies and in MAPK activation assays. These effects were linked to increased permeability assessed by measurements of transendothelial electrical resistance and cytoskeletal remodeling analyzed by morphometric analysis of EC monolayers. MT stabilization by taxol (5 microM, 1 h) attenuated nocodazole-induced ERK1/2 and p38 MAPK activation and phosphorylation of p38 MAPK substrate 27-kDa heat shock protein and regulatory myosin light chains, the proteins involved in actin polymerization and actomyosin contraction. Importantly, only pharmacological inhibition of p38 MAPK by SB-203580 (20 microM, 1 h) attenuated nocodazole-induced MT depolymerization, actin remodeling, and EC barrier dysfunction, whereas the MEK/ERK1/2 inhibitor U0126 (5 microM, 1 h) exhibited no effect. These data suggest a direct link between p38 MAPK activation, remodeling of MT network, and EC barrier regulation.  相似文献   

5.
Role of calmodulin in cadmium-induced microtubule disassembly   总被引:1,自引:0,他引:1  
Micromolar CdCl2 has been shown to cause disassembly of the cytoplasmic microtubule complex in cultured Swiss 3T3 cells. We show in this paper that Cd(II), an environmental and occupational health hazard, induces microtubule disassembly in an in situ cytoskeleton model system, and that the calmodulin inhibitors, trifluoperazine and Compound 48/80, prevent this Cd(II)-induced microtubule disassembly. Our results suggest that Cd(II) affects microtubules by activating calmodulin associated with the cytoskeleton. Furthermore, the fact that these two ions have very similar ionic radii (0.99A vs. 0.97A) supports our conclusion that Cd(II) acts similarly to Ca(II) in inducing microtubule disassembly. This may be relevant to the mechanism of Cd-mediated cellular injury.  相似文献   

6.
《Autophagy》2013,9(1):112-114
Neurons are exquisitely dependent on quality control systems to maintain a healthy intracellular environment. A permanent assessment of protein and organelle “quality” allows a coordinated action between repair and clearance of damage proteins and dysfunctional organelles. Impairments in the intracellular clearance mechanisms in long-lived postmitotic cells, like neurons, result in the progressive accumulation of damaged organelles and aggregates of aberrant proteins. Using cells bearing Parkinson disease (PD) patients’ mitochondria, we demonstrated that aberrant accumulation of autophagosomes in PD, commonly interpreted as an abnormal induction of autophagy, is instead due to defective autophagic clearance. This defect is a consequence of alterations in the microtubule network driven by mitochondrial dysfunction that hinder mitochondria and autophagosome trafficking. We uncover mitochondria and microtubule-directed traffic as main players in the regulation of autophagy in PD.  相似文献   

7.
Microtubules tightly regulate various cellular activities. Our understanding of microtubules is largely based on experiments using microtubule‐targeting agents, which, however, are insufficient to dissect the dynamic mechanisms of specific microtubule populations, due to their slow effects on the entire pool of microtubules. To overcome this technological limitation, we have used chemo and optogenetics to disassemble specific microtubule subtypes, including tyrosinated microtubules, primary cilia, mitotic spindles, and intercellular bridges, by rapidly recruiting engineered microtubule‐cleaving enzymes onto target microtubules in a reversible manner. Using this approach, we show that acute microtubule disassembly swiftly halts vesicular trafficking and lysosomal dynamics. It also immediately triggers Golgi and ER reorganization and slows the fusion/fission of mitochondria without affecting mitochondrial membrane potential. In addition, cell rigidity is increased after microtubule disruption owing to increased contractile stress fibers. Microtubule disruption furthermore prevents cell division, but does not cause cell death during interphase. Overall, the reported tools facilitate detailed analysis of how microtubules precisely regulate cellular architecture and functions.  相似文献   

8.
Cross talk between the actin cytoskeleton and the microtubule (MT) network plays a critical role in regulation of endothelial permeability. We have previously demonstrated that MT disruption by nocodazole results in increases in MLC phosphorylation, actomyosin contraction, cell retraction, and paracellular gap formation, cardinal features of endothelial barrier dysfunction (Verin AD, Birukova A, Wang P, Liu F, Becker P, Birukov K, and Garcia JG. Am J Physiol Lung Cell Mol Physiol 281: L565-L574, 2001; Birukova AA, Smurova K, Birukov KG, Usatyuk P, Liu F, Kaibuchi K, Ricks-Cord A, Natarajan V, Alieva A, Garcia JG, and Verin AD. J Cell Physiol. In press.). Although activation of PKA opposes barrier-disrupting effects of edemagenic agents on confluent EC monolayers, information about the molecular mechanisms of PKA-mediated EC barrier protection is limited. Our results suggest that MT disassembly alters neither intracellular cAMP levels nor PKA enzymatic activity; however, elevation of cAMP levels and PKA activation by either cholera toxin or forskolin dramatically attenuates the decline in transendothelial electrical resistance induced by nocodazole in human pulmonary EC. Barrier-protective effects of PKA on EC were associated with PKA-mediated inhibition of nocodazole-induced stress fiber formation, Rho activation, phosphorylation of myosin phosphatase regulatory subunit at Thr696, and decreased MLC phosphorylation. In addition, forskolin pretreatment attenuated MT disassembly induced by nocodazole. These results suggest a critical role for PKA activity in stabilization of MT cytoskeleton and provide a novel mechanism for cAMP-mediated regulation of Rho-induced actin cytoskeletal remodeling, actomyosin contraction, and EC barrier dysfunction induced by MT disassembly.  相似文献   

9.
When neuroblastoma cells bearing neurites are incubated with colchicine or Nocodazole, the cytoplasmic microtubules are depolymerized and concomitantly the neurites retract. We report here that cytochalasin separates the two effects of these drugs: it quantitatively inhibits neurite retraction but does not inhibit microtubule assembly. The neurites that remain contain intermediate filaments and actin but are devoid of microtubules. Depletion of cellular ATP also blocks neurite retraction induced by colchicine or Nocodazole, but some assembled microtubules persist under these conditions. The results suggest that neurite retraction is an active cell process.  相似文献   

10.
A potential goal in the prevention or therapy of Alzheimer's disease is to decrease or eliminate neuritic plaques composed of fibrillar beta-amyloid (Abeta). In this paper we describe N-methyl amino acid containing congeners of the hydrophobic "core domain" of Abeta that inhibit the fibrillogenesis of full-length Abeta. These peptides also disassemble preformed fibrils of full-length Abeta. A key feature of the inhibitor peptides is that they contain N-methyl amino acids in alternating positions of the sequence. The most potent of these inhibitors, termed Abeta16-22m, has the sequence NH(2)-K(Me-L)V(Me-F)F(Me-A)E-CONH(2). In contrast, a peptide, NH(2)-KL(Me-V)(Me-F)(Me-F)(Me-A)-E-CONH(2), with N-methyl amino acids in consecutive order, is not a fibrillogenesis inhibitor. Another peptide containing alternating N-methyl amino acids but based on the sequence of a different fibril-forming protein, the human prion protein, is also not an inhibitor of Abeta40 fibrillogenesis. The nonmethylated version of the inhibitor peptide, NH(2)-KLVFFAE-CONH(2) (Abeta16-22), is a weak fibrillogenesis inhibitor. Perhaps contrary to expectations, the Abeta16-22m peptide is highly soluble in aqueous media, and concentrations in excess of 40 mg/mL can be obtained in buffers of physiological pH and ionic strength, compared to only 2 mg/mL for Abeta16-22. Analytical ultracentrifugation demonstrates that Abeta16-22m is monomeric in buffer solution. Whereas Abeta16-22 is susceptible to cleavage by chymotrypsin, the methylated inhibitor peptide Abeta16-22m is completely resistant to this protease. Circular dichroic spectroscopy of Abeta16-22m indicates that this peptide is a beta-strand, albeit with an unusual minimum at 226 nm. In summary, the inhibitor motif is that of alternating N-methyl and nonmethylated amino acids in a sequence critical for Abeta40 fibrillogenesis. These inhibitors appear to act by binding to growth sites of Abeta nuclei and/or fibrils and preventing the propagation of the network of hydrogen bonds that is essential for the formation of an extended beta-sheet fibril.  相似文献   

11.
《Current biology : CB》2022,32(21):4660-4674.e6
  1. Download : Download high-res image (204KB)
  2. Download : Download full-size image
  相似文献   

12.
Sites of microtubule assembly and disassembly in the mitotic spindle   总被引:82,自引:0,他引:82  
T Mitchison  L Evans  E Schulze  M Kirschner 《Cell》1986,45(4):515-527
We have microinjected biotinylated tubulin into mitotic fibroblast cells to identify the sites in the spindle at which new subunits are incorporated into microtubules (MTs). Labeled subunits were visualized in the electron microscope using an antibody to biotin followed by a secondary antibody coupled to colloidal gold. Astral MTs incorporate labeled subunits very rapidly by elongation of existing MTs and by new nucleation from the centrosome. At a slower rate, kinetochore MTs incorporate subunits at the kinetochore progressively during metaphase, suggesting a slow poleward flux of subunits in the kinetochore fiber. When cells injected in metaphase were examined in anaphase, a significant fraction of kinetochore MTs was unlabeled, suggesting that depolymerization had occurred at the kinetochore concomitant with chromosome to pole movement. The existence of opposite fluxes at the kinetochore during metaphase and anaphase suggests that two separate forces are responsible for chromosome congression and anaphase movement.  相似文献   

13.
The RhoA GTPase plays a vital role in assembly of contractile actin-myosin filaments (stress fibers) and of associated focal adhesion complexes of adherent monolayer cells in culture. GEF-H1 is a microtubule-associated guanine nucleotide exchange factor that activates RhoA upon release from microtubules. The overexpression of GEF-H1 deficient in microtubule binding or treatment of HeLa cells with nocodazole to induce microtubule depolymerization results in Rho-dependent actin stress fiber formation and contractile cell morphology. However, whether GEF-H1 is required and sufficient to mediate nocodazole-induced contractility remains unclear. We establish here that siRNA-mediated depletion of GEF-H1 in HeLa cells prevents nocodazole-induced cell contraction. Furthermore, the nocodazole-induced activation of RhoA and Rho-associated kinase (ROCK) that mediates phosphorylation of myosin regulatory light chain (MLC) is impaired in GEF-H1–depleted cells. Conversely, RhoA activation and contractility are rescued by reintroduction of siRNA-resistant GEF-H1. Our studies reveal a critical role for a GEF-H1/RhoA/ROCK/MLC signaling pathway in mediating nocodazole-induced cell contractility.  相似文献   

14.
We have explored the possibilities that cell volume is regulated by the status of microtubule assembly and cyclic AMP metabolism and may be coordinated with shape change. Treatment of J774.2 mouse macrophages with colchicine caused rapid microtubule disassembly and was associated with a striking increase (from 15-20 to more than 90 percent) in the proportion of cells with a large protuberance at one pole. This provided a simple experimental system in which shape changes occurred in virtually an entire cell population in suspension. Parallel changes in cell volume could then be quantified by isotope dilution techniques. We found that the shape change caused by colchicine was accompanied by a decrease in cell volume of approximately 20 percent. Nocodozole, but not lumicolchicine, caused identical changes in both cell shape and cell volume. The volume loss was not due to cell lysis nor to inhibition of pinocytosis. The mechanism of volume loss was also examined. Colchicine induced a small but reproducible increase in activity of the ouabain-sensitive Na(+), K(+)-dependent ATPase. However, inhibition of this enzyme/transport system by ouabain did not change cell volume nor did it block the colchicines-induced decrease in volume. One the other hand, SITS (4’acetamido, 4-isothiocyano 2,2’ disulfonic acid stilbene), an inhibitor of anion transport, inhibited the effects of colchicines, thus suggesting a role for an anion transport system in cell volume regulation. Because colchicine is known to activate adenylate cyclase in several systems and because cell shape changes are often induced by hormones that elevate cyclic AMP, we also examined the effects of cyclic AMP on cell volume. Agents that act to increase syclic AMP (cholera toxin, which activates adenylate cyclase; IBMX, and inhibitor of phosphodiesterase; and dibutyryl cyclic AMP) all caused a volume decrease comparable to that of colchicine. To define the effective metabolic pathway, we studied two mutants of J774.2, one deficient in adenylate cyclase and the other exhibiting markedly reduced activity of cyclic AMP-dependent protein kinase. Cholera toxin did not produce a volume change in either mutant. Cyclic AMP produced a decrease in the cyclase-deficient line comparable to that in wild type, but did not cause a volume change in the kinase- deficient line. This analysis established separate roles for cyclic AMP and colchicine. The volume decrease induced by cyclic AMP requires the action of a cyclic AMP-dependent protein kinase. Colchicine, on the other hand, induced a comparable volume change in both mutants and wild type, and thus does not require the kinase.  相似文献   

15.
Frank Solomon 《Cell》1980,21(2):333-338
The detailed neurite morphologies of neuroblastoma cells can be specified by heritable information. This paper reports an investigation into how that information is stored. Cells with neurites are incubated with the microtubule-depolymerizing drug Nocodazole. The neurites retract and the cell bodies round up. The neurites reextend when the drug is removed. 58% of all cells recapitulate their original neurite morphology in detail. The same percentage of recapitulation is observed among a subset of the cells, about half the population, which move across the substratum during retraction and reextension. The results suggest that the storage of morphological determinants survives an interruption in their expression. In addition, reexpression of specific morphology does not require external cues or maintenance of the overall geometry of the cytoskeleton.  相似文献   

16.
17.
Cytoskeletal networks play an important role in regulating nuclear morphology and ciliogenesis.However,the role of microtubule (MT) post-translational modificat...  相似文献   

18.
Current models of microtubule assembly from pure tubulin involve a nucleation phase followed by microtubule elongation at a constant polymer number. Both the rate of microtubule nucleation and elongation are thought to be tightly influenced by the free GTP-tubulin concentration, in a law of mass action-dependent manner. However, these basic hypotheses have remained largely untested due to a lack of data reporting actual measurements of the microtubule length and number concentration during microtubule assembly.Here, we performed simultaneous measurements of the polymeric tubulin concentration, of the free GTP-tubulin concentration, and of the microtubule length and number concentration in both polymerizing and depolymerizing conditions. In agreement with previous work we find that the microtubule nucleation rate is strongly dependent on the initial GTP-tubulin concentration. But we find that microtubule nucleation persists during microtubule elongation. At any given initial tubulin-GTP concentration, the microtubule nucleation rate remains constant during polymer assembly, despite the wide variation in free GTP-tubulin concentration. We also find a remarkable constancy of the rate of microtubule elongation during assembly. Apparently, the rate of microtubule elongation is intrinsic to the polymers, insensitive to large variations of the free GTP-tubulin concentration. Finally we observe that when, following assembly, microtubules depolymerize below the free GTP-tubulin critical concentration, the rate-limiting factor for disassembly is the frequency of microtubule catastrophe. At all time-points during disassembly, the microtubule catastrophe frequency is independent of the free GTP-tubulin concentration but, as the microtubule nucleation rate, is strongly dependent on the initial free GTP-tubulin concentration. We conclude that the dynamics of both microtubule assembly and disassembly depend largely on factors other than the free GTP-tubulin concentration. We propose that intrinsic structural factors and endogenous regulators, whose concentration varies with the initial conditions, are also major determinants of these dynamics.  相似文献   

19.
20.
The assembly/disassembly of biological macromolecules plays an important role in their biological functionalities. Although the dynamics of tubulin polymers and their super-assembly into microtubule structures is critical for many cellular processes, details of their cyclical polymerization/depolymerization are not fully understood. Here, we use a specially designed light scattering technique to continuously examine the effects of temperature cycling on the process of microtubule assembly/disassembly. We observe a thermal hysteresis loop during tubulin assembly/disassembly, consistently with earlier reports on the coexistence of tubulin and microtubules as a phase transition. In a cyclical process, the structural hysteresis has a kinetic component that depends on the rate of temperature change but also an intrinsic thermodynamic component that depends on the protein topology, possibly related to irreversible processes. Analyzing the evolution of such thermal hysteresis loops over successive cycles, we found that the assembly/disassembly ceases after some time, which is indicative of protein aging leading to its inability to self-assemble after a finite number of temperature cycles. The emergence of assembly-incompetent tubulin could have major consequences for human pathologies related to microtubules, including aging, neurodegenerative diseases and cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号