首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

A quantitative structure-activity relationship (QSAR) study is described on some cyclic ureas that inhibit the enzyme HIV-I protease (HIV-I-PR) and exhibit antiviral potency. Both the enzyme inhibition activity and the antiviral potency were found to be primarily governed by the hydrophobic property of the substituents at the nitrogens (N2/N2′) of the urea. Adjacent to the nitrogens, the CI/CI -substituents are, however, found to affect the activity (inhibition) by their molecular size. The essential binding of the ureas with the receptor is, however, through multiple hydrogen bonding, where the substituents, too, can participate in such binding if they are capable of doing so. A schematic diagram of the overall interaction of the inhibitors with the receptor is presented.  相似文献   

2.
3.

Background

The AutoDock family of software has been widely used in protein-ligand docking research. This study compares AutoDock 4 and AutoDock Vina in the context of virtual screening by using these programs to select compounds active against HIV protease.

Methodology/Principal Findings

Both programs were used to rank the members of two chemical libraries, each containing experimentally verified binders to HIV protease. In the case of the NCI Diversity Set II, both AutoDock 4 and Vina were able to select active compounds significantly better than random (AUC = 0.69 and 0.68, respectively; p<0.001). The binding energy predictions were highly correlated in this case, with r = 0.63 and ι = 0.82. For a set of larger, more flexible compounds from the Directory of Universal Decoys, the binding energy predictions were not correlated, and only Vina was able to rank compounds significantly better than random.

Conclusions/Significance

In ranking smaller molecules with few rotatable bonds, AutoDock 4 and Vina were equally capable, though both exhibited a size-related bias in scoring. However, as Vina executes more quickly and is able to more accurately rank larger molecules, researchers should look to it first when undertaking a virtual screen.  相似文献   

4.
5.

Background

HIV protease inhibitor (PI)-induced inflammatory response in macrophages is a major risk factor for cardiovascular diseases. We have previously reported that berberine (BBR), a traditional herbal medicine, prevents HIV PI-induced inflammatory response through inhibiting endoplasmic reticulum (ER) stress in macrophages. We also found that HIV PIs significantly increased the intracellular concentrations of BBR in macrophages. However, the underlying mechanisms of HIV PI-induced BBR accumulation are unknown. This study examined the role of P-glycoprotein (P-gp) in HIV PI-mediated accumulation of BBR in macrophages.

Methodology and Principal Findings

Cultured mouse RAW264.7 macrophages, human THP-1-derived macrophages, Wild type MDCK (MDCK/WT) and human P-gp transfected (MDCK/P-gp) cells were used in this study. The intracellular concentration of BBR was determined by HPLC. The activity of P-gp was assessed by measuring digoxin and rhodamine 123 (Rh123) efflux. The interaction between P-gp and BBR or HIV PIs was predicated by Glide docking using Schrodinger program. The results indicate that P-gp contributed to the efflux of BBR in macrophages. HIV PIs significantly increased BBR concentrations in macrophages; however, BBR did not alter cellular HIV PI concentrations. Although HIV PIs did not affect P-gp expression, P-gp transport activities were significantly inhibited in HIV PI-treated macrophages. Furthermore, the molecular docking study suggests that both HIV PIs and BBR fit the binding pocket of P-gp, and HIV PIs may compete with BBR to bind P-gp.

Conclusion and Significance

HIV PIs increase the concentration of BBR by modulating the transport activity of P-gp in macrophages. Understanding the cellular mechanisms of potential drug-drug interactions is critical prior to applying successful combinational therapy in the clinic.  相似文献   

6.
An infectious chimeric feline immunodeficiency virus (FIV)/HIV strain carrying six HIV-like protease (PR) mutations (I37V/N55M/V59I/I98S/Q99V/P100N) was subjected to selection in culture against the PR inhibitor lopinavir (LPV), darunavir (DRV), or TL-3. LPV selection resulted in the sequential emergence of V99A (strain S-1X), I59V (strain S-2X), and I108V (strain S-3X) mutations, followed by V37I (strain S-4X). Mutant PRs were analyzed in vitro, and an isogenic virus producing each mutant PR was analyzed in culture for LPV sensitivity, yielding results consistent with the original selection. The 50% inhibitory concentrations (IC50s) for S-1X, S-2X, S-3X, and S-4X were 95, 643, 627, and 1,543 nM, respectively. The primary resistance mutations, V9982A, I5950V, and V3732I, are consistent with the resistance pattern developed by HIV-1 under similar selection conditions. While resistance to LPV emerged readily, similar PR mutations causing resistance to either DRV or TL-3 failed to emerge after passage for more than a year. However, a G37D mutation in the nucleocapsid (NC) was observed in both selections and an isogenic G37D mutant replicated in the presence of 100 nM DRV or TL-3, whereas parental chimeric FIV could not. An additional mutation, L92V, near the PR active site in the folded structure recently emerged during TL-3 selection. The L92V mutant PR exhibited an IC50 of 50 nM, compared to 35 nM for 6s-98S PR, and processed the NC-p2 junction more efficiently, consistent with increased viral fitness. These findings emphasize the role of mutations outside the active site of PR in increasing viral resistance to active-site inhibitors and suggest additional targets for inhibitor development.  相似文献   

7.
Mechanical wounding or infection of potatoes with Phytophthora infestans caused an accumulation of only serine protease inhibitors in exudates of potato tubers. Among them, proteins prevailed that are structurally similar to those present in healthy tubers: a 22-kDa trypsin inhibitor, a 21-kDa serine protease inhibitor consisting of two polypeptide chains, and a 8-kDa potato chymotrypsin I inhibitor produced de novo. The accumulated proteins inhibited the growth of hyphae and germination of zoospores of P. infestans. Treatment with elicitors, jasmonic and arachidonic acids, intensified the accumulation of these inhibitors in tubers in response to the wound stress, whereas salicylic acid blocked this process. These results suggest that lipoxygenase metabolism plays a substantial role in signal transduction of the protective system of resting potato tubers.  相似文献   

8.
BackgroundHuman head and neck squamous cell carcinoma (HNSCC) is the sixth most malignant cancer worldwide. Despite significant advances in the delivery of treatment and surgical reconstruction, there is no significant improvement of mortality rates for this disease in the past decades. Radiotherapy is the core component of the clinical combinational therapies for HNSCC. However, the tumor cells have a tendency to develop radiation resistance, which is a major barrier to effective treatment. HIV protease inhibitors (HIV PIs) have been reported with radiosensitizing activities in HNSCC cells, but the underlying cellular/molecular mechanisms remain unclear. Our previous study has shown that HIV PIs induce cell apoptosis via activation of endoplasmic reticulum (ER) stress. The aim of this study was to examine the role of ER stress in HIV PI-induced radiosensitivity in human HNSCC.

Methodology and Principal Findings

HNSCC cell lines, SQ20B and FaDu, and the most commonly used HIV PIs, lopinavir and ritonavir (L/R), were used in this study. Clonogenic assay was used to assess the radiosensitivity. Cell viability, apoptosis and cell cycle were analyzed using Cellometer Vision CBA. The mRNA and protein levels of ER stress-related genes (eIF2α, CHOP, ATF-4, and XBP-1), as well as cell cycle related protein, cyclin D1, were detected by real time RT-PCR and Western blot analysis, respectively. The results demonstrated that L/R dose-dependently sensitized HNSCC cells to irradiation and inhibited cell growth. L/R-induced activation of ER stress was correlated to down-regulation of cyclin D1 expression and cell cycle arrest under G0/G1 phase.

Conclusion and Significance

HIV PIs sensitize HNSCC cells to radiotherapy by activation of ER stress and induction of cell cycle arrest. Our results provided evidence that HIV PIs can be potentially used in combination with radiation in the treatment of HNSCC.  相似文献   

9.
Potent inhibitors of proteases are constantly sought because of their potential as new therapeutic lead compounds. In this paper we report a simple computational methodology for obtaining new ideas for functional groups that may act as effective inhibitors. We relate this study to serine proteases. We have analyzed all of the factors that operate in the enzyme-substrate interactions and govern the free energy for the transformation of the Michaelis complex (MC) to the anionic covalent tetrahedral complex (TC). The free energy of this transformation ( GMC-TC ) is the quantitative criterion that differentiates between the catalytic and inhibitory processes in proteases. The catalytic TC is shifted upwards (GMC-TC > 0) relative to the MC in the free energy profile of the reaction, whereas the inhibitory tetrahedral species is shifted downward (GMC-TC < 0). Therefore, the more stable the TC, the more effective it should be as an inhibitor. We conclude that the dominant contribution to the superstabilization of an anionic TC for transition state analog inhibitors originates from the formation of a -covalent bond between the reactive centers of the enzyme and its inhibitor. This energetic effect is a quantitative value obtained in ab initio calculations and provides an estimate as to whether a functional group is feasible as potent inhibitor or not. To support our methodology, we describe several examples where good agreement is shown between modeled ab initio quantum chemical calculations and experimental results extracted from the literature.  相似文献   

10.
Mice deficient for the fibulin-5 gene (Fbln5−/−) develop pelvic organ prolapse (POP) due to compromised elastic fibers and upregulation of matrix metalloprotease (MMP)-9. Here, we used casein zymography, inhibitor profiling, affinity pull-down, and mass spectrometry to discover additional protease upregulated in the vaginal wall of Fbln5−/− mice, herein named V1 (25 kDa). V1 was a serine protease with trypsin-like activity similar to protease, serine (PRSS) 3, a major extrapancreatic trypsinogen, was optimum at pH 8.0, and predominantly detected in estrogenized vaginal epithelium of Fbln5−/− mice. PRSS3 was (a) localized in epithelial secretions, (b) detected in media of vaginal organ culture from both Fbln5−/− and wild type mice, and (c) cleaved fibulin-5 in vitro. Expression of two serine protease inhibitors [Serpina1a (α1-antitrypsin) and Elafin] was dysregulated in Fbln5−/− epithelium. Finally, we confirmed that PRSS3 was expressed in human vaginal epithelium and that SERPINA1 and Elafin were downregulated in vaginal tissues from women with POP. These data collectively suggest that the balance between proteases and their inhibitors contributes to support of the pelvic organs in humans and mice.  相似文献   

11.
A combined ligand and structure-based drug design approach provides a synergistic advantage over either methods performed individually. Present work bestows a good assembly of ligand and structure-based pharmacophore generation concept. Ligand-oriented study was accomplished by employing the HypoGen module of Catalyst in which we have translated the experimental findings into 3-D pharmacophore models by identifying key features (four point pharmacophore) necessary for interaction of the inhibitors with the active site of HIV-1 protease enzyme using a training set of 33 compounds belonging to the cyclic cyanoguanidines and cyclic urea derivatives. The most predictive pharmacophore model (hypothesis 1), consisting of four features, namely, two hydrogen bond acceptors and two hydrophobic, showed a correlation (r) of 0.90 and a root mean square of 0.71 and cost difference of 56.59 bits between null cost and fixed cost. The model was validated using CatScramble technique, internal and external test set prediction. In the second phase of our study, a structure-based five feature pharmacophore hypothesis was generated which signifies the importance of hydrogen bond donor, hydrogen bond acceptors and hydrophobic interaction between the HIV-1 protease enzyme and its inhibitors. This work has taken a significant step towards the full integration of ligand and structure-based drug design methodologies as pharmacophoric features retrieved from structure-based strategy complemented the features from ligand-based study hence proving the accuracy of the developed models. The ligand-based pharmacophore model was used in virtual screening of Maybridge and NCI compound database resulting in the identification of four structurally diverse druggable compounds with nM activities.  相似文献   

12.
运用生物信息学的方法,对已在GenBank数据库中注册的大豆、海红豆、凤凰木、象耳豆及洋紫荆等植物Kunitz蛋白酶抑制剂的氨基酸序列进行分析.结果显示,这些植物的Kunitz蛋白酶抑制剂中甘氨酸、谷氨酸、亮氨酸、丝氨酸、天冬氨酸及缬氨酸含量较丰富;不同植物Kunitz蛋白酶抑制剂的氨基酸序列具有较高的同源性,其中P1位点的氨基酸残基序度保守;分子进化研究表明Kunitz蛋白酶抑制剂可作为植物遗传分化和分子进化研究的重要依据;部分序列中存在信号肽;分子中不存在跨膜结构域,可能受蛋白激酶C的磷酸化;无规卷曲是多肽链中的主要结构元件;分子中包含典型的STI功能结构域.  相似文献   

13.
14.
对SARS冠状病毒主蛋白酶(SARS-CoV Mpro)进行异源重组表达与提纯,并以其为靶点,利用基于荧光共振能量转移(FRET)技术的体外药物筛选模型,对蛋白酶抑制剂聚焦库96种化合物进行了体外抑制活性的评价,并从动力学的角度探讨筛选出的阳性化合物对SARS-CoV Mpro的抑制能力与机制。结果表明:通过筛选获得抑制率>80%、淬灭率<20%的化合物5种,为P-1-08、P-1-19、P-2-24、P-2-28、P-2-54,其半数有效抑制浓度(IC50)分别为:0.69±0.05μmol/L、1.19±0.41μmol/L、0.14±0.01μmol/L、1.36±0.07μmol/L、0.36±0.03μmol/L。其中化合物P-1-08、P-1-19、P-2-24、P-2-54对SARS冠状病毒主蛋白酶的抑制作用为不可逆抑制,化合物P-2-28的抑制作用为可逆抑制。根据Lineweaver-Burk图和Dixon图的研究,发现化合物P-2-28对SARS冠状病毒主蛋白酶呈竞争性抑制,抑制常数Ki为0.81μmol/L。通过对底物浓度,IC50值及Ki值关系的研究,进一步验证了P-2-28的抑制作用为竞争性抑制。该抑制剂的发现为SARS冠状病毒主蛋白酶抑制剂的研究打下基础,为抗SARS病毒药物开发提供了先导化合物。  相似文献   

15.
Proteolysis is an early event of apoptosis which appears to be associated with activation of the endonuclease which is responsible for internucleosomal DNA cleavage. The present study was designed to reveal the possible role of proteolysis in other early events, such as chromatin condensation, nuclear breakdown, and destabilization ofin situDNA double-stranded structure. Apoptosis of human leukemic HL-60 cells and rat thymocytes was induced by different agents, including DNA topoisomerase inhibitors, an RNA antimetabolite, and the glucocorticosteroid, prednisolone. DNA degradation was evaluated by pulsed field and conventional gel electrophoresis and by the presence ofin situDNA strand breaks. DNA stability was estimated by the measure of its sensitivityin situto denaturation. Chromatin condensation, nuclear breakdown, and other morphological changes were monitored by interference contrast and UV microscopy following cell staining with the DNA-specific fluorochrome 4′,6-diamidino-2-phenylindole. Several irreversible or reversible serine protease inhibitors prevented internucleosomal DNA degradation, nuclear breakdown, and destabilization of DNA double-stranded structure. The effective inhibitors, however, did not prevent the onset of chromatin condensation, nor the loss of the fine structural framework, nor the initial step of DNA cleavage generating DNA fragments of ≥50 kb in size. The data indicate that in both cell systems the activity of proteases sensitive to the inhibitors tested is needed for internucleosomal DNA cleavage to occur. The data also suggest that these proteases may be involved in dissolution of the nuclear envelope. Because nuclear matrix proteins and histones stabilize DNAin situ,and the decrease in DNA stability which occurs during apoptosis is precluded by the inhibitors, it is likely that serine proteases may degrade DNA stabilizing proteins. The activity of these proteases, however, appears needed neither for DNA cleavage to ≥50-kb fragments nor for the onset of chromatin condensation which is associated with dissolution of the structural framework of the nucleus.  相似文献   

16.
Anomalous protease activities are associated with many diseases. Great efforts are paid for selecting specific protease modulators for therapeutic approaches. We have selected new modulators of enzyme activity by an homogeneous assay based on a doubly labeled small peptide used as substrate of trypsin. The substrate incorporates the fluorophore 5-[(2-aminoethyl)amino]naphthalene-1-sulfonic acid (EDANS) at one end and an EDANS-quenching moiety (Dabcyl, (4-(4-dimethylaminophenylazo)-benzoic acid)) on the other end. Following cleavage by trypsin, the peptide-EDANS product is released interrupting the fluorescence resonance energy transfer effect and yielding bright fluorescence, which can be detected using excitation wavelengths at 335–345 nm and emission wavelengths at 485–510 nm. The method optimized, tested by detecting the strong inhibiting effect of α1-antitrypsin on trypsin activity, has been developed on 384 multi-well plates in a volume of 10 μL, using an automated platform. From the screening of a chemical library, four compounds that inhibit trypsin activity with IC50s in the micromolar range have been identified. Interestingly, the most active compound (M4) shows a chemical structure recapitulating that of other more potent inhibitors with thiourea and halogenated centers. Molecular docking studies show that M4 is a competitive inhibitor recognizing most residues within or nearby the catalytic pocket.  相似文献   

17.
半胱氨酸蛋白酶拟肽抑制剂设计新进展   总被引:2,自引:0,他引:2  
半胱氨酸蛋白酶包括多种酶,这些酶在广泛的生命过程中发挥作用。人类正常的半胱氨酸蛋白酶表达失调,寄生虫、病毒的半胱氨酸蛋白酶表达与多种病理情况相关。对于这类疾病,抑制半胱氨酸蛋白酶是一个可行的药物治疗策略。当前这类药物设计的目标是3种结构不同的半胱氨酸蛋白酶,即木瓜蛋白酶家族、半胱氨酸-天冬氨基特异性蛋白酶家族(caspases)和小核糖核酸病毒科半胱氨酸蛋白酶抑制剂家族。本文综述了近年来有关半胱氨酸蛋白酶抑制剂的设计思路。  相似文献   

18.
HIV protease inhibitors must penetrate into cells to exert their action. Differences in the intracellular pharmacokinetics of these drugs may explain why some patients fail on therapy or suffer from drug toxicity. Yet, there is no information available on the intracellular levels of HIV protease inhibitors in HIV infected children, which is in part due to the large amount of sample that is normally required to measure the intracellular concentrations of these drugs. Therefore, we developed an ultra-fast and sensitive assay to measure the intracellular concentrations of HIV protease inhibitors in small amounts of peripheral blood mononuclear cells (PBMCs), and determined the intracellular concentrations of lopinavir and ritonavir in HIV infected children. An assay based on matrix-assisted laser desorption/ionization (MALDI) - triple quadrupole mass spectrometry was developed to determine the concentrations of HIV protease inhibitors in 10 µL plasma and 1×106 PBMCs. Precisions and accuracies were within the values set by the FDA for bioanalytical method validation. Lopinavir and ritonavir did not accumulate in PBMCs of HIV infected children. In addition, the intracellular concentrations of lopinavir and ritonavir correlated poorly to the plasma concentrations of these drugs. MALDI-triple quadrupole mass spectrometry is a new tool for ultra-fast and sensitive determination of drug concentrations which can be used, for example, to assess the intracellular pharmacokinetics of HIV protease inhibitors in HIV infected children.  相似文献   

19.
随着对HIV进入细胞过程的了解,各种进入抑制剂相继问世,目前主要有三大类:吸附抑制剂、辅助受体抑制剂和融合抑制剂.对其中具有代表性的进入抑制剂研究进展进行了介绍,一些进入抑制剂已经进入到了临床试验阶段,其中融合抑制剂T20在2003年便被FDA批准可同其他ARTs联合用于治疗HIV感染者,CCR5拮抗剂Maraviro...  相似文献   

20.
Abstract

In the search for inhibitors of HIV integrase, the enzyme involved in the integration of viral DNA into host DNA, we have synthesized and studied a number of analogs of the heterocyclic molecule, chloroquine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号