首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y C Fu  H V Wart  H A Scheraga 《Biopolymers》1976,15(9):1795-1813
The enthalpy change associated with the isothermal pH-induced uncharged coil-to-helix transition ΔHh° in poly(L -ornithine) in 0.1 N KCl has been determnined calorimetrically to be ?1530 ± 210 and ?1270 ± 530 cal/mol at 10° and 25°C, respectively. Titration data provided information about the state of charge of the polymer in the calorimetric experiments, and optical rotatory dispersion data about its conformation. In order to compute ΔHh°, the observed calorimetric heat was corrected for the heat of breaking the sample cell, the heat of dilution of HCl, the heat of neutralization of the OH? ion, and the heat of ionization of the δ-amino group in the random coil. The latter was obtained from similar calorimetric measurements on poly(D ,L -ornithine). Since it was discovered that poly(L -ornithine) undergoes chain cleavage at high pH, the calorimetric measurements were carried out under conditions where no degradation occurred. From the thermally induced uncharged helix–coil transition curve for poly(L -ornithine) at pH 11.68 in 0.1 N KCl in the 0°–40°C region, the transition temperature Ttr and the quantity (?θh/?T)Ttr have been obtained. From these values, together with the measured values of ΔHh°, the changes in the standard free energy ΔGh° and entropy ΔGh°, associated with the uncharged coil-to-helix transition at 10°C have been calculated to be ?33 cal/mol and ?5.3 cal/mol deg, respectively. The value of the Zimm–Bragg helix–coil stability constant σ has been calculated to be 1.4 × 10?2 and the value of s calculated to be 1.06 at 10°C, and between 0.60 and 0.92 at 25°C.  相似文献   

2.
Summary Stubble quail and King quail are both native to Australia although Stubble quail extend into more arid environments than do King quail. In this study, the responses of body temperature (T b), heart rate (f h), respiration rate (f r) and rates of gular flutter (f g) were measured in response to ambient temperatures (T a) ranging from 20 °C to 50 °C. Both species exhibited hyperthermia atT a in excess of 38–39 °C although both species maintainedT b lower thanT a atT a above 42 °C. Respiration rate remained relatively constant until the onset of panting, just prior to the commencement of gular flutter. The onset of panting and gular flutter in both species was relatively sudden and occurred at a meanT a of 38.1 °C for Stubble quail (meanT b of 42.5 °C) and a significantly higherT a of 40.9 °C but similar meanT b of 42.1 °C for King quail. Gular flutter appeared to occur synchronously with respiration and showed some tendency to increase withT b. The percentage of time spent in gular flutter showed a direct increase withT b. Heart rate tended to decrease with increasingT a in King quail while remaining relatively constant in Stubble quail. However, the relationship was not consistent and a great deal of variability existed between individuals. The two species are similar in their responses to heat stress and in general these responses do not reflect their different natural habitats.Symbols f h heart rate - f r respiratory rate - f g rate of gular fluttering  相似文献   

3.
Isothermal microcalorimetry, differential scanning calorimetry (DSC), and chirooptical data obtained for ι-carrageenan in NaCl, LiCl, and NaI aqueous solutions are presented. The experiments have been performed as a function of concentration both for the polymer and for the simple salt as a cosolute. The experimental findings consistently show the occurrence of a salt-induced disorder-to-order transition. From microcalorimetric experiments the exothermic enthalpy of transition ΔHtr is obtained as the difference between the theoretical, purely electrostatic ΔHel enthalpy change and the actual mixing enthalpy ΔHmix, measured when a ι-carrageenan salt-free solution at constant polymer concentration is mixed with a 1:1 electrolyte solution of variable concentration. In the case of added NaCl, the absolute values of enthalpy changes |ΔHtr| are in good agreement with those obtained for the opposite process, at comparable polymer and salt concentrations, from DSC melting curves. The microcalorimetric results show that the negative maximum value of ΔHtr corresponding to the interaction of Li+ counterion with ι-carrageenan polyion results to be significantly lower than the corresponding values obtained for Na+ counterion. At variance with the microcalorimetric data, chirooptical results show that the salt-induced disorder-to-order transition, occurring in the 0.02–0.2M salt concentration range, appears to be complete at a concentration of about 0.08–0.1M of the simple ion, irrespective of the polymer concentration and of the nature of added electrolyte. © 1998 John Wiley & Sons, Inc. Biopoly 45: 105–117, 1998  相似文献   

4.
The helical stability of a variety of DNA samples, ranging in base composition from 0 to 72 mole-% GC, has been studied by heat denaturation at neutral pH in increasing concentrations of LiCl, NaCl, KCl, CsCl, Li2SO4, and K2SO4. The variation of melting temperature with average base composition, dTm/dXGC, was found to decrease drastically in the concentrated salt media, e.g., from 41°C in 0.006M LiCl to 29°C in 3.2M LiCl, and from 39°C in 0.003M Li2SO4 to 18°C in 1.6M Li2SO4. At the same time, the thermal transition is much more cooperative in the concentrated salt solutions than at low ionic strength. Indeed, at limiting salt concentrations, the transition breadth seems to reach a minimum value irrespective of the compositional heterogeneity of the DNA samples. Attempts to correlate the observed decrease of dTm/dXGC with predicted changes in the enthalpy of melting, deduced from a simple theoretical treatment, experimental data on the binding of counterions and water to DNA, and experimental data on thermal denaturation, were unsuccessful. However, the strongly reduced composition dependence of the melting temperature can be understood in terms of a destabilizing effect of the concentrated salt media on GC-base pairs. It is suggested, though not proven, that the destabilization involves the displacement of water molecules from the DNA helix.  相似文献   

5.
S Ikeda 《Biopolymers》1967,5(4):359-374
Poly-S-carboxymethyl-L -cysteine has been prepared by debenzylation of poly-S-carbobenzoxymethyl-L -cysteine with hydrogen bromide in acetic acid. By the infrared spectroscopic method the polymer is found to be in the extended β-conformation with an antiparallel arrangement of polypeptide chains in solid film, if it has been regenerated from dimethyl sulfoxide solution. Aqueous solutions of the polymer have been investigated by measurements of optical rotatory dispersion and viscosity. Various properties sharply change around pH 5 at different ionic strengths. By combining these with infrared studies in D2O solutions, it has been shown that the polymer exists in the random coil conformation at higher ionization but associates into the intermolecular β-conformation at lower ionization. At the lowest pH attainable in solution, the β-form is partly converted into the random coil as the temperature is raised. The rotatory dispersion of the polymer is described by the Moffitt equation. While the random coil form has a large negative a0 value and a zero b0 value, the β-form is characterized by a positive a0 value and a negative b0 value, ?130°.  相似文献   

6.
Helix–coil transition of poly(γ-methyl-L -glutamate), poly(γ-ethyl-L -glutamate), and poly(γ-benzyl-L -glutamate) has been studied in mixed solvents by calorimetry, polarimetry, and viscometry. The experimental data have allowed the evaluation of solvation enthalpy Δhb, equilibrium constant K for hydrogen bond formation between the active solvent component and CO and NH groups, and the cooperativity parameter σ. The conformational transition of polypeptides in solution in a mixed solvent containing enough active solvent to maintain the coiled conformation has been produced by dilution with the helix-supporting solvent for the measurements of enthalpy of transition Δhs. The average value for Δhs is 3550 ± 300 J/mol and is practically independent of the nature of the side chain for the dichloroacetic acid-ethylene dichloride solvent pair at 25°C. A noticeable concentration effect exists in the case of poly(γ-benzyl-L -glutamate). The helical conformation is less stable for poly(γ-ethyl-L -glutamate), and this is explained by a steric effect hindering the access of dichloroacetic acid to side chains. Constant K has been calculated using polarimetric data and also from values of Δhs obtained at different temperatures using the Bixon and Lifson theory on the one hand and that of Sayama and coworkers on the other hand. Values of σ for poly(γ-ethyl-L -glutamate) have been calculated according to both theories mentioned, and the results show that the two sets of values are quite similar. The constant σ depends on the nature of the active solvent, on temperature, and on the binary-solvent composition. These conclusions are confirmed by viscometric results. Values of Δhb calculated from constant K are 5230 J/mol when Bixon and Lifson theory is used and 5569 J/mol when the theory at Sayama and coworkers is used. In both cases the value for Δhb is much lower than that of an intramolecular hydrogen bond. Experimental results suggest that the solvation mechanism would proceed in a manner so that mechanisms described in both theories are involved.  相似文献   

7.
The singlet excited state lifetime of the chlorophyll a (Chi a) in cytochrome b6f (Cyt b6f) complex was reported to be shorter than that of free Chl a in methanol, but the value was different for Cyt b6f complexes from different sources (~200 and ~600 ps are the two measured results). The present study demonstrated that the singiet excited state lifetime is associated with the detergents n-dodecyl-β-D-maltoside (DDM) and n-octyl-β-D-glucopyranoside (β-OG), but has nothing to do with the different sources of Cyt b6f complexes. Compared with the Cyt b6f dissolved in β-OG, the Cyt b6f in DDM had a lower fluorescence yield, a lower photodegradation rate of Chl a, and a shorter lifetime of Chl a excited state. In short, the singlet excited state lifetime, ~200 ps, of the Chl a in Cyt b6f complex in DDM is closer to the true in vivo.  相似文献   

8.
The singlet excited state lifetime of the chlorophyll a (Chl a) in cytochrome b 6 f (Cyt b 6 f) complex was reported to be shorter than that of free Chl a in methanol, but the value was different for Cyt b 6 f complexes from different sources (∼200 and ∼600 ps are the two measured results). The present study demonstrated that the singlet excited state lifetime is associated with the detergents n-dodecyl-β-D-maltoside (DDM) and n-octyl-β-D-glucopyranoside (β-OG), but has nothing to do with the different sources of Cyt b 6 f complexes. Compared with the Cyt b 6 f dissolved in β-OG, the Cyt b 6 f in DDM had a lower fluorescence yield, a lower photodegradation rate of Chl a, and a shorter lifetime of Chl a excited state. In short, the singlet excited state lifetime, ∼200 ps, of the Chl a in Cyt b 6 f complex in DDM is closer to the true in vivo.  相似文献   

9.
A new series of 12 N4-substituted isatin-3-thiosemicarbazones 2a-l has been synthesized, characterized and screened for in vitro cytotoxic, phytotoxic and urease inhibitory effects. All the compounds proved to be active in the brine shrimp bioassay; 2a, 2b, 2d, 2f and 2h-l exhibited a high degree of cytotoxic activity (LD50 = 1.10 × 10? 5 M–3.10 × 10? 5 M). In urease-inhibition assay, compounds 2a, 2b, 2e, 2f, 2h-j and 2l proved to be potent inhibitors displaying relatively much greater inhibition of the enzyme with IC50 values ranging from 20.6 μM to 50.6 μM. Amongst these, 2a and 2f were found to be the most potent ones exhibiting pronounced inhibition with IC50 value 20.6 μM. All the synthetic compounds showed weak to moderate (10–40%) phytotoxicity at the highest tested concentration (500 μg/mL) indicating their usefulness as inhibitors of soil ureases.  相似文献   

10.
Li B  Mao D  Liu Y  Li L  Kuang T 《Photosynthesis research》2005,83(3):297-305
A pure, active cytochrome b 6 f was isolated from the chloroplasts of the marine green alga, Bryopsis corticulans. To investigate and characterize this cytochrome b 6 f complex, sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE), absorption spectra measurement and HPLC were employed. It was shown that this purified complex contained four large subunits with apparent molecular masses of 34.8, 24, 18.7 and 16.7 kD. The ratio of Cyt b 6 to Cytf was 2.01 : 1. The cytochromeb 6 f was shown to catalyze the transfer of 73 electrons from decylplastoquinol to plastocyanin–ferricyanide per Cyt f per second. α-Carotene, one kind of carotenoid that has not been found to present in cytochrome b 6 f complex, was discovered in this preparation by reversed phase HPLC. It was different from β-carotene usually found in cytochrome b 6 f complex. The configuration of the major α-carotene component was assigned to be 9-cis by resonance Raman spectroscopy. Different from the previous reports, the configuration of this α-carotene in dissociated state was determined to be all-trans. Besides this carotene, chlorophyll a was also found in this complex. It was shown that the molecular ratios of chlorophylla, cis and all-trans-α-carotene to Cyt f in this complex were 1.2, 0.7 and 0.2, respectively.  相似文献   

11.
The cytochrome b 6 f complex occupies a central position in photosynthetic electron transport and proton translocation by linking PS II to PS I in linear electron flow from water to NADP+, and around PS I for cyclic electron flow. Cytochrome b 6 f complexes are uniquely located in three membrane domains: the appressed granal membranes, the non-appressed stroma thylakoids and end grana membranes, and also the non-appressed grana margins, in contrast to the marked lateral heterogeneity of the localization of all other thylakoid multiprotein complexes. In addition to its vital role in vectorial electron transfer and proton translocation across the membrane, cytochrome b 6 f complex is also involved in the regulation of balanced light excitation energy distribution between the photosystems, since its redox state governs the activation of LHC II kinase (the kinase that phosphorylates the mobile peripheral fraction of the chlorophyll a/b-proteins of LHC II of PS II). Hence, cytochrome b 6 f complex is the molecular link in the interactive co-regulation of light-harvesting and electron transfer.The importance of a highly dynamic, yet flexible organization of the thylakoid membranes of plants and green algae has been highlighted by the exciting discovery that a lateral reorganization of some cytochrome b 6 f complexes occurs in the state transition mechanism both in vivo and in vitro (Vallon et al. 1991). The lateral redistribution of phosphorylated LHC II from stacked granal membrane regions is accompanied by a concomitant movement of some cytochrome b 6 f complexes from the granal membranes out to the PS I-containing stroma thylakoids. Thus, the dynamic movement of cytochrome b 6 f complex as a multiprotein complex is a molecular mechanism for short-term adaptation to changing light conditions. With the concept of different membrane domains for linear and cyclic electron flow gaining credence, it is thought that linear electron flow occurs in the granal compartments and cyclic electron flow is localised in the stroma thylakoids at non-limiting irradiances. It is postulated that dynamic lateral reversible redistribution of some cytochrome b 6 f complexes are part of the molecular mechanism involved in the regulation of linear electron transfer (ATP and NADPH) and cyclic electron flow (ATP only). Finally, the molecular significance of the marked regulation of cytochrome b 6 f complexes for long-term regulation and optimization of photosynthetic function under varying environmental conditions, particularly light acclimation, is discussed.Abbreviations Chl chlorophyll - cyt cytochrome - PS Photosystem  相似文献   

12.
During daffodil flower development, chloroplasts differentiate into photosynthetically inactive chromoplasts having lost functional photosynthetic reaction centers. Chromoplasts exhibit a respiratory activity reducing oxygen to water and generating ATP. Immunoblots revealed the presence of the plastid terminal oxidase (PTOX), the NAD(P)H dehydrogenase (NDH) complex, the cytochrome b6f complex, ATP synthase and several isoforms of ferredoxin‐NADP+ oxidoreductase (FNR), and ferredoxin (Fd). Fluorescence spectroscopy allowed the detection of chlorophyll a in the cytochrome b6f complex. Here we characterize the electron transport pathway of chromorespiration by using specific inhibitors for the NDH complex, the cytochrome b6f complex, FNR and redox‐inactive Fd in which the iron was replaced by gallium. Our data suggest an electron flow via two separate pathways, both reducing plastoquinone (PQ) and using PTOX as oxidase. The first oxidizes NADPH via FNR, Fd and cytochrome bh of the cytochrome b6f complex, and does not result in the pumping of protons across the membrane. In the second, electron transport takes place via the NDH complex using both NADH and NADPH as electron donor. FNR and Fd are not involved in this pathway. The NDH complex is responsible for the generation of the proton gradient. We propose a model for chromorespiration that may also be relevant for the understanding of chlororespiration and for the characterization of the electron input from Fd to the cytochrome b6f complex during cyclic electron transport in chloroplasts.  相似文献   

13.
Summary The investigation on hydrodynamic parameters of molybdate-stabilized glucocorticoid-receptor complexes from HeLa cell cytosol permitted resolution of four distinct forms. The first one could be detected in concentrated cytosols at low salt concentrations, and had the following properties: sedimentation coefficient = 9 S; R s = 9.3 nm; M r = 357,800; f/f o = 1.83; axial ratio (prolate ellipsoid) = 16. When these cytosol extracts were diluted, a second form could be detected with sedimentation coefficient = 8.3 S; R s = 9.05 nm; M r = 320,700;f/f o = 1.84; axial ratio = 16. Under high salt conditions, glucocorticoid-receptor complexes in concentrated cytosol had the following properties: sedimentation coefficient = 6.4 S; R s, = 6.7 nm; M r = 183,100;f/f o = 1.64; axial ratio = 12. When either these cytosol extracts were diluted, or glucocorticoid-receptor complexes were subjected to repeated analysis, a fourth form was detected with sedimentation coefficient = 3.76 S; R s = 5.67; M r = 91,000; f/f o = 1.75; axial ratio = 14. Besides salt concentration and dilution, the time elapsed between sample dilution and analysis appeared to affect the hydrodynamic properties of glucocorticoid-receptor complexes. On the basis of our findings, it has been concluded that the most likely structure of molybdate-stabilized glucocorticoid-receptor complexes of HeLa cell cytosol can be represented by association of monomers in homodimers, and homotetramers. A homotrimer form could not be deduced from our findings, and the 320,700 glucocorticoid-receptor complex we observed has been suggested to represent an unresolved mixture of trimers and tetramers.  相似文献   

14.
There are some analytical solutions of the Penna model of biological aging; here, we discuss the approach by Coe et al. (Phys. Rev. Lett. 89, 288103, 2002), based on the concept of self-consistent solution of a master equation representing the Penna model. The equation describes transition of the population distribution at time t to next time step (t + 1). For the steady state, the population n(a, l, t) at age a and for given genome length l becomes time-independent. In this paper we discuss the stability of the analytical solution at various ranges of the model parameters—the birth rate b or mutation rate m. The map for the transition from n(a, l, t) to the next time step population distribution n(a + 1, l, t + 1) is constructed. Then the fix point (the steady state solution) brings recovery of Coe et al. results. From the analysis of the stability matrix, the Lyapunov coefficients, indicative of the stability of the solutions, are extracted. The results lead to phase diagram of the stable solutions in the space of model parameters (b, m, h), where h is the hunt rate. With increasing birth rate b, we observe critical b 0 below which population is extinct, followed by non-zero stable single solution. Further increase in b leads to typical series of bifurcations with the cycle doubling until the chaos is reached at some b c. Limiting cases such as those leading to the logistic model are also discussed.  相似文献   

15.
Microcalorimetric heat capacity measurements on dilute and concentrated solutions and films of poly[d(A-T)·d(A-T)] in 2 M sodium chloride have been carried out. Values for enthalpy, entropy, and temperature of the helix–coil transition have been found to depend on the polymer concentration, and to have maxima near 20% (w/w) of polymer. The results are discussed in terms of polynucleotide hydration as one of the structure stabilizing factors.  相似文献   

16.
Hiroshi Maeda 《Biopolymers》1972,11(1):95-104
Counterion activity of poly-S-carboxyethyl-L-cysteine in salt-free solutions neutralized to various degrees with sodium hydroxide was determined either directly from the e.m.f measurements of concentration cells formed across a Na–glass electrode, or from the potentiometric titrations at different sodium chloride concentrations assuming the additivity rule. From e.m.f. measurements, the activity coefficient of counterions was confirmed to display the β-structure random coil transition of the polymer. For random coil state, both methods gave identical results. Observed values of the activity coefficient was generally smaller than those for other randomly coiled polypeptides. The activity coefficient was found to decrease with the increase of the polymer concentration. The activity coefficient of counterions for β-structure was extremely small as compared with that for random coil at the same degree of neutralization. The activity coefficient obtained from titrations was almost independent of degree of neutralization and increased with the increase of the polymer concentration.  相似文献   

17.
E Patton  H E Auer 《Biopolymers》1975,14(4):849-869
Poly(L -tyrosine) [(L -Tyr)n] has been characterized in aqueous solution using circular dichroism (CD) and infrared (ir) spectroscopy, and ultracentrifugal analysis. Most of the experiments were carried out at 0.01% polymer or less to avoid the complications caused by precipitation previously encountered by others. This permitted us to study solutions of (L -Tyr)n at lower pH values than had been attained previously. Our results show that a transition to an antiparallel-β conformation occurs at pH 11.32 upon titration from higher pH. The β structure is intramolecular when first formed and aggregates with time or upon titration below pH 11. Ultracentrifugal analysis of the intramolecular β conformation shows that it is quite compact, with a frictional coefficient ratio, f/fmin, of 1.09. In addition to the β structure, a nonordered form of the polymer has been obtained below pH 11 by rapid titration of the ionized polyelectrolyte. This form is nonaggregated and was found to have an f/fmin of 1.01, and is therefore almost spherical. The aggregated β form was found to be thermodynamically more stable than the nonordered form at pH 10.7.  相似文献   

18.
S Makino  H Noguchi 《Biopolymers》1971,10(7):1253-1260
The measurements were made for the volume and the sound velocity changes (ΔV and ΔU) on titrating the sodium salt of poly (S-carboxymethyl L -cysteine) with dilute HCl. For the reaction, ? COO? + H+ → ? COOH, ΔV per mole of H+ bound was + 12. 7 ml and +11. 4 ml in salt-free and 0. 2 M NaCl solutions, respectively. Corresponding ΔU was about ?13 cm/sec in salt-free polymer solution where 11.5 mM carboxylate ion reacts with equimolar hydrogen ion. ΔV associated with the coil-to-β transition was found to be +2. 35 ml in H2O and +1. 90 ml in 0. 2 M NaCl per mole of amino acid residue, respectively. These values are larger than those obtained for the coil-to-helix transition of poly (L -glutamic acid). ΔU for the transition was about ?30 cm/sec in salt-free solution of polymer concentration 0.0115 mole/liter. Possible sources of ΔV and ΔU for reaction; coil → β, are (1) the formation of void volume and (2) the changes in the extent of solvation in amide linkage and in side chain.  相似文献   

19.
H Maeda  S Ikeda 《Biopolymers》1971,10(9):1635-1648
Poly-S-carboxyethyl-L -cysteine, a higher side-chain homolog of poly-S-carboxymethyl-L -cysteine, has been prepared from poly-S-carbobenzoxyethyl-L -cysteine with hydrogen bromide in chloroform or acetic acid. The polymer is found to be in the β-conformation of an antiparallel arrangement of polypeptide chains in solid films, both in acid and salt forms, when examined by infrared spectra. Aqueous solutions of t he polymer have been investigated by measurements of rotatory dispersion and circular dichroism as well as by infrared spectra in D2O. These properties show sharp changes around pH 5.5, as the pH of solution is varied. At higher ionization the polymer is randomly coiled, but at lower ionization it is in the β-conformation. Dependence of the rotatory properties upon polymer concentration as well as on ionic strength has been observed even at the lowest degree of ionization attained, and this has been attributed to the formation of intermolecular β-conformation in solutions. The β-structure is characterized by a negative circular dichroic band at 223 mμ and a positive dichroic band at a wavelength lower than 200 mμ, and furt her by a negative bo value, ?140°. The pH-induced coil-β transition of the polymer is compared with that of poly-S-carboxymethl-L -cysteine.  相似文献   

20.
Thin films obtained from a layer-by-layer deposition of a weak polycarboxylic acid and a positively charged globular protein were studied by in situ ATR-FTIR. The system was chicken egg lysozyme (Lys), bovine pancrease ribonuclease A (RNase), or bovine gamma-globulin (IgG) self-assembled with polycarboxylic acids. When the pH value was lowered below a critical point, the growth of films and their tolerance to decomposition by added sodium chloride improved dramatically. Stabilization of protein/polyacid films in salt solutions at lower pH values occurred due to the onset of nonelectrostatic interactions to intermolecular binding within protein/polyacid multilayers and was controlled by polyacid ionization within the film rather than the pH of the external solution. A fractional ionization of polyacid in the pH-stabilization region was lower with protein-containing films than for polyacid/linear polycation films, reflecting hindrance of the inter-association of protonated carboxylic groups by protein globules. Practical ramifications of the pH-stabilization effect might extend to areas of biotechnology and biomaterials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号