首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fetal hypoglycaemia consequent on food withdrawal for 48 h in sheep in late pregnancy is accompanied by an increase in fetal PGE2 plasma concentrations and myometrial contractility. To assess the contribution of fetal hypoglycaemia and related cellular glucopenia in the increased production of fetal PGE2 we studied the effect of 48 h insulin infusion to the fetus. Fetal whole blood glucose was lowered from 19 +/- 2 to 9 +/- 1 mg.dl-1. This experimental regimen maintains glucose availability to those fetal cells in which insulin increases glucose uptake. Fetal umbilical venous and femoral arterial PGE2 concentrations and umbilical veno-arterial PGE2 difference were unchanged, but maternal uterine veno-arterial difference for PGFM increased during the insulin induced fetal hypoglycaemia. Myometrial activity was also unchanged. We conclude that the increased fetal PGE concentration previously reported during food withdrawal is due to a deficiency of glucose to specific insulin dependent cells within vascular beds served by the fetal cardiovascular system. In addition, the findings suggest a need for a supply of glucose of fetal origin for cells that are responsible for increased PGFM concentrations in the maternal uteroplacental circulation.  相似文献   

2.
In adults, the adrenal glands are essential for the metabolic response to stress, but little is known about their role in fetal metabolism. This study examined the effects of adrenalectomizing fetal sheep on glucose and oxygen metabolism in utero in fed conditions and after maternal fasting for 48 h near term. Fetal adrenalectomy (AX) had little effect on the rates of glucose and oxygen metabolism by the fetus or uteroplacental tissues in fed conditions. Endogenous glucose production was negligible in both AX and intact, sham-operated fetuses in fed conditions. Maternal fasting reduced fetal glucose levels and umbilical glucose uptake in both groups of fetuses to a similar extent but activated glucose production only in the intact fetuses. The lack of fasting-induced glucogenesis in AX fetuses was accompanied by falls in fetal glucose utilization and oxygen consumption not seen in intact controls. The circulating concentrations of cortisol and total catecholamines, and the hepatic glycogen content and activities of key gluconeogenic enzymes, were also less in AX than intact fetuses in fasted animals. Insulin concentrations were also lower in AX than intact fetuses in both nutritional states. Maternal glucose utilization and its distribution between the fetal, uteroplacental, and nonuterine maternal tissues were unaffected by fetal AX in both nutritional states. Ovine fetal adrenal glands, therefore, have little effect on basal rates of fetal glucose and oxygen metabolism but are essential for activating fetal glucogenesis in response to maternal fasting. They may also be involved in regulating insulin sensitivity in utero.  相似文献   

3.
Our aim was to compare the effects of gestational age and the timing of the onset of labour on factors influencing fetal fluid and electrolyte balance and urine production in fetal sheep. We measured the volume and composition of fetal urine and amniotic and allantoic fluids, as well as fetal and maternal plasma composition and micturition episodes in sheep during late gestation until the onset of labour. We found that daily fetal urine production and urethral urine flow per micturition episode increased significantly in relation to the onset of labour but not to gestational age (P < 0.05). In the 2 days preceding the onset of labour fetal urine and amniotic fluid K+ concentrations and urine osmolality increased significantly and the Na+/K+ ratio in allantoic fluid decreased significantly (P < 0.05). There was also a significant fall in fetal arterial SaO2 (P < 0.05) but no significant changes occurred in fetal plasma electrolyte composition, osmolality or AVP concentrations. Fetal plasma cortisol and prolactin concentrations and amniotic and allantoic fluid prolactin concentrations increased significantly and progressively in association with both advancing gestation and the onset of labour whereas maternal plasma prolactin concentrations increased significantly only in the 2 days before the onset of labour (P < 0.05). We conclude that some developmental aspects of fetal fluid and electrolyte balance, including renal function, are more closely related to the timing of parturition than to gestational age per se.  相似文献   

4.
The resistance of the upper airway is strongly influenced by the action of opposing sets of laryngeal muscles. Expiratory airflow may be retarded by active adduction of the arytenoid cartilages or by a reduction in the activity of abductor muscles. In developing sheep the adductor muscles appear to represent the principal means by which lung recoil is opposed. This mechanism, which is most pronounced during non-rapid-eye-movement sleep, is regulated by afferent traffic from the lungs. In fetal sheep the laryngeal muscles are also influenced by breathing movements and sleep states. The adductor muscles are normally tonically active during non-rapid-eye-movement sleep when rhythmical breathing movements are absent. It is possible that this activity is at least partially responsible for elevated tracheal pressures and depressed flow of tracheal fluid during fetal apnea. This hypothesis has been tested by observing the effects of fetal paralysis and recurrent laryngeal nerve section. These experiments suggest that in the fetus near term the larynx makes a major contribution to upper airway resistance and hence to the maintenance of pulmonary expansion which has been shown to influence lung development.  相似文献   

5.
The insulin-like growth factors (IGF-I and -II) are potential mediators of the effects of maternal undernutrition on fetal growth and muscle development. The effects of a 40% reduction in maternal feed intake on serum levels of the IGFs, the thyroid hormones and cortisol, were investigated for the last two trimesters (day 25 to birth). This level of undernutrition is known to cause a 35% reduction in fetal and placental weights, and a 20-25% reduction in muscle fibre number. Maternal IGF-I level was greater than non-pregnant levels on day 25 gestation, in both control and restricted dams, and declined with gestational age. The increase in IGF-I level in the 40% restricted group was approximately two-thirds that of control animals. Fetal serum IGF-I was also reduced in undernourished fetuses throughout gestation. Maternal IGF-II did not change with gestational age and was unaffected by undernutrition. Fetal IGF-II reached a peak at day 55 of gestation, this peak was greatly diminished by maternal feed restriction. Both IGF-I and IGF-II tended to be related to fetal, placental and muscle weights at day 65 of gestation. Thyroid hormone concentration declined in maternal serum and increased in fetal serum with increasing gestational age. Levels were not significantly affected by undernutrition. Both triiodothyronine (T3) and thyroxine (T4) were correlated with IGF-I in maternal serum (P < 0.05), but not in fetal serum. Cortisol levels were elevated by undernutrition in both maternal and fetal serum, and increased with gestational age. Cortisol was inversely correlated with serum IGF-I in both maternal and fetal serum. Maternal serum IGF-I may mediate the effects of undernutrition on fetal growth by affecting the growth and establishment of the feto-placental unit in mid-gestation. Fetal IGF-I may mediate the effects on muscle growth, whereas IGF-II seems to be related to hepatic glycogen deposition. Cortisol may play a role via its effect on the IGFs, but the thyroid hormones are unlikely to be important until the late gestation/early postnatal period.  相似文献   

6.
Maternal and fetal plasma concentrations of free fatty acids, triacylglycerols and phospholipids and the profile of their fatty acids were measured in three catheterized and unanaesthetized sheep. Fetal concentrations of all three lipid fractions were low and did not correlate with maternal concentrations. There were no measurable umbilical venous-arterial differences. Linoleic acid concentrations were low in both mother and fetus. The fatty acid composition of fetal adipose tissue, liver, lung and cerebellum of five animals was analysed. Again linoleic acid levels were very low, but phospholipids contained 2-8% arachidonic acid. [14C] linoleic acid and [3H] palmitic acid were infused intravenously into three ewes. Only trace amounts of labelled fatty acids were found in fetal plasma and these were confined to the free fatty acids. 14C-label was incorporated into fetal tissue lipids, but most of this probably was due to fetal lipid synthesis from [14C] acetate or other water-soluble products of maternal [14C] linoleic acid catabolism. It is concluded that only trace amounts of fatty acids cross the sheep placenta. They are derived mainly from the maternal plasma free fatty acids and might just be sufficient to be the source of the small amounts of essential fatty acids found in the lamb fetus, but are insignificant in terms of energy supply or lipid storage.  相似文献   

7.
In this study we investigated the response of the rat fetal hypothalamo-pituitary-adrenal (HPA) axis to an acute maternal stress in late gestation. On day 20 of gestation, pregnant rats were exposed to forced immobilization stress for up to 60 min. In mothers, a significant increase in plasma ACTH and corticosterone(B) was observed at 20 and 60 min. The ACTH content in the maternal pituitary decreased significantly at 60 min. Fetal blood pH was decreased by the maternal stress, showing a hypoxic condition of the fetus. Fetal plasma ACTH increased transiently at 20 min. Fetal plasma B increased at 20 and 60 min. ACTH in the fetal pituitary and the placenta did not show marked changes due to the maternal stress. Pregnant rats on day 18-21 of gestation were subjected to a 20 min maternal stress. In the basal condition without stress, fetal plasma ACTH and B showed parallel ontogenic patterns, having a peak value on day 19 of gestation. Fetal plasma ACTH as well as plasma B were increased significantly by the maternal stress at all points evaluated. These results indicate that fetal hypoxia is important in stress transmission to the fetal HPA axis in this type of maternal stress, and the fetal HPA axis responds to the stress as early as day 18 of gestation.  相似文献   

8.
The changes in the activity and properties of the four gluconeogenic enzymes have been followed during development of the guinea pig. Pyruvate carboxylase was almost exclusively mitochondrial and kinetically identical to the adult liver enzyme and did not appear in significant activity until after day 50 when it rose to values several times higher than those in the adult liver, then fell after birth. Little activity was detected in the fetal kidney. Phosphoenolpyruvate carboxylase appeared in the fetal liver from day 30 on, both in the mitochondrial and cytoplasmic fractions. The cytoplasmic enzyme was kinetically and chromatographically identical to the mitochondrial enzyme of the fetal and maternal liver. After birth the activity of the cytoplasmic enzyme increased and that of the particulate enzyme fell. Fetal kidney activity appeared several days before birth. Fructose 1,6-diphosphatase and glucose 6-phosphatase appeared in the fetal liver and kidney after day 40; the former showed no postnatal change while the latter rose 10-fold after birth. Fetal liver fructose 1,6-diphosphatase was more sensitive to AMP and fructose 1,6-diphosphate inhibition but was chromatographically indistinguishable from the maternal liver enzyme. Despite the presence of the gluconeogenic enzymes, gluconeogenesis and glyconeogenesis were not detected in the fetal liver until 7–9 days before birth. While the synthesis of glyceride-glycerol from 3-carbon compounds was detected from 35–40 days onwards and some of the gluconeogenic enzymes participate in that pathway, gluconeogenesis was not detected in the fetal kidney.  相似文献   

9.
Transplacental movement of calcium from mother to fetus is essential for normal fetal development. In most species, fetal plasma calcium levels are higher than maternal levels at term. The role of cholecalciferol metabolites, with specific emphasis on 1,25-dihydroxycholecalciferol (1,25(OH)2D), in placental calcium transport and maintenance of the fetomaternal gradient has been extensively investigated. In rats, there is not an absolute demand for 1,25(OH)2D for maintenance of fetal calcium homeostasis in utero, even though it is essential for maintenance of maternal plasma calcium levels. However, in sheep, the absence of 1,25(OH)2D results in disruption of both maternal and fetal calcium homeostasis. It is known that rat and human placentas contain specific cytosolic binding proteins for 1,25(OH)2D that are similar to the well-characterized intestinal receptor. Two calcium-binding proteins (CaBP) have been detected in rat and human placentas: a protein immunologically identical to the vitamin D-dependent CaBP and a calcium-dependent ATPase. The levels of CaBP in rat placenta have been shown to increase in response to exogenously administered 1,25(OH)2D but cannot be obliterated with maternal vitamin D deficiency. No relationship has been shown between 1,25(OH)2D and placental Ca-ATPase in any species. Thus, the mechanism of action of 1,25(OH)2D in maintenance of the transplacental calcium gradient in sheep is unknown. In the pregnant rat (and perhaps human), 1,25(OH)2D is a critical factor in the maintenance of sufficient maternal calcium for transport to the fetus and may play a role in normal skeletal development of the neonate.  相似文献   

10.
The foetal sheep brain develops organised sleep states from 115-120 d gestational age (dGA, term 150 dGA) alternating between REM and NREM sleep. We aimed to investigate whether maturation of REM or NREM sleep generating structures leads to the development of distinct sleep states. The electrocorticogram (ECoG) was recorded from five unanaesthetised chronically instrumented foetal sheep in utero and was analysed every 5th day between 115-130 dGA by two different non-linear methods. We calculated a non-linear prediction error which quantifies the causality of the ECoG and applied bispectral analysis which quantifies non-linear interrelations of single frequency components within the ECoG signal. The prediction error during REM sleep was significantly higher than during NREM sleep at each investigated age (P<0.0001) coincidental with poor organisation of the rhythmic pattern in the ECoG during REM sleep. At 115 dGA, organised sleep states defined behaviourally were not developed yet. The prediction error, however, showed already different states of electrocortical activity that were not detectable using power spectral analysis. The prediction error of the premature NREM sleep ECoG decreased significantly during emergence of organised sleep states between 115 and 120 dGA and continued to decrease after the emergence of distinct sleep states (P<0.05). The prediction error of the premature REM sleep ECoG did not change until 120 dGA and began to increase at 125 dGA (P<0.05). Using bispectral analysis, we showed couplings between delta waves (1.5-4 Hz) and frequencies in the range of spindle waves (4-8 and 8-12 Hz) during NREM sleep that became closer during development. The results show that maturation of ECoG synchronisation mediating structures is important for the development of organised sleep states. The further divergence of the prediction error of NREM and REM sleep after development of organised sleep states reveals continuous functional development. Thus, complementary application of non-linear ECoG analysis to power spectral analysis provide new insights in the collective behaviour of the neuronal network during the emergence of sleep states.  相似文献   

11.
High environmental temperature is known to impair fetal growth and development. We now report long lasting changes in fetal breathing activity following the exposure of pregnant ewes to an ambient temperature of 43 degrees C for 8 h. In 16 trials in 10 ewes (119-138 days gestation) heat exposure increased maternal and fetal core temperatures 1.5-2.0 degrees C, and the hyperventilation by the ewe produced a fall in fetal PaCO2 from 53.5 +/- 1.3 to 34.8 +/- 5.3 mmHg (P less than 0.05). Fetal breathing movements decreased in incidence during the hyperthermia but remained episodic (present during low-voltage electrocortical activity) with occasional brief episodes of breathing at high rates (greater than 4 breaths/s). However, 1-2 h after the end of heating, when maternal and fetal core temperature and PaCO2 had returned to normal, fetal breathing movements became continuous, and were augmented 30-100% in amplitude. Fetal breathing movements occurred during both low- and high-voltage electrocortical activity. The results show that a heat load similar to that experienced by sheep in sub-tropical regions in the summer months cause prolonged changes in the central regulation of fetal breathing.  相似文献   

12.
The influence of maternal energy intake on the development of gluconeogenesis was studied in the liver of the bovine fetus from Days 88 to 270 of gestation. Fetal liver activities (units per gram of tissue) of cytoplasmic GTP:oxalacetate carboxy-lyase (transphosphorylating) (PEPCK) and mitochondrial l-malate:NAD+ oxidoreductase (MDH) increased linearly with increasing gestational age. Fetal cytoplasmic MDH activities reached maternal levels by 120 days of gestation, and fetal mitochondrial pyruvate carboxylase approached maternal levels by 200 days of gestation. Fetal activities of mitochondrial and cytoplasmic propionyl-CoA:carbondioxide ligase (ADP-forming) (PCC) did not change with gestational age and were about 45 and 7%, respectively, of maternal levels. Fetal activities of mitochondrial and cytoplasmic l-aspartate: 2-oxoglutarate aminotransferase were both about 24% of the maternal activities throughout gestation. Maternal and fetal liver activities of d-fructose-1,6-diphosphate 1-phosphohydrolase (FDP) were similar and did not change with gestational age. Glucose synthesis from lactate by fetal liver slices in vitro was slightly lower and, from alanine and aspartate, was slightly higher than glucose synthesis by maternal liver slices. Restriction of maternal dietary energy intake did not significantly alter gluconeogenic-related enzyme activity in vitro in maternal or fetal liver or in the metabolism of aspartate, alanine, or lactate to glucose or CO2 by liver slices in vitro. A capacity for gluconeogenesis has been measured in the bovine fetus as early as 88 days of gestation.  相似文献   

13.
A method is described for the isolation of mg quantities of two forms of rat alpha-fetoprotein (AFP) from amniotic fluid by preparative disc-gel column electrophoresis using a continuous elution system. AFP isolated by this method is suitable for use as an antigen, can be labelled for use in a radioimmunoassay and serves as a reference standard. The characteristics of a new antiserum to AFP are also described. The protocol for a radioimmunoassay is outlined which permits the measurement of AFP in several fetal-maternal physiological compartments throughout gestation. Levels of AFP in fetal liver and fetal plasma suggest that secretion of AFP from liver occurs soon after synthesis with minimal hepatic storage. The pattern for AFP in maternal serum parallels that observed in amniotic fluid and fluctuations in maternal serum levels of AFP appear to be buffered by AFP accumulation in amniotic fluid. Fetal clearance of AFP under normal conditions may be relatively constant from Days 11-20 of gestation since an amniotic fluid: maternal serum AFP ratio of 30:1 is maintained during this period.  相似文献   

14.
The factors that affect placental gas exchange are reviewed, with particular reference to recent measurements of the effect of changes in one or more of these factors on O2 delivery to the fetus and on fetal O2 uptake. Fetal or maternal placental blood flows and blood O2 capacities can be altered by 50% without any major change occurring in fetal O2 uptake: umbilical venous O2 content and fetal O2 delivery fall, but the O2 consumption of the fetus is maintained by increasing the fractional extraction of O2 from the blood. There is evidence that the fetus can also cope with a reduction in blood O2 affinity resulting from replacement of fetal with maternal blood. The critical level of O2 delivery is about 0.6 mmol.min-1.kg-1 in the fetal sheep. When O2 delivery is reduced below this level, by decreasing maternal placental blood flow, raising or lowering fetal haematocrit, decreasing maternal O2 capacity, or decreasing fetal O2 affinity, fetal O2 uptake tends to fall. The resultant tissue hypoxia and inability to maintain oxidative metabolism is reflected in a lowering of arterial blood pH and base excess. Whilst the results of short-term experiments suggest that there exists a large reserve for placental O2 transfer and fetal O2 supply, there is evidence that fetal O2 uptake is more tightly linked to O2 delivery when the latter is reduced for a period of days or weeks. In the long term, restriction of the supply of O2 and nutrients leads to a reduced rate of fetal growth and a reprogramming of tissue development.  相似文献   

15.
Maternal dietary protein restriction produced by feeding a diet containing 4% casein throughout gestation adversely affects body size and retards development of various organs in the progeny. For the most part, alterations are present in structural or functional entities which evolve during the last trimester of gestation. Fetal thyroid follicle formation and iodine concentrating capacity, which increase rapidly between the 17th gestational day and birth in pups of dams fed the control (24% casein) ration, are retarded in age-matched pups of protein-deficient females. The first immunoreactive thyrotrophs appear in the fetal pituitary on day 17 in both control and prenatally protein-deprived (PPD) young. The total number of thyrotrophs per pituitary was unaffected by maternal protein deficiency, except on day 21 when there were significantly more thyrotrophs per pituitary in fetal control rats. Although pituitary volume was significantly reduced in 18-, 19- and 21-day old fetal PPD rats, as compared with controls, pituitary volume:body weight ratios differed between young in the two dietary groups only on day 21, when the ratio was significantly higher in PPD as compared to control young. Maternal protein deprivation does not affect the morphological maturation of the thyrotrophs of the anterior pituitary of the fetal rat.  相似文献   

16.
In pregnant ewes, plasma protein levels over the gestation age range of 58-141 days fell progressively (r = -0.332, P less than 0.05, n = 36) but colloid osmotic pressure (COP, mmHg) did not change significantly. In fetal sheep carried by these ewes, plasma protein levels increased with age (r = 0.85, P less than 0.00001, n = 32). COP also rose (r = 0.8, P less than 0.00001, n = 23). Since maternal COP did not change and fetal COP increased, the net transplacental COP gradient between mother and fetus decreased with increasing age (r = -0.589, P less than 0.004, n = 22). Fetal plasma protein levels can be used to calculate fetal COP while maternal plasma protein levels cannot be used to calculate maternal COP.  相似文献   

17.
18.
We constructed and used a mathematical model of maternal-fetal heat exchange in the sheep to explore the effects of changes in certain parameters on steady-state fetal temperatures and to determine whether the fetus in the model has any potential to control its own temperature. The model took into account both fetal and placental heat production and exchange of heat in the placenta, across the fetal skin, via amniotic fluid, and through the uterine wall. The maternal ewe was assumed to be a constant temperature heat sink. Changes in placental or fetal heat production were calculated to change the ratio of heat exiting across the placenta or fetal skin significantly but to have little effect on fetal core temperature, e.g., a rise of only 0.8 degrees C was predicted after a twofold increase in fetal heat production. Fetal placental blood flow was calculated to affect fetal temperature the most of any flow, a reduction to zero causing fetal temperature to rise 5.0 degrees C. Changes in heat conductances between fetal skin and amniotic fluid, or between amniotic fluid and uterine wall, had minimal effect on fetal temperature. From the model calculations here and because heat exchange within the sheep placenta has previously been calculated to be extremely efficient, we conclude that the fetal sheep has little ability to control its temperature by changes in heat dissipated through extraplacental pathways. Thus the model predicts an effective heat clamp that closely links fetal to maternal temperature.  相似文献   

19.
We investigated how the complexity of fetal heart rate fluctuations (fHRF) is related to the sleep states in sheep and human fetuses. The complexity as a function of time scale for fetal heart rate data for 7 sheep and 27 human fetuses was estimated in rapid eye movement (REM) and non-REM sleep by means of permutation entropy and the associated Kullback-Leibler entropy. We found that in humans, fHRF complexity is higher in non-REM than REM sleep, whereas in sheep this relationship is reversed. To show this relation, choice of the appropriate time scale is crucial. In sheep fetuses, we found differences in the complexity of fHRF between REM and non-REM sleep only for larger time scales (above 2.5 s), whereas in human fetuses the complexity was clearly different between REM and non-REM sleep over the whole range of time scales. This may be due to inherent time scales of complexity, which reflect species-specific functions of the autonomic nervous system. Such differences have to be considered when animal data are translated to the human situation.  相似文献   

20.
We have investigated the effects of maternal undernutrition during late gestation on maternal and fetal plasma concentrations of leptin and on leptin gene expression in fetal perirenal adipose tissue. Pregnant ewes were randomly assigned at 115 days of gestation (term = 147 +/- 3 days [mean +/- SEM]) to either a control group (n = 13) or an undernourished group (n = 16) that received approximately 50% of the control diet until 144-147 days of gestation. Maternal plasma glucose, but not leptin, concentrations were lower in the undernourished ewes. A significant correlation was found, however, between mean maternal plasma leptin (y) and glucose (x) concentrations (y = 2.9x - 2.4; r = 0.51, P < 0.02) when the control and undernourished groups were combined. Fetal plasma glucose and insulin, but not fetal leptin, concentrations were lower in the undernourished ewes, and no correlation was found between mean fetal leptin concentrations and either mean fetal glucose or insulin concentrations. A positive relationship, however, was found between mean fetal (y) and maternal (x) plasma leptin concentrations (y = 0.18x + 0.45; r = 0.66, P < 0.003). No significant difference was found in the relative abundance of leptin mRNA in fetal perirenal fat between the undernourished (0.60 +/- 0.09, n = 10) and control (0.70 +/- 0.08, n = 10) groups. Fetal plasma concentrations of leptin (y) and leptin mRNA levels (x) in perirenal adipose tissue were significantly correlated (y = 1.5x +/- 0.3; r = 0.69, P < 0.05). In summary, the capacity of leptin to act as a signal of moderate maternal undernutrition may be limited before birth in the sheep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号