首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We studied the effect of ACTH on 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase enzyme. Reductase activity and reductase mass were enhanced by 22- and 6.2-fold respectively in one series of experiments, whereas in another the levels of reductase activity, reductase mass, and reductase mRNA were increased 6.6-, 3.6- and 2.2-fold respectively, following daily administration of exogenous ACTH for 3 days. Daily injection of 4-aminopyrazolopyrimidine (4-APP) to rats for 3 days increased circulating ACTH level 5.4-fold, whereas adrenal HMG-CoA reductase activity, reductase mass and reductase mRNA levels were greatly increased 36-, 10- and 16-fold, respectively. To counteract the effect of elevated plasma ACTH, dexamethasone acetate (Dex) was administered to 4-APP treated rats. At 3 h post Dex administration, plasma ACTH and corticosteroids levels were effectively decreased by 58 and 59%, respectively. The levels of adrenal HMG-CoA reductase mRNA, reductase activity and reductase mass were also diminished by 38, 31 and 40%, respectively. Our results show that rat adrenal HMG-CoA reductase can respond rapidly to hormonal changes, presumably through variations in circulating ACTH levels.  相似文献   

2.
In this study we have determined the effect of ACTH on the activity of HMG-CoA reductase in microsomes of hamster adrenals. Cycloheximide was used to study the dependence of the increased enzyme activity by ACTH on de novo protein synthesis. Microsomes were prepared and preincubated with and without NaF and in the presence or absence of phosphorylase phosphatase in order to differentiate between expressed (McNaF) and total (McPP) activity. ACTH induced (after 120 and 180 min) significant increases in HMG-CoA reductase activity with a latent period of 60 min for both McNaF and McPP preparations. Cycloheximide alone decreased the activity of the reductase and the coadministration of cycloheximide + ACTH caused a greater loss of activity. Also, both treatments produced an accumulation of free cholesterol in adrenals suggesting an increased turnover of the reductase by these substances. Preincubation of microsomes at 37 degrees C enhanced per se HMG-CoA reductase activity, but the relative increase produced by ACTH treatments or endogenous ACTH remained essentially the same. In conclusion, under experimental conditions used, the enhancement of HMG-CoA reductase activity produced by ACTH seem to be due to increased enzyme synthesis.  相似文献   

3.
Hamster adrenal HMG-CoA reductase activity was enhanced with rat liver cytosolic phosphorylase phosphatase as well as with similarly isolated beef and hamster adrenal cytosolic preparations. HMG-CoA reductase was inactivated when microsomes were incubated in an EDTA-free medium but containing MgCl2 and ATP. The reductase activity of microsomes isolated from adrenals of hamsters sacrificed at 1100 h and 1900 h were (mean ± SEM, pmo1/mg protein/min.) 299.6±62.3 and 588.3 ± 96.6 respectively and could be enhanced by a factor of four when preincubated in the presence of liver phosphatase.  相似文献   

4.
Injection to hamsters of various low doses of ACTH resulted in gradual increases in adrenal HMG-CoA reductase activity, in plasma and adrenal corticosteroid concentrations but produced no change in adrenal cholesterol content. These data indicate that under physiological conditions, ACTH could regulate HMG-CoA reductase activity through a mechanism which does no apparently involve a change in the cholesterol content of the gland.  相似文献   

5.
We here report the isolation and nucleotide sequencing of a full-length 3.3-kilobase cDNA for the cytoplasmic form of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase, a regulated enzyme in the cholesterol biosynthetic pathway. The cDNA was isolated from UT-1 cells, a compactin-resistant line of Chinese hamster ovary cells. UT-1 cells produce large amounts of mRNA for HMG-CoA synthase and the next enzyme in the pathway, HMG-CoA reductase, as a result of growth in the presence of compactin, a competitive inhibitor of the reductase. The identity of the cDNA for HMG-CoA synthase was confirmed through comparison of the NH2-terminal amino acid sequence predicted from the cDNA with that determined chemically from the purified enzyme. Anti-peptide antibodies directed against the amino acid sequence predicted from the cDNA precipitated HMG-CoA synthase activity from liver cytoplasm. The feeding of cholesterol to hamsters led to a decrease of more than 85% in the amount of mRNA for HMG-CoA synthase and HMG-CoA reductase in hamster liver. These data indicate that the mRNAs for cytoplasmic HMG-CoA synthase and for HMG-CoA reductase, two sequential enzymes in the cholesterol biosynthetic pathway, are coordinately regulated by cholesterol.  相似文献   

6.
Instructions for authors   总被引:5,自引:0,他引:5  
The aim of the present study was to examine hypothesis that the enhanced cholesterologenesis, found in rats with experimental chronic renal failure (CRF) resulted from the increased gene expression of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase – the rate limiting enzyme in the cholesterologenesis pathway, responsible for mevalonate synthesis. Wistar rats were used and experimental CRF was achieved by 5/6 nephrectomy model. We examined: (a) the changes in the rat liver microsomal HMG-CoA reductase activity, (b) the rat liver HMG-CoA reductase mRNA abundance in various times of day. Obtained data indicates that the increased activity of HMG-CoA reductase in the liver of rats with experimental CRF parallel enhanced mRNA level and suggests that enhanced cholesterol biosynthesis, observed in experimental CRF is at least in part due to the increased HMG-CoA reductase gene expression. The results also indicate that the physiological diurnal rhythm of HMG-CoA reductase activity is preserved in the course of experimental CRF.  相似文献   

7.
The activity of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, an enzyme which plays a regulatory role in the synthesis of cholesterol, dolichol, and coenzyme Q, has been measured in the developing embryo of the sea urchin. Enzyme activity increased at least 200-fold during development from the unfertilized egg to the pluteus stage embryo. Mixing experiments suggested that the low level of enzyme activity found at early stages was not due to the presence of inhibitor(s) in the egg or zygote. The enzyme in the sea urchin embryo exhibited properties different from that found in mammals: only a fraction of the activity could be solubilized from microsomes, and mild trypsinization inactivated the enzyme without releasing any of it from the microsomes in soluble form. To further study the sea urchin HMG-CoA reductase, a genomic clone was identified by hybridization to a cDNA encoding hamster HMG-CoA reductase. Sequence analysis of this clone revealed a coding region that shares a high degree of homology with the carboxyl-terminal domain of hamster HMG-CoA reductase. Analysis of sea urchin embryo HMG-CoA reductase mRNA levels using a restriction fragment derived from the genomic clone revealed a 5.5-kilobase poly(A)+ mRNA that increased 15-fold during development from the egg to the gastrula stage and then decreased 1.5-fold at the pluteus stage. Since the relative increase in HMG-CoA reductase mRNA was less than the increase in enzyme activity (15-fold versus 200-fold) factors in addition to the level of mRNA may control the activity of this enzyme during embryogenesis.  相似文献   

8.
The current studies demonstrate that corticosteroidogenesis can be maintained by primary cultures of bovine adrenocortical cells under lipoprotein-depleted conditions. The cholesterol necessary as substrate for steroid synthesis was found to arise from de novo synthesis within these cells. Adrenocorticotropin (ACTH) increased 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity 5-fold within 12 h after addition to the medium. The increase in activity apparently represented accumulation of enzyme as determined by protein blotting and immunodetection. The predominant immunodetectable species of HMG-CoA reductase from bovine adrenal cells was 97,000 daltons; no higher molecular mass species was detectable. The ACTH induction of HMG-CoA reductase activity could be prevented after inhibition of cholesterol conversion to pregnenolone with clotrimazole. These results are suggestive that ACTH increases adrenocortical cholesterol biosynthesis and HMG-CoA reductase activity after conversion of a cellular pool of cholesterol and/or oxysterol into steroid. The increased rate of cholesterol biosynthesis is then capable of maintaining ACTH-promoted steroid production. This is the first study, in vitro, to demonstrate an ACTH-promoted accumulation of HMG-CoA reductase of adrenocortical cells.  相似文献   

9.
10.
11.
The activity and diurnal variation of 3-hydroxy-3-methyglutaryl-CoA reductase (EC 1.1.1.34; HMG-CoA reductase), the rate-limiting enzyme in the cholesterol-biosynthetic pathway, of normal and dystrophic hamsters was determined. Liver enzyme activity showed a diurnal pattern in the normal male, but not in the dystrophic male. Enzyme values in normal males at the midpoint of the 12 h dark period were 10 times those in dystrophic males. No evidence for diurnal variation in the HMG-CoA reductase of the brain was observed, and similar activities were found for normal and dystrophic animals. The apparent Km for HMG-CoA reductase from the liver of normal or dystrophic hamsters was approx. 9 microM, and the Vmax. was 5.9 and 21.7 pmol/min per mg of protein for dystrophic and normal hamsters respectively.  相似文献   

12.
3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) activity (mevalonate:NADP+ oxidoreductase )CoA-acylating) EC 1.1.1.34) was demonstrated in beef adrenal cortex. Most of the HMG-CoA reductase activity is in the microsomal fraction while a small percentage of the activity is associated with the mitochondria, Mitochondria purified on a linear sucrose gradient are enriched in HMG-CoA reductase and cytochrome c oxidase activities. The reductase present in microsomal preparations from the whole adrenal cortex has an apparent Km of 5.6 X 10(-5) M for (R,S)-HMG-CoA. Reductase activities found in the microsomal fractions from the zona glomerulosa, the zona fasciculata, and the zona reticularis were 1.32, 7.37, and 9.74 nmol mevalonate formed per milligram protein in 30 min respectively.  相似文献   

13.
The activity of HMG-CoA reductase and cholesterol 7α-hydroxylase was assayed in the liver of rats, rabbits, hamsters and guinea pigs at the minimum of the day cycle and after one night fasting. The amount of HMG-CoA reductase, as determined after its complete dephosphorylation in vitro was of the same order of magnitude in the tested species. The dephosphorylated active form of the enzyme was detectable only in the rat. Cholesterol 7α-hydroxylase activity was also much higher in the rat.Cholestyramine treatment stimulated the activity of both enzymes. In particular, the ratio between active and inactive HMG-CoA reductase in rabbits, hamsters and guinea pigs became of the same order of magnitude of that found in rats.  相似文献   

14.
There are two classes of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase: the class I enzymes of eukaryotes and some archaea, and the class II enzymes of certain eubacteria. The activity of the class I Syrian hamster HMG-CoA reductase is regulated by phosphorylation-dephosphorylation of Ser871. Phosphorylation apparently prevents the active site histidine, His865, from protonating the inhibitory coenzyme A thioanion prior to its release from the enzyme. Structural evidence for this hypothesis is, however, lacking. The HMG-CoA reductase of the thermophilic archaeon Sulfolobus solfataricus, whose stability recommends it for physical studies, lacks both a phosphoacceptor serine and a protein kinase recognition motif. Consequently, its activity is not regulated by phosphorylation. We therefore employed site-directed mutagenesis to engineer an appropriately located phosphoacceptor serine and cAMP-dependent protein kinase recognition motif. Substitution of serine for Ala406, the apparent cognate of hamster Ser871, and replacement of Leu403 and Gly404 by arginine created S. solfataricus mutant enzyme L403R/G404R/A406S. The general properties of enzyme L403R/G404R/A406S (K(m) values, V(max), optimal pH and temperature) were essentially those of the wild-type enzyme. Exposure of enzyme L403R/G404R/A406S to [gamma-(32)P]ATP and cAMP-dependent protein kinase was accompanied by incorporation of (32)P(i) and by a parallel decrease in catalytic activity. Subsequent treatment with a protein phosphatase released enzyme-bound (32)P(i) and restored activity to pretreatment levels. The regulatory properties of enzyme L403R/G404R/A406S thus match those of the hamster enzyme. Solution of the three-dimensional structures of the phospho and dephospho forms of this mutant enzyme thus should reveal structural features critical for regulation of the activity of a class I HMG-CoA reductase.  相似文献   

15.
16.
In hypophysectomized rats, hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity, immunoreactive 97-kilodalton (97-kDa) protein, and mRNA were all reduced to undetectable levels. Administration of triiodothyronine (T3) resulted in large increases in all three after a 36-h lag period. HMG-CoA reductase activity, immunoreactive 97-kDa protein levels, and reductase mRNA levels were tightly correlated. Feeding hypophysectomized rats diets containing the bile acid sequestrant colestipol, together with the potent reductase inhibitor mevinolin, resulted in an increase in HMG-CoA reductase activity similar to that seen with T3 but a lesser stimulation of reductase mRNA levels. These results suggest that agents which cause depletion of mevalonate-derived products may share in part with T3 a common mechanism for increasing levels of HMG-CoA reductase activity in order to satisfy cellular needs for these products. Dexamethasone treatment, which is known to prevent the T3-mediated stimulation of reductase activity, caused a marked decrease in 97-kDa immunoreactive material but had little effect on reductase mRNA levels.  相似文献   

17.
Prior work from this laboratory characterized eukaryotic (hamster) and eubacterial (Pseudomonas mevalonii) 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductases. We report here the characterization of an HMG-CoA reductase from the third domain, the archaea. HMG-CoA reductase of the halobacterium Haloferax volcanii was initially partially purified from extracts of H. volcanii. Subsequently, a portion of the H. volcanii lovastatin (formerly called mevinolin) resistance marker mev was subcloned into the Escherichia coli expression vector pT7-7. While no HMG-CoA reductase activity was detectable following expression in E. coli, activity could be recovered after extracts were exposed to 3 M KCl. Following purification to electrophoretic homogeneity, the specific activity of the expressed enzyme, 24 microU/mg, equaled that of homogeneous hamster or P. mevalonii HMG-CoA reductase. Activity was optimal at pH 7.3. Kms were 66 microM (NADPH) and 60 microM [(S)-HMG-CoA]. (R)-HMG-CoA and lovastatin inhibited competitively with (S)-HMG-CoA. H. volcanii HMG-CoA reductase also catalyzed the reduction of mevaldehyde [optimal activity at pH 6.0; Vmax 11 microU/mg; Kms 32 microM (NADPH), 550 microM [(R,S)-mevaldehyde]] and the oxidative acylation of mevaldehyde [optimal activity at pH 8.0; Vmax 2.1 microU/mg; Kms 350 microM (NADP+), 300 microM (CoA), 470 microM [(R,S)-mevaldehyde]]. These properties are comparable to those of hamster and P. mevalonii HMG-CoA reductases, suggesting a similar catalytic mechanism.  相似文献   

18.
We determined the extent to which diurnal variation in cholesterol synthesis in liver is controlled by steady-state mRNA levels for the rate-limiting enzyme in the pathway, hydroxymethylglutaryl (HMG)-CoA reductase. Rats 30 days of age and maintained on a low-cholesterol diet since weaning were injected intraperitoneally with (3)H(2)O. The specific radioactivity of the whole-body water pool soon became constant, allowing for expression of values for incorporation of label into cholesterol as absolute rates of cholesterol synthesis. In liver, there was a peak of cholesterol synthesis from 8 pm to midnight, a 4-fold increase over synthesis rates from 8 am to noon. Increases in synthesis were quantitatively in lock step with increases in mRNA levels for HMG-CoA reductase occurring 4 h earlier. In a parallel experiment, rats received 1% cholesterol in the diet from weaning to 30 days of age. Basal levels of hepatic cholesterol synthesis were greatly diminished and there was little diurnal variation of cholesterol synthesis or of levels of mRNA for HMG-CoA reductase. Levels of mRNA for the low density lipoprotein receptor and scavenger receptor-B1 (putative high density lipoprotein receptor) showed little diurnal variation, regardless of diet. This suggests that diurnal variation of hepatic cholesterol synthesis is driven primarily by varying the steady-state mRNA levels for HMG-CoA reductase. Other tissues were also examined. Adrenal gland also showed a 4-fold diurnal increase in accumulation of recently synthesized cholesterol. In contrast to liver, however, there was little corresponding change in mRNA expression for HMG-CoA reductase. Much of this newly synthesized cholesterol may be of hepatic origin, imported into adrenal by SR-B1, whose mRNA was up-regulated 2-fold. In brain, there was no diurnal variation in either cholesterol synthesis or mRNA expression, and no influence of high- or low-cholesterol diets on synthesis rates or HMG-CoA reductase mRNA levels.  相似文献   

19.
A full length cDNA for human 3-hydroxy-3-methylglutaryl coenzyme A reductase, the membrane-bound glycoprotein that regulates cholesterol synthesis, was isolated from a human fetal adrenal cDNA library. The nucleotide sequence of this cDNA shows that the human reductase is 888 amino acids long and shares a high degree of homology with the hamster enzyme. The amino-terminal membrane-bound domain is the most conserved region between the two species (7 substitutions out of 339 amino acids). This region, which is predicted to span the endoplasmic reticulum membrane seven times, mediates accelerated degradation of reductase in the presence of sterols. The carboxyl-terminal catalytic domain is also highly conserved (22 substitutions out of 439 amino acids). However, the linker region between these two domains has diverged (32 substitutions out of 110 amino acids). Conservation of the structure of the membrane-bound domain in HMG-CoA reductase supports the hypothesis that sterol-regulated degradation is an important mechanism for suppression of reductase activity and for regulation of cholesterol metabolism in humans as well as in hamsters.  相似文献   

20.
We investigated the hypolipidemic effect of resveratrol focused on the mRNA expression and hepatic HMG-CoA reductase (HMGR) activity in hamsters fed a high-fat diet. Male Syrian Golden hamsters were fed a high-fat diet containing 0.025% fenofibrate or 0.025% resveratrol for 8 weeks. The concentrations of serum total cholesterol and triglyceride were significantly lower in the resveratrol-fed group than in the control group. The resveratrol contained diet significantly decreased Apo B, Lp(a), and cholesterol-ester-transport protein (CETP) concentrations, but increased Apo A-I levels and the Apo A-I/Apo B ratio. The contents of cholesterol and triglyceride in hepatic tissue were significantly lower in the resveratrol group than in the control group. Real-time PCR analysis revealed that HMGR mRNA expression was significantly lower in the resveratrol group than in the control group. These results indicate that dietary resveratrol reduces serum cholesterol by down-regulating hepatic HMGR mRNA expression in hamsters fed a high-fat diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号