首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Comparative ecophysiology of C3 and C4 plants   总被引:2,自引:3,他引:2  
Abstract. In this review we relate the physiological significance of C4 photosynthesis to plant performance in nature. We begin with an examination of the physiological consequences of the C4 pathway on photosynthesis, then discuss the ecophysiological performance of C4 plants in contrasting environments. We then compare the performance of C3 and C4 plants when they occur together in similar habitats, and finally discuss the distribution of C4 photosynthesis with respect to the physical environment, phylogeny, and life form.  相似文献   

4.
Abstract Evidence is drawn from previous studies to argue that C3—C4 intermediate plants are evolutionary intermediates, evolving from fully-expressed C3 plants towards fully-expressed C4 plants. On the basis of this conclusion, C3—C4 intermediates are examined to elucidate possible patterns that have been followed during the evolution of C4 photosynthesis. An hypothesis is proposed that the initial step in C4-evolution was the development of bundle-sheath metabolism that reduced apparent photorespiration by an efficient recycling of CO2 using RuBP carboxylase. The CO2-recycling mechanism appears to involve the differential compartmentation of glycine decarboxylase between mesophyll and bundle-sheath cells, such that most of the activity is in the bundlesheath cells. Subsequently, elevated phosphoenolpyruvate (PEP) carboxylase activities are proposed to have evolved as a means of enhancing the recycling of photorespired CO2. As the activity of PEP carboxylase increased to higher values, other enzymes in the C4-pathway are proposed to have increased in activity to facilitate the processing of the products of C4-assimilation and provide PEP substrate to PEP carboxylase with greater efficiency. Initially, such a ‘C4-cycle’ would not have been differentially compartmentalized between mesophyll and bundlesheath cells as is typical of fully-expressed C4 plants. Such metabolism would have limited benefit in terms of concentrating CO2 at RuBP carboxylase and, therefore, also be of little benefit for improving water- and nitrogen-use efficiencies. However, the development of such a limited C4-cycle would have represented a preadaptation capable of evolving into the leaf biochemistry typical of fully-expressed C4 plants. Thus, during the initial stages of C4-evolution it is proposed that improvements in photorespiratory CO2-loss and their influence on increasing the rate of net CO2 assimilation per unit leaf area represented the evolutionary ‘driving-force’. Improved resourceuse efficiency resulting from an efficient CO2-concentrating mechanism is proposed as the driving force during the later stages.  相似文献   

5.
There is continuing controversy over whether a degree of C4 photosynthetic metabolism exists in ears of C3 cereals. In this context, CO2 exchange and the initial products of photosynthesis were examined in flag leaf blades and various ear parts of two durum wheat (Triticum durum Desf.) and two six-rowed barley (Hordeum vulgare L.) cultivars. Three weeks after anthesis, the CO2 compensation concentration at 210 mmol mol?1 O2 in durum wheat and barley ear parts was similar to or greater than that in flag leaves. The O2 dependence of the CO2 compensation concentration in durum wheat ear parts, as well as in the flag leaf blade, was linear, as expected for C3 photosynthesis. In a complementary experiment, intact and attached ears and flag leaf blades of barley and durum wheat were radio-labelled with 14CO2 during a 10s pulse, and the initial products of fixation were studied in various parts of the ears (awns, glumes, inner bracts and grains) and in the flag leaf blade. All tissues assimilated CO2 mainly by the Calvin (C3) cycle, with little fixation of 14CO2 into the C4 acids malate and aspartate (about 10% or less). These collective data support the conclusion that in the ear parts of these C3 cereals C4 photosynthetic metabolism is nil.  相似文献   

6.
The carbon isotope composition of terrestrial C4 plants depends on the primary carboxylation of phosphoenolpyruvate (PEP) and on the diffusion of CO2 to the carboxylation sites, but is also influenced by the final carboxylation of ribulose-1,5-bisphosphate (RuBP). Several models have been used for reproducing this complex situation. In the present review, a particular model is applied as a means to interpret the effects of environmental and genetically determined factors on carbon isotope discrimination during C4 photosynthesis. As a new feature, the model considers four types of limitation of the overall CO2 assimilation rate. Both carboxylation reactions are assumed to be limited by either maximum enzyme activity or maximum substrate regeneration rate. The model is applied to experimental data on the effects of CO2, irradiance and water stress on short-term discrimination by leaves of several C4 species measured simultaneously with CO2 gas exchange characteristics. In particular, different patterns of the influence of low irradiances on carbon isotope discrimination are interpreted as due to variations in that irradiance at which a transition from limitation by PEP regeneration rate and RuBP carboxylase activity to limitation by the regeneration rates of both substrates occurs. After discussing literature data on the effects of environmental conditions on carbon isotope discrimination by C4 plants seasonal and developmental changes in carbon isotope composition, studies on the systematic and geographic distribution of C4 plants, evolutionary and genetical aspects, and some ecological implications are reviewed.  相似文献   

7.
Attempts are being made to introduce C4 photosynthetic characteristics into C3 crop plants by genetic manipulation. This research has focused on engineering single‐celled C4‐type CO2 concentrating mechanisms into C3 plants such as rice. Herein the pros and cons of such approaches are discussed with a focus on CO2 diffusion, utilizing a mathematical model of single‐cell C4 photosynthesis. It is shown that a high bundle sheath resistance to CO2 diffusion is an essential feature of energy‐efficient C4 photosynthesis. The large chloroplast surface area appressed to the intercellular airspace in C3 leaves generates low internal resistance to CO2 diffusion, thereby limiting the energy efficiency of a single‐cell C4 concentrating mechanism, which relies on concentrating CO2 within chloroplasts of C3 leaves. Nevertheless the model demonstrates that the drop in CO2 partial pressure, pCO2, that exists between intercellular airspace and chloroplasts in C3 leaves at high photosynthetic rates, can be reversed under high irradiance when energy is not limiting. The model shows that this is particularly effective at lower intercellular pCO2. Such a system may therefore be of benefit in water‐limited conditions when stomata are closed and low intercellular pCO2 increases photorespiration.  相似文献   

8.
The evolution of C4 photosynthesis   总被引:8,自引:4,他引:4  
  相似文献   

9.
Stomatal function mediates physiological trade‐offs associated with maintaining a favourable H2O balance in leaf tissues while acquiring CO2 as a photosynthetic substrate. The C3 and C4 species appear to have different patterns of stomatal response to changing light conditions, and variation in this behaviour may have played a role in the functional diversification of the different photosynthetic pathways. In the current study, we used gain analysis theory to characterize the stomatal conductance response to light intensity in nine different C3, C4 and C3‐C4 intermediate species Flaveria species. The response of stomatal conductance (gs) to a change in light intensity represents both a direct (related to a change in incident light intensity, I) and indirect (related to a change in intercellular CO2 concentration, Ci) response. The slope of the line relating the change in gs to Ci was steeper in C4 species, compared with C3 species, with C3‐C4 species having an intermediate response. This response reflects the greater relative contribution of the indirect versus direct component of the gs versus I response in the C4 species. The C3‐C4 species, Flaveria floridana, exhibited a C4‐like response whereas the C3‐C4 species, Flaveria sonorensis and Flaveria chloraefolia, exhibited C3‐like responses, similar to their hypothesized position along the evolutionary trajectory of the development of C4 photosynthesis. There was a positive correlation between the relative contribution of the indirect component of the gs versus I response and water use efficiency when evaluated across all species. Assuming that the C3‐C4 intermediate species reflect an evolutionary progression from fully expressed C3 ancestors, the results of the current study demonstrate an increase in the contribution of the indirect component of the gs versus I response as taxa evolve toward the C4 extreme. The greater relative contribution of the indirect component of the stomatal response occurs through both increases in the indirect stomatal components and through decreases in the direct. Increases in the magnitude of the indirect component may be related to the maintenance of higher water use efficiencies in the intermediate evolutionary stages, before the appearance of fully integrated C4 photosynthesis.  相似文献   

10.
Immediate export in leaves of C3‐C4 intermediates were compared with their C3 and C4 relatives within the Panicum and Flaveria genera. At 35 Pa CO2, photosynthesis and export were highest in C4 species in each genera. Within the Panicum, photosynthesis and export in ‘type I’ C3‐C4 intermediates were greater than those in C3 species. However, ‘type I’ C3‐C4 intermediates exported a similar proportion of newly fixed 14C as did C4 species. Within the Flaveria, ‘type II’ C3‐C4 intermediate species had the lowest export rather than the C3 species. At ambient CO2, immediate export was strongly correlated with photosynthesis. However, at 90 Pa CO2, when photosynthesis and immediate export increased in all C3 and C3‐C4 intermediate species, proportionally less C was exported in all photosynthetic types than that at ambient CO2. All species accumulated starch and sugars at both CO2 levels. There was no correlation between immediate export and the pattern of 14C‐labelling into sugars and starch among the photosynthetic types within each genus. However, during CO2 enrichment, C4Panicum species accumulated sugars above the level of sugars and starch normally made at ambient CO2, whereas the C4Flaveria species accumulated only additional starch.  相似文献   

11.
The intracellular distribution of serine hydroxymethyltransferase (EC 2.1.2.1) was studied in young wheat ( Triticum aestivum L. cv. Starke II) leaves by fractionation of protoplasts and further purification of peroxisomes and chloroplasts. Essentially all of the activity in wheat leaves was located in the mitochondria. Within the mitochondria the enzyme was mainly in the matrix as shown by centrifugation of sonicated wheat mitochondria. In the C4 plants, Zea mays (L. cv. Earliking), Panicum miliaceum and Panicum maximum (cv. Australia) belonging to different C4 types, serine hydroxymethyltransferase was almost exclusively found in bundle sheath cells. The location of this enzyme in leaves is consistent with its role relative to glycine decarboxylation during photorespiration.  相似文献   

12.
Evidence is presented contrary to the suggestion that C4 plants grow larger at elevated CO2 because the C4 pathway of young C4 leaves has C3-like characteristics, making their photosynthesis O2 sensitive and responsive to high CO2. We combined PAM fluorescence with gas exchange measurements to examine the O2 dependence of photosynthesis in young and mature leaves of Panicum antidotale (C4, NADP-ME) and P. coloratum (C4, NAD-ME), at an intercellular CO2 concentration of 5 Pa. P. laxum (C3) was used for comparison. The young C4 leaves had CO2 and light response curves typical of C4 photosynthesis. When the O2 concentration was gradually increased between 2 and 40%, CO2 assimilation rates (A) of both mature and young C4 leaves were little affected, while the ratio of the quantum yield of photosystem II to that of CO2 assimilation (ΦPSII/ΦCO2) increased more in young (up to 31%) than mature (up to 10%) C4 leaves. A of C3 leaves decreased by 1·3 and ΦPSII/ΦCO2 increased by 9-fold, over the same range of O2 concentrations. Larger increases in electron transport requirements in young, relative to mature, C4 leaves at low CO2 are indicative of greater O2 sensitivity of photorespiration. Photosynthesis modelling showed that young C4 leaves have lower bundle sheath CO2 concentration, brought about by higher bundle sheath conductance relative to the activity of the C4 and C3 cycles and/or lower ratio of activities of the C4 to C3 cycles.  相似文献   

13.
C4 photosynthesis at low temperatures   总被引:4,自引:8,他引:4  
Abstract. C4 plants grown in optimum conditions are, by comparison to C3, capable of higher maximum dry-matter yields and greater efficiencies of water and nitrogen use, yet they are rare outside the subtropics. Both latitudinal and altitudinal limits of C4 distributions correlate most closely with a mean minimum temperature of 8-10°C during the period of active growth. The possibility that the C4 process is inherently incapable of functioning at low temperatures is examined. The reversible effects of chilling on the quantum efficiency of C4 photosynthesis and the functioning of the individual steps in the C4 cycle are examined. Chilling also produces an irreversible loss of capacity to assimilate CO2 which is directly proportional to the light received during chilling. It is suggested that the reversible reduction in capacity to assimilate CO2 and the lack of an alternative pathway for the utilization of lightgenerated reducing power may make C4 species more prone to chilling-dependent photoinhibition. Laboratory studies and limited field observations suggest that this damage would be most likely to occur during photosynthetic induction at the temperatures and light levels encountered on clear, cool mornings during the spring and early summer in cool climates. Even those C4 species occurring naturally in cool climates do not appear fully capable of tolerating these conditions; indeed their growth patterns suggest that they may be adapted by avoiding 'rather than enduring' such conditions.  相似文献   

14.
Grasses with the C3 photosynthetic pathway are commonly considered to be more nutritious host plants than C4 grasses, but the nutritional quality of C3 grasses is also more greatly impacted by elevated atmospheric CO2 than is that of C4 grasses; C3 grasses produce greater amounts of nonstructural carbohydrates and have greater declines in their nitrogen content than do C4 grasses under elevated CO2. Will C3 grasses remain nutritionally superior to C4 grasses under elevated CO2 levels? We addressed this question by determining whether levels of protein in C3 grasses decline to similar levels as in C4 grasses, and whether total carbohydrate : protein ratios become similar in C3 and C4 grasses under elevated CO2. In addition, we tested the hypothesis that, among the nonstructural carbohydrates in C3 grasses, levels of fructan respond most strongly to elevated CO2. Five C3 and five C4 grass species were grown from seed in outdoor open‐top chambers at ambient (370 ppm) or elevated (740 ppm) CO2 for 2 months. As expected, a significant increase in sugars, starch and fructan in the C3 grasses under elevated CO2 was associated with a significant reduction in their protein levels, while protein levels in most C4 grasses were little affected by elevated CO2. However, this differential response of the two types of grasses was insufficient to reduce protein in C3 grasses to the levels in C4 grasses. Although levels of fructan in the C3 grasses tripled under elevated CO2, the amounts produced remained relatively low, both in absolute terms and as a fraction of the total nonstructural carbohydrates in the C3 grasses. We conclude that C3 grasses will generally remain more nutritious than C4 grasses at elevated CO2 concentrations, having higher levels of protein, nonstructural carbohydrates, and water, but lower levels of fiber and toughness, and lower total carbohydrate : protein ratios than C4 grasses.  相似文献   

15.
Leaves of twelve C3 species and six C4 species were examined to understand better the relationship between mesophyll cell properties and the generally high photosynthetic rates of these plants. The CO2 diffusion conductance expressed per unit mesophyll cell surface area (gCO2cell) cell was determined using measurements of the net rate of CO2 uptake, water vapor conductance, and the ratio of mesophyll cell surface area to leaf surface area (Ames/A). Ames/A averaged 31 for the C3 species and 16 for the C4 species. For the C3 species gCO2cell ranged from 0.12 to 0.32 mm s-1, and for the C4 species it ranged from 0.55 to 1.5 mm s-1, exceeding a previously predicted maximum of 0.5 mm s-1. Although the C3 species Cammissonia claviformis did not have the highest gCO2cell, the combination of the highest Ames and highest stomatal conductance resulted in this species having the greatest maximum rate of CO2 uptake in low oxygen, 93 μmol m-2 s-1 (147 mg dm-2 h-1). The high gCO2cell of the C4 species Amaranthus retroflexus (1.5 mm s-1) was in part attributable to its thin cell wall (72 nm thick).  相似文献   

16.
An investigation to determine whether stomatal acclimation to [CO2] occurred in C3/C4 grassland plants grown across a range of [CO2] (200–550 µmol mol?1) in the field was carried out. Acclimation was assessed by measuring the response of stomatal conductance (gs) to a range of intercellular CO2 (a gsCi curve) at each growth [CO2] in the third and fourth growing seasons of the treatment. The gsCi response curves for Solanum dimidiatum (C3 perennial forb) differed significantly across [CO2] treatments, suggesting that stomatal acclimation had occurred. Evidence of non–linear stomatal acclimation to [CO2] in this species was also found as maximum gs (gsmax; gs measured at the lowest Ci) increased with decreasing growth [CO2] only below 400 µmol mol?1. The substantial increase in gs at subambient [CO2] for S. dimidiatum was weakly correlated with the maximum velocity of carboxylation (Vcmax; r2 = 0·27) and was not associated with CO2 saturated photosynthesis (Amax). The response of gs to Ci did not vary with growth [CO2] in Bromus japonicus (C3 annual grass) or Bothriochloa ischaemum (C4 perennial grass), suggesting that stomatal acclimation had not occurred in these species. Stomatal density, which increased with rising [CO2] in both C3 species, was not correlated with gs. Larger stomatal size at subambient [CO2], however, may be associated with stomatal acclimation in S. dimidiatum. Incorporating stomatal acclimation into modelling studies could improve the ability to predict changes in ecosystem water fluxes and water availability with rising CO2 and to understand their magnitudes relative to the past.  相似文献   

17.
Four C3 and two C4 plants were subjected for 350 h to an enhanced UV-B radiation (280 to 310 nm) regime simulating a 0.18 atm. cm ozone level (solar angle 55°) in growth chamber. Different degrees of response among plant species were observed. UV-B radiation reduced plant height, fresh and dry weight, protein content, total chlorophyll, inhibited net CO2 uptake and the Hill reaction activity. Some broad-leaved species with C3 type of carbon assimilation were more susceptible to UV-B alterations of morphological and biochemical characteristics than the narrowleaved species with C4 type photosynthesis.  相似文献   

18.
Aim Numerous studies have examined the climatic factors that influence the abundance of C4 species within the grass flora (C4 relative species richness) in various regions throughout the world, but very few have examined the relative abundance of C4 vs. C3 grasses (C4 relative abundance). We sought to determine the climatic factors that influence C4 relative abundance throughout Australia. Location Australia (including Tasmania). Methods We measured C4 relative abundance at 168 locations and measured δ13C (the abundance of 13C relative to 12C) of the bone collagen of 779 kangaroos collected throughout Australia, as bone collagen δ13C was assumed to be proportional to the relative abundance of C4 grasses in the diet. Results Both C4 relative abundance and kangaroo bone collagen δ13C were found to have a strong positive relationship with seasonal water availability, i.e. the distribution of rainfall in the C4 vs. C3 growing seasons (76% and 69% of deviance explained, respectively). There was clear evidence that seasonal water availability was a better predictor of both C4 relative abundance and bone collagen δ13C than other climate variables such as mean annual temperature and January daily minimum temperature. However, seasonal water availability appeared to be a relatively poor predictor of C4 relative species richness, which was most closely related to January daily minimum temperature (90% of deviance explained). Main conclusions Our results highlight the relatively poor relationship between C4 relative abundance and C4 relative species richness, and suggest that these two variables may be related to different climatic factors. They also suggest that caution is required when using C4 relative species richness to infer the relative biomass and productivity of C4 grasses on a global scale.  相似文献   

19.
The distribution pattern of C3 and C4 grasses was studied in eight sites located between 350 m and 2100 m along an altitudinal gradient in Central Argentina. Of 139 taxa fifty-nine are C3 and eighty C4. Species of the C3 tribes (Stipeae, Poeae, Meliceae, Aveneae, Bromeae and Triticeae) and C3 Paniceae species increase in number at higher elevations; only one C3 species was found below 650 m. C4 Aristideae, Pappophoreae, Eragrostideae, Cynodonteae, Andropogoneae and Paniceae increase at lower altitudes. The floristic crossover point is at about 1500 m; the ground cover cross-over point is at about 1000 m. Analysis of the relationships between % C4 species along the gradient and nine climatic and environmental variables showed the highest correlation with July mean temperature, but all temperature variables show highly significant correlations with % C4. Correlation with annual rainfall is lower but also significant. These results are consistent with previous research showing the relative importance of C4 grasses as temperature increases. C3 species make a high contribution to relative grass coverage below the C3/C4 floristic crossover point but are rare below 1000 m.  相似文献   

20.
Plasma membranes were isolated from green leaves of maize ( Zea mays ), spinach ( Spinacia oleracea ), Setaria viridis and wheat ( Triticum aestivum cv. Omase) by aqueous two-phase partitioning. Carbonic anhydrase activity was detected in these membranes. The activity was inhibited by specific inhibitors for carbonic anhydrase, acetazolamide and ethoxyzolamide. The carbonic anhydrase activity was markedly enhanced by the addition of Triton X-100 to the plasma membranes. The highest activity was obtained in the presence of 0.015% detergent. The activity was scarcely affected when the plasma membrane vesicles were treated with proteinase K, but largely inactivated by the protease after treating the membranes with Triton X-100. These results indicate that carbonic anhydrase faces the cytoplasmic side of the membrane since plasma membranes purified by aqueous two-phase partitioning are tightly sealed vesicles of right side-out orientation (apoplastic side-out). With leaves of C4 plants, 20 to 60% of the total carbonic anhydrase activity was found in the microsomal fraction. By contrast, only 1 to 3% of the activity was found in the microsomal fraction from leaves of C3 plants. Western blot analysis showed that a polypeptide in the spinach plasma membrane cross-reacted with an antiserum raised against spinach chloroplast carbonic anhydrase, and that the molecular mass of the plasma membrane enzyme was higher than that of the chloroplast carbonic anhydrase (28 and 26 kDa, respectively). This indicates the presence of different molecular species of carbonic anhydrase in the chloroplast and the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号