首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
These studies were designed to examine the effect of anisomycin, a potent and reversible inhibitor of protein synthesis with low systemic toxicity in rodents, on induction of luteinizing hormone (LH) surges by estradiol and their facilitation by progesterone. Immature female rats that received estradiol implants at 0900 h on Day 28 had LH surges approximately 32 h later (1700 h on Day 29). Insertion of progesterone capsules 24 h after estradiol led to premature (by 1400 h) and enhanced LH secretion. Protein synthesis was inhibited by 97%, 95%, 47%, and 16% in the hypothalamus-preoptic area (HPOA) and by 98%, 87%, 35%, and 0% in the pituitary at 30 min, 2 h, 4 h, and 6 h after s.c. injection of anisomycin (10 mg/kg BW), respectively. A single injection of anisomycin at 0, 3, 6, 9, 12, 24, 27, or 30 h after estradiol treatment significantly lowered serum LH levels at 32 h. The effect of injecting anisomycin at 0, 24, or 27 h was overridden by progesterone treatment at 24 h, but LH secretion was delayed serum LH levels were basal (10-30 ng/ml) at 1400 h but elevated (500-800 ng/ml) at 1700 h. Complete suppression of LH surges in estradiol-plus-progesterone-treated rats was achieved with 2 injections of anisomycin on Day 29 at 0900 h and again at 1200 h or 1400 h. Further experiments were designed to examine proteins that might be involved in anisomycin blockade of progesterone-facilitated LH surges. Intrapituitary LH concentrations at 1700 h on Day 29 were 70-80% higher (102 +/- 12.5 micrograms/pituitary) in rats that received 2 injections of anisomycin than in vehicle-treated controls (58.5 +/- 7.7 micrograms/pituitary). There were no significant effects of anisomycin on cytosol progestin receptors in the HPOA (7.1 +/- 1.5 fmol/tissue, anisomycin; 7.2 +/- 0.3, vehicle) or pituitary (8.3 +/- 1.3 fmol/tissue, anisomycin; 11.7 +/- 2.9, vehicle) at this time. The concentration of pituitary gonadotropin-releasing hormone receptors (GnRH-R), however, was significantly lower after anisomycin (265 +/- 30 vs. 365 +/- 37 fmol/mg protein) treatment. These results suggest that both estradiol-induced and progesterone-facilitated LH surges involve protein synthetic steps extending over many hours. Blockade of progesterone-facilitated LH surges by anisomycin appears to be due primarily to an effect on release of LH to which lowering of GnRH-R levels may contribute.  相似文献   

2.
3.
Ovariectomized ewes received intramuscular (i.m.) injections of an H1-histamine receptor antagonist, diphenhydramine, or saline during the anestrous and breeding seasons to determine if histamine may regulate the estradiol-induced surge release of LH in ewes. In addition, concentrations of histamine and GnRH in hypothalamic regions and histamine and LH in the pituitary gland were determined during the estradiol-induced surge of LH. Pretreatment mean, basal, and estradiol-induced secretion of LH did not differ (P > 0.05) among seasons. However, the quantity of LH (ng) measured during the estradiol-induced surge of LH was less (P < 0.05) in ewes treated with diphenhydramine (411 ± 104) than saline (747 ± 133). Treatment with diphenhydramine did not (P > 0.05) influence steady-state concentrations of histamine in hypothalamic or pituitary gland tissues, hypothalamic concentrations of GnRH, or anterior pituitary concentrations of LH during the estradiol-induced surge of LH. It is concluded that histamine may modulate the estradiol-induced surge release of LH in ewes by affecting the secretion of GnRH.  相似文献   

4.
The role of postnatal ovary in the maturation of estradiol (E2)-induced luteinizing hormone (LH) and prolactin (PRL) surges was examined in female rats of Wistar-Imamichi strain. Animals were bilaterally ovariectomized at 24 h after birth, 1 week (w), 2 w, 3 w, 4 w or 6 w of age. At about 10 w of age, every group was primed with estradiol benzoate (E2B) for two days, and on the third day was decapitated at either 0900 h or 1900 h. Anterior pituitary (AP) LH and PRL content was determined in every group of no E2B treatment. Surge-like secretions of LH and PRL were observed at 1900 h, only in rats ovariectomized on or after 4 w of age. AP LH and PRL content was the higher, as ovariectomy was delayed. These results indicate that postnatal ovary is necessary for the maturation of E2-induced LH and PRL surges. Such an effect of ovary is mediated at least by its stimulation of AP LH and PRL content.  相似文献   

5.
In ovariectomized pigs, estradiol treatment induces a preovulatory-like luteinizing hormone (LH) surge, but only after serum LH concentrations are suppressed for 48 h. This inhibition of LH release is attributable in large part to inhibition of gonadotropin-releasing hormone (GnRH) release. The present report examines the dependency of the estradiol-induced LH surge on this preceding phase of negative feedback. Ten ovariectomized gilts were given an i.m. injection of estradiol benzoate (10 micrograms/kg BW). Beginning at the time of estradiol treatment, 5 of these gilts received 1-microgram GnRH pulses i.v. every 45 min for 48 h, i.e. during the period of negative feedback. The remaining 5 control gilts received comparable infusions of vehicle. Estradiol induced the characteristic biphasic LH response in control gilts. On the other hand, the inhibitory LH response to estradiol was prevented and the ensuing LH surge was blocked in 4 of the 5 gilts given GnRH pulses during the negative feedback phase. These results indicate that suppressing release of GnRH and/or LH is an important antecedent to full expression of the LH surge in ovariectomized pigs. Assimilation of this observation with the existing literature provides novel insights into the neuroendocrine control of LH secretion in castrated and ovary-intact gilts.  相似文献   

6.
It is widely assumed that luteinizing hormone-releasing hormone (LHRH) neuronal activation is involved in the preovulatory surge of LH in the hen. In addition, this LH surge may be initiated by ovarian progesterone (P4) release. Thus, spontaneous and P4-induced LH surges should be associated with acute changes in LHRH content of discrete hypothalamic areas associated with LHRH cell bodies and/or LHRH axon terminals. Medial preoptic area (mPOA) and infundibulum (INF) LHRH content was measured by radioimmunoassay at intervals before, at, and following peak LH levels of a spontaneous preovulatory surge of LH, as well as when this surge was advanced by P4 administration in laying hens. Nonlaying birds served as additional controls. Levels of serum LH, P4, 17 beta-estradiol and pituitary LH were also measured. Increased (P less than 0.05) LHRH content in mPOA without changes in the INF are associated with peak serum LH levels of the spontaneous LH surge. By contrast, decreased (P less than 0.05) LHRH content in both mPOA and INF is associated with peak serum LH levels when the spontaneous surge was advanced 8 h by P4 administration to laying hens. Medial preoptic area and INF LHRH contents were significantly lower (P less than 0.05) in nonlaying than in laying hens.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The effects of the adrenergic blocking drugs phenoxybenzamine, phentolamine, and pimozide on basal luteinizing hormone (LH) levels and on estrogen-induced LH release were tested in ovariectomized ewes. Phentolamine was given at a dose of 10 mg/kg; phenoxybenzamine was given at a dose of 8 mg/kg; and pimozide was given at a dose of 800 mcg/kg. Estradiol benzoate (EB) was given at a dose of 50 mcg/animal. Sera were assayed for LH levels by double-antibody radioimmunoassay. Phenoxybenzamine given as a single dose significantly reduced basal LH levels. Given at extremenly high doses, phenoxybenzamine was unable to consistently block estrogen-induced LH release. Pimozide significantly reduced basal LH levels in the ewes and blocked or greatly reduced estrogen-induced LH release in 9 of 10 treated animals. Reduced basal LH levels were seen with phentolamine injection but were of short duration of action. It is concluded that normal function of noradrenergic neurons is required for maintenance of normal basal LH release but unnecessary for estrogen-induced LH release. Dopaminergic neurons appear to facilitate basal and estrogen-induced LH release.  相似文献   

8.
Acute changes of bovine pituitary luteinizing hormone-releasing hormone (LHRH) receptors in response to steroid challenges have not been documented. To investigate these changes 96 ovariectomized (OVX) cows were randomly allotted to one of the following treatments: 1) 1 mg estriol (E3); 2) 1 mg 17 beta-estradiol (E2); or 3) 25 mg progesterone (P) twice daily for 7 days before 1 mg E2 and continuing to the end of the experiment. Serum was collected at hourly intervals from 4 animals in each group for 28 h following estrogen treatment. Four animals from each treatment were killed at 4-h intervals from 0 to 28 h after estrogen injection to recover pituitaries and hypothalami. Treatment with E3 or E2 decreased serum luteinizing hormone (LH) within 3 h and was followed by surges of LH that were temporally and quantitatively similar (P greater than 0.05). Progesterone did not block the decline in serum LH, but did prevent (P less than 0.05) the E2-induced surge of LH. Serum follicle-stimulating hormone (FSH) was unaffected (P less than 0.05) by treatment. Pituitary concentrations of LH and FSH were maximal (P less than 0.001) at 16 h for E3 and 20 h for E2, whereas P prevented (P greater than 0.05) the pituitary gonadotropin increase. Concentrations of LHRH in the hypothalamus were similar (P greater than 0.05) among treatments. Pituitary concentrations of receptors for LHRH were maximal (P less than 0.005) 12 h after estrogen injection (approximately 8 h before the LH surge), even in the presence of P. This study demonstrated that in the OVX cow: 1) E2 and E3 increased the concentration of receptors for LHRH and this increase occurred before the surge of LH; and 2) P did not block the E2-induced increase in pituitary receptors for LHRH but did prevent the surge of LH.  相似文献   

9.
10.
This study was designed to test the hypothesis that the loss of LH surges in response to the stimulatory actions of estradiol and progesterone in middle-aged, persistent-estrous (PE) rats may be caused by chronic elevations in circulating estradiol. Five groups of regularly cycling young rats received an s.c. estradiol implant immediately after ovariectomy (Day 0). For determination of LH surges, blood samples were collected hourly between 1200-1900 h from each of the five groups at one of the following times: 3 days, or 1, 2, 4, or 8 wk later. On the next day, either progesterone (0.5 mg/100 g BW) or corn oil was injected s.c. at 1200 h, and samples were obtained as before. Incidence and amplitude of estradiol-induced LH surges decreased during the first 2 wk of estradiol treatment, after which no surges occurred. Progesterone enhanced the incidence and amplitude of estradiol-induced LH surges thus delaying their disappearance. These results support our hypothesis and demonstrate that the stimulatory actions of estradiol and progesterone on the LH surge sequentially diminish with time after exposure to estradiol in young rats. Thus, young rats chronically treated with estradiol may be a useful model for studying the mechanisms whereby LH surges are abolished in middle age during the hyperestrogenic state of PE.  相似文献   

11.
We have previously reported that leptin, the product of the obese (ob) gene, may play a physiologically relevant role in the generation of estradiol/progesterone-induced luteinizing hormone (LH) and prolactin (PRL) surges in female rats. In the present study, we examined whether the stimulatory effect of leptin on the hormonal surges is mediated through the melanocortin (MC) 4 receptor in the brain, as is leptin's effect on feeding behavior. We also explored whether the MC4 receptor participates in tonic stimulation of steroid-induced LH and PRL surges. Experiments were performed on both normally fed and 3-day starved rats, which were ovariectomized and primed with estradiol and progesterone. At 11:00 h on the day of the experiments, the normally fed rats received an intracerebroventricular administration of artificial cerebrospinal fluid (vehicle), SHU 9119 (a nonselective MC3/MC4 receptor antagonist, 1.0 nmol), or HS014 (a selective MC4 receptor antagonist, 1.0 nmol). The 3-day starved rats were given vehicle, recombinant mouse leptin (0.3 nmol), leptin (0.3 nmol) + SHU9119 (1.0 nmol), or leptin (0.3 nmol) + HS014 (1.0 nmol). From 11:00 to 18:00 h, blood was collected every 30 min to measure LH and PRL. The 3-day starvation completely abolished both LH and PRL surges, but leptin significantly reinstated these hormonal surges. Both SHU9119 and HS014 significantly decreased the magnitude of LH and PRL surges in normally fed rats and also significantly blocked the leptin stimulation of the hormonal surges in starved rats. These results suggest that the MC4 receptor may be the pivotal subtype of MC receptors mediating the leptin stimulation of LH and PRL surges. The data also suggest that endogenous MC(s) may tonically stimulate the hormonal surges in normally fed rats via the MC4 receptor. This is the first report describing a physiological role of a specific MC receptor in regulating the reproductive axis.  相似文献   

12.
The plasma LH concentration is believed to be reasonably steady in normal male rats. We found that LH is released in a regular pulsatile fashion. The overall mean concentration of plasma LH in normal male rats was 46.6 +/- 4.4 (mean +/- SEM) ng/ml. The normal male rats showed periodic LH pulses: the mean pulse amplitude was 144.4 +/- 25.5 ng/ml and the inter-peak interval was 22.5 +/- 2.0 min. Each pulse lasted 9.7 +/- 0.8 min. When LH-RH (1 microgram/kg) was injected as a bolus, the peak concentration was attained in 10-30 min reaching a peak concentration of 279.4 +/- 39.6 ng/ml. Distinct pulsatile bursts of plasma LH were discernible during the period of elevated plasma LH concentration. When a higher dose of LH-RH (5 micrograms/kg) was administered, the LH concentration slowly increased to a peak concentration of 400.2 +/- 38.7 ng/ml in 20-40 min. The pulsatile nature of the LH concentration was recognizable with distinct bursts. We have observed that: (a) normal male rats release LH in a pulsatile fashion with an approximate 20-min inter-peak interval; (b) mean LH pulses last less than 10 min, and (c) the LH pulses are visible even with elevated LH and LH-RH concentrations in the general circulation.  相似文献   

13.
14.
Serum gonadotropin concentrations were high and variable and fluctuated episodically in short and long term ovariectomized ewes. Treatment with solid silastic implants releasing progesterone (serum levels 1.81 +/- 0.16 ng/ml) had no consistent effect. Treatment with implants releasing estradiol-17beta significantly depressed mean serum gonadotropin concentrations and peak height to values usually seen in intact ewes. This occurred regardless of implant size and serum estradiol-17beta concentrations (range 11 +/- 0.3 pg/ml to 98 +/- 12.8 pg/ml). Progesterone and estradiol-17beta together significantly depressed the frequency of peaks in LH concentration. Following progesterone removal, 95% of the ewes treated with progesterone and estradiol-17beta implants experienced a transient increase in serum LH concentrations similar to the preovulatory surge in intact ewes. Eighty-four percent of the LH surges were accompanied by a surge in serum FSH concentrations. However, following progesterone removal, 5.1 +/- 2.1 FSH surges were observed over six days. Gonadotropin surges occurred regardless of estradiol-17beta implant size and with or without the influence of supplemental estradiol-17beta.  相似文献   

15.
16.
Double-bridge peroxidase-antiperoxidase immunocytochemistry was used to compare the developmental appearance of immunoreactive LH-RH (ir-LH-RH) in brains of bullfrog (Rana catesbeiana) tadpoles during either spontaneous or thyroxine-induced metamorphosis. During spontaneous metamorphosis, ir-LH-RH was localized in fibers of the external layer of the median eminence (ME) of stage XIII-XXV animals, while immunoreactive perikarya and other immunostained brain structures were absent. The extent and intensity of ME immunostaining increased concomitantly with measured ME morphological development. Tadpoles induced with thyroxine to metamorphic stages XIX-XXI exhibited ME structural development and neurohypophysial neurosecretory staining similar to spontaneously metamorphosed individuals of equal stages. However, comparable ME ir-LH-RH immunostaining and gonadal size were both less developed in thyroxine-treated animals, although increased relative to non-metamorphic vehicle-injected controls. These results indicate that the hypothalamic LH-RH system changes concurrently with ME structural development during spontaneous metamorphosis. Reduced ME ir-LH-RH staining and gonadal size in thyroxine-treated animals suggest that during prometamorphosis, factors other than thyroxine alone may coordinate the normal maturation of the hypothalamo-pituitary-gonadal axis of the bullfrog.  相似文献   

17.
18.
19.
20.
The control of luteinizing hormone (LH) secretion was investigated in ovariectomized, prepubertal Yorkshire pigs by comparing the effects of anterior (AHD), complete (CHD), and posterior (PHD) hypothalamic deafferentation to sham-operated controls (SOC). Gilts (n = 16) were assigned randomly to treatments, fitted with an indwelling jugular catheter, and ovariectomized 2 days before deafferentation or sham-operation (Day 0). Blood for radioimmunoassay (RIA) of LH was collected sequentially at 20-min intervals for a period of 2 h before and 24, 48, 72, and 96 h after hypothalamic deafferentation or SOC. Episodic LH release after AHD or CHD was abolished (p less than 0.01), but not after PHD or SOC. Concentrations of serum LH in AHD and CHD dropped (p less than 0.01) at 24 and 48 h after surgery. Levels of LH before and after surgery in PHD and SOC were similar (p greater than 0.05). Infusion of 25 micrograms LH-releasing hormone (LHRH) i.v. at 72 and 96 h after hypothalamic deafferentation and SOC increased (p less than 0.01) serum LH to peak levels within 15 min. after infusion; LH returned to basal levels 60-80 min later. By 96 h after surgery, LH response to LH-releasing hormone (LHRH) was less in AHD and CHD as compared with the response at 72 h postinjection. Concentrations of LH in PHD and SOC were similar (p greater than 0.05) at 72 and 96 h, respectively. The results from this study clearly indicate that neural stimuli originating or traversing the neural areas rostral to the median eminence are required for secretion of LH in the pig.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号